版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.2.設(shè)函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是()A. B.C. D.3.若數(shù)列為等差數(shù)列,且滿足,為數(shù)列的前項和,則()A. B. C. D.4.已知函數(shù)滿足:當(dāng)時,,且對任意,都有,則()A.0 B.1 C.-1 D.5.記等差數(shù)列的公差為,前項和為.若,,則()A. B. C. D.6.設(shè)集合(為實數(shù)集),,,則()A. B. C. D.7.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數(shù)為()A.1 B.2C.3 D.48.古希臘數(shù)學(xué)家畢達哥拉斯在公元前六世紀發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進一步研究發(fā)現(xiàn)后續(xù)三個“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則6和28恰好在同一組的概率為A. B. C. D.9.己知全集為實數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)10.函數(shù)圖像可能是()A. B. C. D.11.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.12.若復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)的模為()A. B.4 C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是拋物線的焦點,過作直線與相交于兩點,且在第一象限,若,則直線的斜率是_________.14.直線過圓的圓心,則的最小值是_____.15.一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內(nèi)任意轉(zhuǎn)動,則容器體積的最小值為_________.16.如圖,直線平面,垂足為,三棱錐的底面邊長和側(cè)棱長都為4,在平面內(nèi),是直線上的動點,則點到平面的距離為_______,點到直線的距離的最大值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)求的值;(Ⅱ)若,且,求的值.18.(12分)已知函數(shù).(1)求不等式的解集;(2)若關(guān)于的不等式在區(qū)間內(nèi)無解,求實數(shù)的取值范圍.19.(12分)設(shè)函數(shù),,(Ⅰ)求曲線在點(1,0)處的切線方程;(Ⅱ)求函數(shù)在區(qū)間上的取值范圍.20.(12分)已知矩形中,,E,F(xiàn)分別為,的中點.沿將矩形折起,使,如圖所示.設(shè)P、Q分別為線段,的中點,連接.(1)求證:平面;(2)求二面角的余弦值.21.(12分)在平面直角坐標(biāo)系xOy中,拋物線C:,以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為().(1)求拋物線C的極坐標(biāo)方程;(2)若拋物線C與直線l交于A,B兩點,求的值.22.(10分)在直角坐標(biāo)系中,是過定點且傾斜角為的直線;在極坐標(biāo)系(以坐標(biāo)原點為極點,以軸非負半軸為極軸,取相同單位長度)中,曲線的極坐標(biāo)方程為.(1)寫出直線的參數(shù)方程,并將曲線的方程化為直角坐標(biāo)方程;(2)若曲線與直線相交于不同的兩點,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側(cè)棱與底面垂直,四棱錐的底面是正方形,邊長為2,棱錐的高為2,所以,故選:【點睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計算,考查了學(xué)生的運算能力,屬于中檔題.2、B【解析】
由題意首先確定導(dǎo)函數(shù)的符號,然后結(jié)合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【詳解】函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,且函數(shù)在處取得極大值,當(dāng)時,;當(dāng)時,;當(dāng)時,.時,,時,,當(dāng)或時,;當(dāng)時,.故選:【點睛】根據(jù)函數(shù)取得極大值,判斷導(dǎo)函數(shù)在極值點附近左側(cè)為正,右側(cè)為負,由正負情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.3、B【解析】
利用等差數(shù)列性質(zhì),若,則求出,再利用等差數(shù)列前項和公式得【詳解】解:因為,由等差數(shù)列性質(zhì),若,則得,.為數(shù)列的前項和,則.故選:.【點睛】本題考查等差數(shù)列性質(zhì)與等差數(shù)列前項和.(1)如果為等差數(shù)列,若,則.(2)要注意等差數(shù)列前項和公式的靈活應(yīng)用,如.4、C【解析】
由題意可知,代入函數(shù)表達式即可得解.【詳解】由可知函數(shù)是周期為4的函數(shù),.故選:C.【點睛】本題考查了分段函數(shù)和函數(shù)周期的應(yīng)用,屬于基礎(chǔ)題.5、C【解析】
由,和,可求得,從而求得和,再驗證選項.【詳解】因為,,所以解得,所以,所以,,,故選:C.【點睛】本題考查等差數(shù)列的通項公式、前項和公式,還考查運算求解能力,屬于中檔題.6、A【解析】
根據(jù)集合交集與補集運算,即可求得.【詳解】集合,,所以所以故選:A【點睛】本題考查了集合交集與補集的混合運算,屬于基礎(chǔ)題.7、D【解析】可以是共4個,選D.8、B【解析】
推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個“完全數(shù)”6,28,496,8128,33550336,隨機分為兩組,一組2個,另一組3個,基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),∴6和28恰好在同一組的概率.故選:B.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.9、D【解析】
求解一元二次不等式化簡A,求解對數(shù)不等式化簡B,然后利用補集與交集的運算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
則,
∴.
故選:D.【點睛】本題考查了交、并、補集的混合運算,考查了對數(shù)不等式,二次不等式的求法,是基礎(chǔ)題.10、D【解析】
先判斷函數(shù)的奇偶性可排除選項A,C,當(dāng)時,可分析函數(shù)值為正,即可判斷選項.【詳解】,,即函數(shù)為偶函數(shù),故排除選項A,C,當(dāng)正數(shù)越來越小,趨近于0時,,所以函數(shù),故排除選項B,故選:D【點睛】本題主要考查了函數(shù)的奇偶性,識別函數(shù)的圖象,屬于中檔題.11、D【解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點睛:算法與流程圖的考查,側(cè)重于對流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問題,是求和還是求項.12、D【解析】
由復(fù)數(shù)的綜合運算求出,再寫出其共軛復(fù)數(shù),然后由模的定義計算模.【詳解】,.故選:D.【點睛】本題考查復(fù)數(shù)的運算,考查共軛復(fù)數(shù)與模的定義,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出準線,過作準線的垂線,利用拋物線的定義把拋物線點到焦點的距離轉(zhuǎn)化為點到準線的距離,利用平面幾何知識計算出直線的斜率.【詳解】設(shè)是準線,過作于,過作于,過作于,如圖,則,,∵,∴,∴,∴,,∴,∴直線斜率為.故答案為:.【點睛】本題考查拋物線的焦點弦問題,解題關(guān)鍵是利用拋物線的定義,把拋物線上點到焦點距離轉(zhuǎn)化為該點到準線的距離,用平面幾何方法求解.14、【解析】
直線mx﹣ny﹣1=0(m>0,n>0)經(jīng)過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性質(zhì)即可得出.【詳解】∵mx﹣ny﹣1=0(m>0,n>0)經(jīng)過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,當(dāng)且僅當(dāng)m=n時取等號.∴則的最小值是4.故答案為:4.【點睛】本題考查了圓的標(biāo)準方程、“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.15、【解析】
一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內(nèi)任意轉(zhuǎn)動,則圓柱形容器的底面直徑及高的最小值均等于長方體的體對角線的長,長方體的體對角線的長為,所以容器體積的最小值為.16、【解析】
三棱錐的底面邊長和側(cè)棱長都為4,所以在平面的投影為的重心,利用解直角三角形,即可求出點到平面的距離;,可得點是以為直徑的球面上的點,所以到直線的距離為以為直徑的球面上的點到的距離,最大距離為分別過和的兩個平行平面間距離加半徑,即可求出結(jié)論.【詳解】邊長為,則中線長為,點到平面的距離為,點是以為直徑的球面上的點,所以到直線的距離為以為直徑的球面上的點到的距離,最大距離為分別過和的兩個平行平面間距離加半徑.又三棱錐的底面邊長和側(cè)棱長都為4,以下求過和的兩個平行平面間距離,分別取中點,連,則,同理,分別過做,直線確定平面,直線確定平面,則,同理,為所求,,,所以到直線最大距離為.故答案為:;.【點睛】本題考查空間中的距離、正四面體的結(jié)構(gòu)特征,考查空間想象能力,屬于較難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)直接代入再由誘導(dǎo)公式計算可得;(Ⅱ)先得到,再根據(jù)利用兩角差的余弦公式計算可得.【詳解】解:(Ⅰ);(Ⅱ)因為所以,由得,又因為,故,所以,所以.【點睛】本題考查了三角函數(shù)中的恒等變換應(yīng)用,屬于中檔題.18、(1);(2).【解析】
(1)只需分,,三種情況討論即可;(2)在區(qū)間上恒成立,轉(zhuǎn)化為,只需求出即可.【詳解】(1)當(dāng)時,,此時不等式無解;當(dāng)時,,由得;當(dāng)時,,由得,綜上,不等式的解集為;(2)依題意,在區(qū)間上恒成立,則,當(dāng)時,;當(dāng)時,,所以當(dāng)時,,由得或,所以實數(shù)的取值范圍為.【點睛】本題考查絕對值不等式的解法、不等式恒成立問題,考查學(xué)生分類討論與轉(zhuǎn)化與化歸的思想,是一道基礎(chǔ)題.19、(1)(2)【解析】分析:(1)先斷定在曲線上,從而需要求,令,求得結(jié)果,注意復(fù)合函數(shù)求導(dǎo)法則,接著應(yīng)用點斜式寫出直線的方程;(2)先將函數(shù)解析式求出,之后借助于導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得函數(shù)在相應(yīng)區(qū)間上的最值.詳解:(Ⅰ)當(dāng),.,當(dāng),,所以切線方程為.(Ⅱ),,因為,所以.令,,則在單調(diào)遞減,因為,所以在上增,在單調(diào)遞增.,,因為,所以在區(qū)間上的值域為.點睛:該題考查的是有關(guān)應(yīng)用導(dǎo)數(shù)研究函數(shù)的問題,涉及到的知識點有導(dǎo)數(shù)的幾何意義,曲線在某個點處的切線方程的求法,復(fù)合函數(shù)求導(dǎo),函數(shù)在給定區(qū)間上的最值等,在解題的過程中,需要對公式的正確使用.20、(1)證明見解析(2)【解析】
(1)取中點R,連接,,可知中,且,由Q是中點,可得則有且,即四邊形是平行四邊形,則有,即證得平面.(2)建立空間直角坐標(biāo)系,求得半平面的法向量:,然后利用空間向量的相關(guān)結(jié)論可求得二面角的余弦值.【詳解】(1)取中點R,連接,,則在中,,且,又Q是中點,所以,而且,所以,所以四邊形是平行四邊形,所以,又平面,平面,所以平面.(2)在平面內(nèi)作交于點G,以E為原點,,,分別為x,y,x軸,建立如圖所示的空間直角坐標(biāo)系,則各點坐標(biāo)為,,,所以,,設(shè)平面的一個法向量為,則即,取,得,又平面的一個法向量為,所以.因此,二面角的余弦值為【點睛】本題考查線面平行的判定,考查利用空間向量求解二面角,考查邏輯推理能力及運算求解能力,難度一般.21、(1)(2)【解析】
(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,,即可求得結(jié)果.(2)由的幾何意義得,.將代入拋物線C的方程,利用韋達定理,,即可求得結(jié)果.【詳解】(1)因為,,代入得,所以拋物線C的極坐標(biāo)方程為.(2)將代入拋物線C的方程得,所以,,所以,由的幾何意義得,.【點睛】本題考查直角坐標(biāo)和極坐標(biāo)的轉(zhuǎn)化,考查極坐標(biāo)方程的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化與劃歸,數(shù)學(xué)運算的能力,難度一般.22、(1)(為參數(shù)),;(2)【解析】分析:(1)直線的參數(shù)方程為(為參數(shù)),其中表示之間的距離,而極坐標(biāo)方程可化為,從而的直角方程為.(2)設(shè),則,利用在圓上得到滿足的方程,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 38717-2026水陸兩棲飛機術(shù)語
- 海外服務(wù)培訓(xùn)舉措
- 甲基硅氧烷生產(chǎn)工崗前實操評估考核試卷含答案
- ??趦和佬g(shù)培訓(xùn)教案
- 燃氣供應(yīng)服務(wù)員安全檢查測試考核試卷含答案
- 溶劑油裝置操作工崗前創(chuàng)新實踐考核試卷含答案
- 城管委質(zhì)檢員培訓(xùn)
- 酒店員工培訓(xùn)與職業(yè)發(fā)展路徑制度
- 酒店客房預(yù)訂與取消制度
- 酒店餐飲衛(wèi)生管理制度
- 2026年甘肅省公信科技有限公司面向社會招聘80人(第一批)筆試模擬試題及答案解析
- 文獻檢索與論文寫作 課件 12.1人工智能在文獻檢索中應(yīng)用
- 艾滋病母嬰傳播培訓(xùn)課件
- 公司職務(wù)犯罪培訓(xùn)課件
- 運營團隊陪跑服務(wù)方案
- 北京中央廣播電視總臺2025年招聘124人筆試歷年參考題庫附帶答案詳解
- 2026年廣東高考數(shù)學(xué)卷及答案
- 2026年高端化妝品市場分析報告
- 工業(yè)鍋爐安全培訓(xùn)課件
- 2025年中國鐵路南寧局招聘筆試及答案
- 2025年學(xué)校領(lǐng)導(dǎo)干部民主生活會“五個帶頭”對照檢查發(fā)言材料
評論
0/150
提交評論