版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆北京市東城區(qū)第六十六中學(xué)九年級數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.一個圓錐的底面直徑是8cm,母線長為9cm,則圓錐的全面積為()A.36πcm2 B.52πcm2 C.72πcm2 D.136πcm22.如圖,已知的周長等于,則它的內(nèi)接正六邊形ABCDEF的面積是()A. B. C. D.3.如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的一個交點坐標(biāo)是(3,0),對稱軸為直線x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a﹣2b+c>0;④當(dāng)y>0時,﹣1<x<3;⑤b<c.其中正確的個數(shù)是()A.2 B.3 C.4 D.54.如圖,矩形OABC的頂點A、C分別在x、y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過矩形OABC對角線的交點M,分別交AB、BC于點D、E.若四邊形ODBE的面積為9,則k的值為()A.2 B. C.3 D.5.如圖,在平行四邊形ABCD中,E為CD上一點,連接AE,BD,且AE,BD交于點F,::25,則DE:=()A.2:5 B.3:2 C.2:3 D.5:36.如圖,點E為菱形ABCD邊上的一個動點,并延A→B→C→D的路徑移動,設(shè)點E經(jīng)過的路徑長為x,△ADE的面積為y,則下列圖象能大致反映y與x的函數(shù)關(guān)系的是()A. B.C. D.7.已知袋中有若干個球,其中只有2個紅球,它們除顏色外其它都相同.若隨機從中摸出一個,摸到紅球的概率是,則袋中球的總個數(shù)是()A.2 B.4 C.6 D.88.如圖,廠房屋頂人字架(等腰三角形)的跨度BC=10m,∠B=36°,D為底邊BC的中點,則上弦AB的長約為()(結(jié)果保留小數(shù)點后一位sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)A.3.6m B.6.2m C.8.5m D.12.4m9.先將拋物線關(guān)于軸作軸對稱變換,所得的新拋物線的解析式為()A. B. C. D.10.關(guān)于的一元二次方程,則的條件是()A. B. C. D.二、填空題(每小題3分,共24分)11.已知圓錐的底面半徑為3cm,母線長4cm,則它的側(cè)面積為cm1.12.如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以點A為圓心2為半徑的圓上一點,連接BD,M為BD的中點,則線段CM長度的最小值為__________.13.在Rt△ABC中,斜邊AB=4,∠B=60°,將△ABC繞點B旋轉(zhuǎn)60°,頂點C運動的路線長是(結(jié)果保留π).14.若是方程的一個根,則代數(shù)式的值是______.15.如圖,在平行四邊形中,點、在雙曲線上,點的坐標(biāo)是,點在坐標(biāo)軸上,則點的坐標(biāo)是___________.16.如圖,已知在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C順時針旋轉(zhuǎn)一定角度得△DEC,此時CD⊥AB,連接AE,則tan∠EAC=____.17.如圖,AB為⊙O的直徑,C,D是⊙O上兩點,若∠ABC=50°,則∠D的度數(shù)為______.18.小剛和小亮用圖中的轉(zhuǎn)盤做“配紫色”游戲:分別轉(zhuǎn)動兩個轉(zhuǎn)盤各一次,若其中的一個轉(zhuǎn)盤轉(zhuǎn)出了紅色,另一個轉(zhuǎn)出了藍色,則可配成紫色,此時小剛贏,否則小亮贏.若用P1表示小剛贏的概率,用P2表示小亮贏概率,則兩人贏的概率P1________P2(填寫>,=或<)三、解答題(共66分)19.(10分)如圖,在平面直角坐標(biāo)系中,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,兩點.(1)求一次函數(shù)的表達式及點的坐標(biāo);(2)點是第四象限內(nèi)反比例函數(shù)圖象上一點,過點作軸的平行線,交直線于點,連接,若,求點的坐標(biāo).20.(6分)某校在基地參加社會活動中,帶隊老師考問學(xué)生:基地計劃新建一個矩形的生物園地,一邊靠舊墻(墻足夠長),另外三邊用總長69米的不銹鋼柵欄圍成,與墻平行的一邊留有一個寬為3米的出入口,如圖所示.如何設(shè)計才能使園地的面積最大?下面是兩位同學(xué)爭議的情境:小軍:把它圍成一個正方形,這樣的面積一定最大.小英:不對啦!面積最大的不是正方形.請根據(jù)上面信息,解決問題:(1)設(shè)米().①米(用含的代數(shù)式表示);②的取值范圍是;(2)請你判斷誰的說法正確,為什么?21.(6分)圖1是一輛登高云梯消防車的實物圖,圖2是其工作示意圖,起重臂AC是可伸縮的,其轉(zhuǎn)動點A距離地面BD的高度AE為3.5m.當(dāng)AC長度為9m,張角∠CAE為112°時,求云梯消防車最高點C距離地面的高度CF.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.1.)22.(8分)如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D(0,4),B(6,0).若反比例函數(shù)(x>0)的圖象經(jīng)過線段OC的中點A,交DC于點E,交BC于點F.設(shè)直線EF的解析式為y2=k2x+b.(1)求反比例函數(shù)和直線EF的解析式;(溫馨提示:平面上有任意兩點M(x1,y1)、N(x2,y2),它們連線的中點P的坐標(biāo)為())(2)求△OEF的面積;(3)請結(jié)合圖象直接寫出不等式k2x-b﹣>0的解集.23.(8分)已知:在平面直角坐標(biāo)系中,拋物線()交x軸于A、B兩點,交y軸于點C,且對稱軸為直線x=-2.(1)求該拋物線的解析式及頂點D的坐標(biāo);(2)若點P(0,t)是y軸上的一個動點,請進行如下探究:探究一:如圖1,設(shè)△PAD的面積為S,令W=t·S,當(dāng)0<t<4時,W是否有最大值?如果有,求出W的最大值和此時t的值;如果沒有,說明理由;探究二:如圖2,是否存在以P、A、D為頂點的三角形與Rt△AOC相似?如果存在,求點P的坐標(biāo);如果不存在,請說明理由.24.(8分)在平面直角坐標(biāo)系xOy中,拋物線交y軸于點為A,頂點為D,對稱軸與x軸交于點H.(1)求頂點D的坐標(biāo)(用含m的代數(shù)式表示);(2)當(dāng)拋物線過點(1,-2),且不經(jīng)過第一象限時,平移此拋物線到拋物線的位置,求平移的方向和距離;(3)當(dāng)拋物線頂點D在第二象限時,如果∠ADH=∠AHO,求m的值.25.(10分)如圖①是圖②是其側(cè)面示意圖(臺燈底座高度忽略不計),其中燈臂,燈罩,燈臂與底座構(gòu)成的.可以繞點上下調(diào)節(jié)一定的角度.使用發(fā)現(xiàn):當(dāng)與水平線所成的角為30°時,臺燈光線最佳.現(xiàn)測得點D到桌面的距離為.請通過計算說明此時臺燈光線是否為最佳?(參考數(shù)據(jù):取1.73).26.(10分)網(wǎng)絡(luò)購物已成為新的消費方式,催生了快遞行業(yè)的高速發(fā)展,某小型的快遞公司,今年5月份與7月份完成快遞件數(shù)分別為5萬件和5.832份萬件,假定每月投遞的快遞件數(shù)的增長率相同.(1)求該快遞公司投遞的快遞件數(shù)的月平均增長率;(2)如果每個快遞小哥平均每月最多可投遞0.8萬件,公司現(xiàn)有8個快遞小哥,按此快遞增長速度,不增加人手的情況下,能否完成今年9月份的投遞任務(wù)?
參考答案一、選擇題(每小題3分,共30分)1、B【分析】利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式計算出圓錐的側(cè)面積,然后計算側(cè)面積與底面積的和.【詳解】解:圓錐的全面積=π×42+×2π×4×9=52π(cm2).故選:B.【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.2、C【分析】過點O作OH⊥AB于點H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內(nèi)接多邊形的性質(zhì)可得∠AOB=60°,即可證明△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OH的長,根據(jù)S正六邊形ABCDEF=6S△OAB即可得出答案.【詳解】過點O作OH⊥AB于點H,連接OA,OB,設(shè)⊙O的半徑為r,∵⊙O的周長等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半徑為3cm,即OA=3cm,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六邊形ABCDEF=6S△OAB=6××3×=(cm2).故選C.【點睛】此題考查了正多邊形與圓的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.3、B【分析】根據(jù)二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)依次進行判斷即可求解.【詳解】解:∵拋物線開口向下,∴a<0;∵拋物線的對稱軸為直線x=﹣=1,∴b=﹣2a>0,所以②正確;∵拋物線與y軸的交點在x軸上方,∴c>0,∴abc<0,所以①錯誤;∵拋物線與x軸的一個交點坐標(biāo)是(3,0),對稱軸為直線x=1,∴拋物線與x軸的另一個交點坐標(biāo)是(﹣1,0),∴x=﹣2時,y<0,∴4a﹣2b+c<0,所以③錯誤;∵拋物線與x軸的2個交點坐標(biāo)為(﹣1,0),(3,0),∴﹣1<x<3時,y>0,所以④正確;∵x=﹣1時,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴b﹣c=﹣2a+3a=a<0,即b<c,所以⑤正確.故選B.【點睛】此題主要考查二次函數(shù)的圖像與性質(zhì),解題的關(guān)鍵是熟知二次函數(shù)的圖像性質(zhì)特點.4、C【分析】本題可從反比例函數(shù)圖象上的點E、M、D入手,分別找出△OCE、△OAD、?OABC的面積與|k|的關(guān)系,列出等式求出k值.【詳解】解:由題意得:E、M、D位于反比例函數(shù)圖象上,則,,過點M作MG⊥y軸于點G,作MN⊥x軸于點N,則S?ONMG=|k|,又∵M為矩形ABCO對角線的交點,則S矩形ABCO=4S?ONMG=4|k|,由于函數(shù)圖象在第一象限,∴k>0,則,∴k=1.故選:C.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,過雙曲線上的任意一點分別向兩條坐標(biāo)軸作垂線,與坐標(biāo)軸圍成的矩形面積就等于|k|.本知識點是中考的重要考點,同學(xué)們應(yīng)高度關(guān)注.5、B【分析】根據(jù)平行四邊形的性質(zhì)得到DC//AB,DC=AB,得到△DFE∽△BFA,根據(jù)相似三角形的性質(zhì)計算即可.【詳解】四邊形ABCD是平行四邊形,
,,
∽,
:,
,
::2,
故選B.【點睛】本題考查的是相似三角形的性質(zhì)、平行四邊形的性質(zhì),掌握相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.6、D【解析】點E沿A→B運動,△ADE的面積逐漸變大;點E沿B→C移動,△ADE的面積不變;點E沿C→D的路徑移動,△ADE的面積逐漸減?。蔬xD.點睛:本題考查函數(shù)的圖象.分三段依次考慮△ADE的面積變化情況是解題的關(guān)鍵.7、D【解析】試題解析:袋中球的總個數(shù)是:2÷=8(個).故選D.8、B【分析】先根據(jù)等腰三角形的性質(zhì)得出BD=BC=5m,AD⊥BC,再由cosB=,∠B=36°知AB=,代入計算可得.【詳解】∵△ABC是等腰三角形,且BD=CD,∴BD=BC=5m,AD⊥BC,在Rt△ABD中,∵cosB=,∠B=36°,∴AB==≈6.2(m),故選:B.【點睛】本題考查解直接三角形的應(yīng)用,解題的關(guān)鍵是根據(jù)等腰三角形的性質(zhì)構(gòu)造出直角三角形Rt△ABD,再利用三角函數(shù)求解.9、C【分析】根據(jù)平面直角坐標(biāo)系中,二次函數(shù)關(guān)于軸對稱的特點得出答案.【詳解】根據(jù)二次函數(shù)關(guān)于軸對稱的特點:兩拋物線關(guān)于軸對稱,二次項系數(shù),一次項系數(shù),常數(shù)項均互為相反數(shù),可得:拋物線關(guān)于軸對稱的新拋物線的解析式為故選:C.【點睛】本題主要考查二次函數(shù)關(guān)于軸對稱的特點,熟知兩拋物線關(guān)于軸對稱,二次項系數(shù),一次項系數(shù),常數(shù)項均互為相反數(shù),對稱軸不變是關(guān)鍵.10、C【解析】根據(jù)一元二次方程的定義即可得.【詳解】由一元二次方程的定義得解得故選:C.【點睛】本題考查了一元二次方程的定義,熟記定義是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、11π【解析】試題分析:圓錐的側(cè)面積公式:圓錐的側(cè)面積底面半徑×母線.由題意得它的側(cè)面積.考點:圓錐的側(cè)面積點評:本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握圓錐的側(cè)面積公式,即可完成.12、【分析】作AB的中點E,連接EM,CE,AD根據(jù)三角形中位線的性質(zhì)和直角三角形斜邊中線等于斜邊一半求出EM和CE長,再根據(jù)三角形的三邊關(guān)系確定CM長度的范圍,從而確定CM的最小值.【詳解】解:如圖,取AB的中點E,連接CE,ME,AD,∵E是AB的中點,M是BD的中點,AD=2,∴EM為△BAD的中位線,∴,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=∵CE為Rt△ACB斜邊的中線,∴,在△CEM中,,即,∴CM的最大值為.故答案為:.【點睛】本題考查了圓的性質(zhì),直角三角形的性質(zhì)及中位線的性質(zhì),利用三角形三邊關(guān)系確定線段的最值問題,構(gòu)造一個以CM為邊,另兩邊為定值的的三角形是解答此題的關(guān)鍵和難點.13、.【解析】試題分析:將△ABC繞點B旋轉(zhuǎn)60°,頂點C運動的路線長是就是以點B為圓心,BC為半徑所旋轉(zhuǎn)的弧,根據(jù)弧長公式即可求得.試題解析:∵AB=4,∴BC=2,所以弧長=.考點:1.弧長的計算;2.旋轉(zhuǎn)的性質(zhì).14、9【分析】根據(jù)方程解的定義,將a代入方程得到含a的等式,將其變形,整體代入所求的代數(shù)式.【詳解】解:∵a是方程的一個根,∴2a2=a+3,∴2a2-a=3,∴.故答案為:9.【點睛】本題考查方程解的定義及代數(shù)式求值問題,理解方程解的定義和整體代入思想是解答此題的關(guān)鍵.15、【分析】先根據(jù)點A的坐標(biāo)求出雙曲線的解析式,然后根據(jù)點B,C之間的縱坐標(biāo)之差和平行四邊形的性質(zhì)求出點D的坐標(biāo)即可.【詳解】∵點在雙曲線上∴∴∴∵點B,點在坐標(biāo)軸上∴B,C兩點的縱坐標(biāo)之差為1∵四邊形ABCD是平行四邊形∴AD//BC,AD=BC∴A,D兩點的縱坐標(biāo)之差為1∴D點的縱坐標(biāo)為∴∴∴的坐標(biāo)是故答案為【點睛】本題主要考查反比例函數(shù)及平行四邊形的性質(zhì),掌握待定系數(shù)法及平行四邊形的性質(zhì)是解題的關(guān)鍵.16、【分析】設(shè),得,根據(jù)旋轉(zhuǎn)的性質(zhì)得,∠1=30°,分別求得,,繼而求得答案.【詳解】如圖,AB與CD相交于G,過點E作EF⊥AC延長線于點F,設(shè),∵∠ACB=90°,∠B=30°,∴,∴,根據(jù)旋轉(zhuǎn)的性質(zhì)知:,∠DCE=∠ACB=90°,∵CD⊥AB,∴∠1+∠BAC=90°,∴∠1=30°,∵∠1+∠2+∠DCE=1800°,∴∠2=60°,∴,,∴,故答案為:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)以及銳角三角函數(shù)的知識,構(gòu)建合適的輔助線,借助解直角三角形求解是解答本題的關(guān)鍵.17、40°.【解析】根據(jù)直徑所對的圓心角是直角,然后根據(jù)直角三角形的兩銳角互余求得∠A的度數(shù),最后根據(jù)同弧所對的圓周角相等即可求解.【詳解】∵AB是圓的直徑,∴∠ACB=90°,∴∠A=90°-∠ABC=90°-50°=40°.∴∠D=∠A=40°.故答案為:40°.【點睛】本題考查了圓周角定理,直徑所對的圓周角是直角以及同弧所對的圓周角相等,理解定理是關(guān)鍵.18、<【分析】由于第二個轉(zhuǎn)盤紅色所占的圓心角為120°,則藍色部分為紅色部分的兩倍,即相當(dāng)于分成三個相等的扇形(紅、藍、藍),再列出表,根據(jù)概率公式計算出小剛贏的概率和小亮贏的概率,即可得出結(jié)論.【詳解】解:用列表法將所有可能出現(xiàn)的結(jié)果表示如下:紅藍藍藍(紅,藍)(藍,藍)(藍,藍)黃(紅,黃)(藍,黃)(藍,黃)黃(紅,黃)(藍,黃)(藍,黃)紅(紅,紅)(藍,紅)(藍,紅)上面等可能出現(xiàn)的12種結(jié)果中,有3種情況可以得到紫色,所以小剛贏的概率是;則小亮贏的概率是所以;故答案為:<【點睛】本題考查了列表法或樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.三、解答題(共66分)19、(1)y=-2x,B(2,-4);(2)或.【分析】(1)先求出點A的坐標(biāo),再代入一次函數(shù)即可求出一次函數(shù)表達式,由一次函數(shù)和反比例函數(shù)解析式即可求出點B的坐標(biāo);(2)設(shè)點,m>0,表達出PC的長度,進而表達出△POC的面積,列出方程即可求出m的值.【詳解】解:(1)∵點在反比例函數(shù)圖象上,∴,解得:a=-2,∴,代入得:,解得:k=-2,∴y=-2x,由,解得:x=2或x=-2,∴點B(2,-4);(2)如圖,設(shè)點,m>0∵PC∥x軸,∴點C的縱坐標(biāo)為,則=-2x,解得:x=,∴PC=,∴,解得:,(舍去),,(舍去),∴或.【點睛】本題考查了反比例函數(shù)與一次函數(shù)綜合問題,以及反比例函數(shù)與幾何問題,解題的關(guān)鍵是熟悉反比例函數(shù)圖象上點的坐標(biāo)的特點.20、(1)①;②;(2)小英的說法正確,理由見解析【分析】(1)①根據(jù)題意表示出來即可;②由題意列出不等式解出即可.(2)先用公式算出面積,再利用配方法求最值即可判斷.【詳解】(1)①由題意得:.∴答案為:.②≥0,解得.∴.(2)小英的說法正確,理由是:.又在范圍內(nèi),當(dāng)時,面積最大.此時,而,四邊形不是正方形.小英的說法正確.【點睛】本題考查二次函數(shù)的應(yīng)用,關(guān)鍵在于通過題目找出等量關(guān)系列式解題.21、CF≈6.8m.【分析】如圖,作AG⊥CF于點G,易得四邊形AEFG為矩形,則FG=AE=3.5m,∠EAG=90°,再計算出∠GAC=28°,則在Rt△ACG中利用正弦可計算出CG,然后計算CG+GF即可.【詳解】如圖,作AG⊥CF于點G,∵∠AEF=∠EFG=∠FGA=90°,∴四邊形AEFG為矩形,∴FG=AE=3.5m,∠EAG=90°,∴∠GAC=∠EAC﹣∠EAG=112°﹣90°=22°,在Rt△ACG中,sin∠CAG=,∴CG=AC?sin∠CAG=9sin22°≈9×0.37=3.33m,∴CF=CG+GF=3.33+3.5≈6.8m.【點睛】本題考查了解直角三角形的應(yīng)用:先將實際問題抽象為數(shù)學(xué)問題(畫出平面圖形,構(gòu)造出直角三角形轉(zhuǎn)化為解直角三角形問題),然后利用勾股定理和三角函數(shù)的定義進行幾何計算.22、(1)(2)(3)x<-6或-1.5<x<1【分析】(1)根據(jù)點A是OC的中點,可得A(3,2),可得反比例函數(shù)解析式為y1=,根據(jù)E(,4),F(xiàn)(6,1),運用待定系數(shù)法即可得到直線EF的解析式為y=-x+5;(2)過點E作EG⊥OB于G,根據(jù)點E,F(xiàn)都在反比例函數(shù)y1=的圖象上,可得S△EOG=S△OBF,再根據(jù)S△EOF=S梯形EFBG進行計算即可;(3)根據(jù)點E,F(xiàn)關(guān)于原點對稱的點的坐標(biāo)分別為(-1.5,-4),(-6,-1),可得不等式k2x-b->1的解集為:x<-6或-1.5<x<1.【詳解】(1)∵D(1,4),B(6,1),∴C(6,4),∵點A是OC的中點,∴A(3,2),把A(3,2)代入反比例函數(shù)y1=,可得k1=6,∴反比例函數(shù)解析式為y1=,把x=6代入y1=,可得y=1,則F(6,1),把y=4代入y1=,可得x=,則E(,4),把E(,4),F(xiàn)(6,1)代入y2=k2x+b,可得,解得,∴直線EF的解析式為y=-x+5;(2)如圖,過點E作EG⊥OB于G,∵點E,F(xiàn)都在反比例函數(shù)y1=的圖象上,∴S△EOG=S△OBF,∴S△EOF=S梯形EFBG=(1+4)×=;(3)由圖象可得,點E,F(xiàn)關(guān)于原點對稱的點的坐標(biāo)分別為(-1.5,-4),(-6,-1),∴由圖象可得,不等式k2x-b->1的解集為:x<-6或-1.5<x<1.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)交點問題以及矩形性質(zhì)的運用,求反比例函數(shù)與一次函數(shù)的交點坐標(biāo),把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解.解題時注意運用數(shù)形結(jié)合思想得到不等式的解集.23、(1),D(-2,4).(2)①當(dāng)t=3時,W有最大值,W最大值=1.②存在.只存在一點P(0,2)使Rt△ADP與Rt△AOC相似.【解析】(1)由拋物線的對稱軸求出a,就得到拋物線的表達式了;
(2)①下面探究問題一,由拋物線表達式找出A,B,C三點的坐標(biāo),作DM⊥y軸于M,再由面積關(guān)系:SPAD=S梯形OADM-SAOP-SDMP得到t的表達式,從而W用t表示出來,轉(zhuǎn)化為求最值問題.
②難度較大,運用分類討論思想,可以分三種情況:
(1)當(dāng)∠P1DA=90°時;(2)當(dāng)∠P2AD=90°時;(3)當(dāng)AP3D=90°時?!驹斀狻拷猓海?)∵拋物線y=ax2-x+3(a≠0)的對稱軸為直線x=-2.∴D(-2,4).(2)探究一:當(dāng)0<t<4時,W有最大值.
∵拋物線交x軸于A、B兩點,交y軸于點C,
∴A(-6,0),B(2,0),C(0,3),
∴OA=6,OC=3.
當(dāng)0<t<4時,作DM⊥y軸于M,
則DM=2,OM=4.
∵P(0,t),
∴OP=t,MP=OM-OP=4-t.
∵S三角形PAD=S梯形OADM-S三角形AOP-S三角形DMP=12-2t
∴W=t(12-2t)=-2(t-3)2+1
∴當(dāng)t=3時,W有最大值,W最大值=1.
探究二:
存在.分三種情況:
①當(dāng)∠P1DA=90°時,作DE⊥x軸于E,則OE=2,DE=4,∠DEA=90°,
∴AE=OA-OE=6-2=4=DE.
∴∠DAE=∠ADE=45°,∴∠P1DE=∠P1DA-∠ADE=90°-45°=45度.
∵DM⊥y軸,OA⊥y軸,
∴DM∥OA,
∴∠MDE=∠DEA=90°,
∴∠MDP1=∠MDE-∠P1DE=90°-45°=45度.
∴P1M=DM=2,此時又因為∠AOC=∠P1DA=90°,
∴Rt△ADP1∽Rt△AOC,
∴OP1=OM-P1M=4-2=2,
∴P1(0,2).
∴當(dāng)∠P1DA=90°時,存在點P1,使Rt△ADP1∽Rt△AOC,
此時P1點的坐標(biāo)為(0,2)
②當(dāng)∠P2AD=90°時,則∠P2AO=45°,∴△P2AD與△AOC不相似,此
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 東渡中路施工方案(3篇)
- 飛機安全員培訓(xùn)課件教學(xué)
- 群落的結(jié)構(gòu)課件2025-2026學(xué)年高二上學(xué)期生物人教版選擇性必修2
- 2026廣東廣州國家實驗室中國數(shù)字肺項目工程技術(shù)中心招聘2人參考考試題庫及答案解析
- 2026江西萍鄉(xiāng)建工集團有限公司直屬工程分公司(萍鄉(xiāng)城投建工集團有限公司)招聘10人備考考試試題及答案解析
- 2026湖北武漢大學(xué)非事業(yè)編制人員招聘71人備考考試題庫及答案解析
- 2026年合肥師范學(xué)院引進高層次人才79名筆試模擬試題及答案解析
- 2026上半年黑龍江省農(nóng)業(yè)農(nóng)村廳事業(yè)單位招聘19人參考考試題庫及答案解析
- 2026年寧德市消防救援支隊政府專職消防隊員招聘65人考試參考題庫及答案解析
- 2026云南昆明市官渡區(qū)北京八十學(xué)校招聘2人參考考試題庫及答案解析
- 汽車租賃服務(wù)規(guī)范與操作手冊(標(biāo)準(zhǔn)版)
- 2026年食品安全員培訓(xùn)考試模擬題庫及解析答案
- 2025國家國防科技工業(yè)局核技術(shù)支持中心社會招聘13人模擬試卷附答案
- 2025年大學(xué)新能源材料與器件(新能源材料研發(fā))試題及答案
- 深度解析(2026)《HGT 5145-2017甲醇制混合芳烴》
- 道路交通反違章培訓(xùn)課件
- 2025年度麻醉科主任述職報告
- 農(nóng)村集貿(mào)市場改造項目實施方案
- 印刷操作指導(dǎo)書
- 2022版《數(shù)學(xué)新課標(biāo)》詳解ppt
- 廣州自來水公司招聘試題
評論
0/150
提交評論