版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
備戰(zhàn)2021年高中數(shù)學(xué)聯(lián)賽之歷年真題匯編(1981-2020)
專題25平面幾何A輯
施雷國(guó)氟題;
1.12020高中數(shù)學(xué)聯(lián)賽A卷(第02試)】如圖,在等腰△ABC中,48=BC,/為內(nèi)心,”為B/的中點(diǎn),尸為邊AC
上一點(diǎn),滿足AP=3PC,PI延長(zhǎng)線上一點(diǎn)H滿足MH±PH,Q為AABC的外接圓上劣弧AB的中點(diǎn).證明:
【答案】證明見解析
【解析】取AC的中點(diǎn)M由AP=3PC,可知P為NC的中點(diǎn).易知B,I,N共線,NINC=9G°.
由/為zMBC的內(nèi)心,可知C/經(jīng)過點(diǎn)2,J@LZQIB=ZIBC+ZICB=ZABI+ZACQ=ZABI+ZABQ=ZQBI,
又M為BI的中點(diǎn),所以QM_L8/.進(jìn)而QMHCN.
考慮AHMQ與.由于MH1.PH,故NHMQ=90°-NHMI=NHIB.
又N/HM=N/NP=90。,故翳=箸,
工日
I'UMNP1NC1MQMQ
HINI2N12MlIB
所以△HMQHIB,得NHQM=NHBL
從而H,M,B,Q四點(diǎn)共圓.于是有NBHe=NBM(2=9O。,即BHLQH.
2.【2020高中數(shù)學(xué)聯(lián)賽B卷(第02試)】如圖,A,8,C,O,E是圓Q上順次的五點(diǎn),滿足ABC=BC£>=COE,點(diǎn)P,。分
別在線段A£>,BE上,且P在線段CQ上,證明:
【答案】證明見解析
【解析】記S為AD與BE的交點(diǎn),T為CQ延長(zhǎng)線與圓Q的交點(diǎn).
注意到ABC=BCD=CDE^^,AB,CD所對(duì)的圓周角均為a,BC,DE所對(duì)的圓周角均為P,
于是ZATQ=ZATC=a+ANPTE=NCTE=a+B,NPSQ=/BDA+NDBE=a+£.
由NATQ=NPSQ得S,A,T,Q四點(diǎn)共圓,又由NPTE=NPSQ得P,S,T,E四點(diǎn)共圓.
所以ZPAQ=ZPTS=ZPEQ.
3.12019高中數(shù)學(xué)聯(lián)賽A卷(笫02試)】如圖,在銳角△ABC中,M是8c邊的中點(diǎn)點(diǎn)P在△A8C內(nèi),使得A
P平分N84c.直線MP與△4BP、AACP的外接圓分別相交于不同于點(diǎn)P的兩點(diǎn)。、E'.證明:若DE=MP,則BC
=2BP.
【答案】證明見解析
【解析】如圖,延長(zhǎng)PM到點(diǎn)尸,使得MF=ME.連結(jié)BF、BD、CE.
由條件可知NBDP=NBAP=ZCAP=ZCEP=ZCEM.
因?yàn)锽M=CM且EM=FM,所以BF=CE且BF//CE.
于是N尸=NCEM=ZBDP,進(jìn)而BD=BF.
又DE=MP,故DP=EM=FM.
于是在等腰△8DF中,由對(duì)稱性得BP=BM從而BC=2B=2BP
4.12019高中數(shù)學(xué)聯(lián)賽B卷(第02試)】如圖,點(diǎn)A、B、C、D、E在一條直線上順次排列,滿足BC=CD=
7AB-DE,點(diǎn)P在該直線外,滿足PB=PD點(diǎn)K、L分別在線段PB、P。上,滿足KC平分NBKE,LC平分NA
LD.
證明:A、K、L、E四點(diǎn)共圓.
【答案】證明見解析
【解析】令A(yù)8=1,BC=C£)=?>0),由條件知。E=P.
如圖,注意到NBKE</A8K=NPOE<18()o-NOEK,可在C8的延長(zhǎng)線上取一點(diǎn)A。使得/4KE=41BK=N
A'BK.
此時(shí)有△ASKS/^AKE,故票=祟=能.
又KC平分NBKE,故冷如點(diǎn)=士.
丁日右48_AfBA'K__1_AB
‘乏A'E-A'KAfE—\KE/—l+2t+t2-AE'
由上式兩端減1,得竽=—,從而A=4.因此N4KE=Z.A'KE=Z.ABK.
AEAE
同理可得NALE=NEDL.
而ZABK=NEDL,所以NAKE=N4LE.
因此A、K、L、E四點(diǎn)共圓.
5.【2018高中數(shù)學(xué)聯(lián)賽A卷(第02試)】如圖,AABC為銳角三角形,AB<AC,M為BC邊的中點(diǎn),點(diǎn)。和E
分別為△ABC的外接圓弧BAC和弧BC的中點(diǎn),F(xiàn)為aABC的內(nèi)切圓在AB邊上的切點(diǎn),G為AE與BC的交
點(diǎn),N在線段EF上,滿足N8_L4B.
證明:若BN=EM,則。F_LFG.
【答案】證明見解析
【解析】由條件知,DE為△ABC外接圓的直徑,DE1.BC于M,AE1AD.
記/為△ABC的內(nèi)心,則/在AE上,IF±AB.
由NBLAB可知NNBE=Z.ABE-/.ABN
=(180°-/.ADE)-90°=90°-/.ADE=4MEI①
又根據(jù)內(nèi)心的性質(zhì),
有4EBI=eEBC+4cBi=/.EAC+^.ABl=/.EAB+乙ABI=/.EIB,
從而BE=EI.
結(jié)合BN=EM及①知,△NBE4AMEL
于是NEM/=/BNE=90°+NBFE=180°-NEFl,故E、尸、/、M四點(diǎn)共圓.
進(jìn)而可知N4FM=90°+N/FM=90°+N/KW=NAGM,從而A、尸、G、M四點(diǎn)共圓.
再由ND4G=NDMG=90。知,A,G,M,。四點(diǎn)共圓,所以A、F、G、。五點(diǎn)共圓.從而NOFG=/DAG=9
0°,BPDFVFG.
6.12018高中數(shù)學(xué)聯(lián)賽B卷(第02試)】如圖所示,在等腰△ABC中,AB=AC,邊AC上一點(diǎn)。及8c延長(zhǎng)線
上一點(diǎn)E滿足絲=法,以A8為直徑的圓3與線段DE交于一點(diǎn)F
證明:8、C、F、。四點(diǎn)共圓.
【答案】證明見解析
【解析】如圖,取BC中點(diǎn),,則由AB=AC知故H在圓3上.
延長(zhǎng)尸。至G,使得AG〃BC,結(jié)合已知條件得,—=—=故AG—BC=BH=HC,
CEDC2CE2
從而AGB”為矩形,AGHC為平行四邊形.
由4GBH為矩形知,G亦在圓3上.故NbGQNHBE
又AG//C為平行四邊形,由AC〃GH,得NCDF=NHGF.
所以NCDF=NHBF=NCBF,故8、C、F、。四點(diǎn)共圓.
7.12017高中數(shù)學(xué)聯(lián)賽A卷(第02試)】如圖,在△ABC中,AB=AC,/為△A8C的內(nèi)心似A為圓心,AB為
半徑作圓以/為圓心,出為半徑作圓心,過點(diǎn)8、/的圓弓與幾心分別交于點(diǎn)P、。(不同于點(diǎn)B).設(shè)/P與BQ
交于點(diǎn)R.
證明:BR_LCR.
【答案】證明見解析
【解析】連結(jié)出、IC、IQ、PB、PC,如圖.
由于點(diǎn)Q在圓心上,故.IB=IQ,所以N/BQ=//Q8
又B、/、P、。四點(diǎn)共圓,所以NIQB=NIPB,于是N/BQ=N/PB,
故從而有N/RB=Z/BP,且竺=竺.
△/BPS/VRB,/RIB
注意至ljAB=AC,且/為△ABC的內(nèi)心,故/B=/C,
所以%=2,于是△/CPS^/RC,故N/RC=//CP.
又點(diǎn)P在圓「的弧BC上,故NBPC=180o—:NA,因此
乙BRC=乙IRB+乙IRC=&IBP+Z.1CP=360°-/.BIC-乙BPC
=360°-(90°+|z/l)-(180°=90",
故BR_LCR.
8.12017高中數(shù)學(xué)聯(lián)賽B卷(第02試)】如圖,點(diǎn)O是銳角△4?C的外接圓3上弧BC的中點(diǎn),直線。4與圓
“過點(diǎn)8、C的切線分別相交于點(diǎn)P、Q,BQ與AC的交點(diǎn)為X,CP與A8的交點(diǎn)為匕BQ與CP的交點(diǎn)為T.
求證:AT平分線段XX
p'
【答案】證明見解析
【解析】首先證明這〃BC,即證竺=".連結(jié)BD、CD,如圖.因?yàn)樗慕z?如空=處”,
XCYBS^ABCS"BPS-BP
所以^4CCQsin/JlCQ^ACBCsxnLACB^ACAQsxn^CAQ
①
^ABBCs\nz.ABC^ABBPsin^ABP^ABAPsin£BAP
由題設(shè),BP、CQ是圓。的切線,所以NAC0=NABC,NACB=NABP,又NCAQ=NDBC=NDCB=NBAP(注意
。是弧BC的中點(diǎn)),
于是由①知爵吟②
因?yàn)镹CAQ=/54P,所以NB4Q=NC4P,
于罡SABQ_p48AQsinN84Q48AQ
③
S“"^ACAPsin^CAPACAP
而由②、③、④得汕歿=汕嗎即SAMBQ_SMCP
S&ACPSABCPS“BQS^BCP
又S"BQ=AXS"CP=AYf故絲=AY
乂S&CBQ-XC'SABCP-YB"口乂XC-YB
設(shè)邊BC的中點(diǎn)為M,因?yàn)橛嘈栉?1,
所以由塞瓦定理知,AM,BX、CY三線共點(diǎn)交點(diǎn)即為T,故由K¥〃BC可得,AT平分線段XK
9.12016高中數(shù)學(xué)聯(lián)賽(第02試)】如圖所示,在△ABC中,X、丫是直線BC上兩點(diǎn)(X,B,C,丫順次排
列),使得BX?4C=CY-AB.
設(shè)AACX、ZXABy的外心分別為。1,。2,直線。1。2與AB、AC分別交于點(diǎn)。、V.
證明:△AUV是等腰三角形.
【答案】證明見解析
【解析】如圖,作NBAC的內(nèi)角平分線交BC于點(diǎn)P.設(shè)三
角形4cx和ABY的外接圓分別為硒和他.由內(nèi)角平分線的性質(zhì)知笑=名由條件可得差=多
GIAC*v?IAC/
-r-PXBX+BPABBP
從H而——----=—=—,
PYCY+CPACCP
即CPPX=BP-PY.
故P對(duì)圓O?1和O>2的哥相等,所以P在31和32的根軸上.
于是4PJ.0102,這表明點(diǎn)U、V關(guān)于直線4P對(duì)稱,從而三角形AUV是等腰三角形.
10.12015高中數(shù)學(xué)聯(lián)賽(第02試)】如圖,ZVIBC內(nèi)接于圓O,P為弧BC上一點(diǎn),點(diǎn)K在線段AP上,使得
BK平分NABC.過K,P,C三點(diǎn)的圓與邊AC交于點(diǎn)。,聯(lián)結(jié)BD交圓廠于點(diǎn)E,聯(lián)結(jié)PE并延長(zhǎng)與邊A3交于
點(diǎn)F,證明:NABC=2NFCB.
A
【答案】證明見解析
【解析】證法一如圖,設(shè)C/交圓r于點(diǎn)X,分別延長(zhǎng)CF,P尸交圓。于點(diǎn)匕./聯(lián)結(jié)4匕KX,EX,PC.由兩圓
相交的性質(zhì)可知/。尸=Z.FCP=乙FEX,
則EX/〃Y,Z-AJF+Z-ACP=180°,乙DEP+乙ACP=180",
則乙勺?=Z_DEP,得EB///4,同理KX//4V,
由平行線分線段成比例定理可得99=喋,從而得4Y〃BX,
FXFEFB
又因?yàn)镵X〃AY,BX〃AY,所以8,K,X三點(diǎn)共線.根據(jù)A,B,P,。四點(diǎn)共圓及3K,P,。四點(diǎn)共圓,得
2LABC=Z.APC=乙FXK=乙FCB+(XBC.
又由“平分4BC知NXBC=28配從而“BC=2"CB.
證法二如圖,記CF交圓「于H.^GK-GP=GH-GC得獲=-.
由FHFC=FE-FP得FH=胃券.
又竽=磊,結(jié)合〃PC=UDK,LPED=NPKD=180;〃KD,N"C=〃°E,
FEFPsin£ABDs\m.FCPsincABDsin乙FCP
——,—?=?,
CBFFCsinzDEPs\nz.FPCs\nz.AKDsinz4DE
又pG方K=正GCsin乙4PCsiniADK
sinzFCPsinzFCP
從而竺=竺.竺sin£ADBsinz.AKD
AKADAKs\nz.ABDsinz.ADK
則”.”.竺=1,即也”
BFGHAKBFHGKA
從而B,K,"三點(diǎn)共線.
根據(jù)A,B,P,C四點(diǎn)共圓及4,K,P,C四點(diǎn)共圓,得乙ABC=/.APC=/.FHK=Z.FCB+乙HBC.
又由BK平分NABC知4HBe/"BC.
從而/ABC=24FCB.
證法三如圖,聯(lián)結(jié)FK并延長(zhǎng)交圓r于點(diǎn)S,聯(lián)結(jié)BS,BP,SC,PC.因?yàn)?ABe=/4PC,即NF8C=NKPC=
Z.KSC,
所以F,B,S,C四點(diǎn)共圓.
A
又因?yàn)镹4BP=180°-4ACP=180°-乙DCP=4DEP=乙FEB,所以△FBEFPB.
從而可得竺=",gpFB2=FE-FP.
FEFB
XFFFP^FK-FS,則F82=FK?FS,即竺=".
FKFB
可得AFSKs△尸SB,則NFBK=4FSB,
又4FSB=LFCB,則NFBK="CB,從而NABC=2/FC8.
11.12014高中數(shù)學(xué)聯(lián)賽(第02試)】如圖,在銳角△A8C中,ZB4C#60°,過點(diǎn)8,C分別作△ABC的外接圓
的切線BO,CE,且滿足B£>=CE=BC.直線OE與AB,AC的延長(zhǎng)線分別交于點(diǎn)F,G設(shè)CF與BO交于點(diǎn)M,C
E與8G交于點(diǎn)N證明:AM=AN.
【答案】證明見解析
【解析】證法一如圖,設(shè)兩條切線B。,CE交于點(diǎn)K,則8K=CK,結(jié)合8D=CE可知。E〃BC,作N8AC的平
分線AL交8c于點(diǎn)L聯(lián)結(jié)AM,LN.
由DE//BC知N48c=乙DFB,Z.FDB=Z.DBC=ABAC.
故△ABC與△。尸B相似.
由此并結(jié)合DE//BC,BD=BC及內(nèi)角平分線定理可得啜=,=黑=曝=之
MFFDFDABLB
因此LM〃BF,同理LN〃CG.
由此推出乙ALM=Z.ALB+乙BLM=Z.ALB+Z.ABL=1800-Z-BAL=180°-乙CAL
=Z.ALC+Z.ACL=Z.ALC+乙CLN=(ALN.
CGCLABBC
再結(jié)合BC//FG以及內(nèi)角平分線定理得到瑞=影芳———?—
LNBCACBL
CLAB
BLAC
即LM=LN,
故由4L=AL.Z.ALM=^ALN.LM=ZJV得到△ALW與△4LN全等,因而AM=AN,證畢.
證法二由于BD和EC都是3的切線,故4D8C=^BAC=乙ECB,
再由BD=CE可得四邊形BCED是等腰梯形,從而DE〃BC,
由于/BFD=/.ABC-x,Z.FDB-Z.DBC—Z.BAC-y,
故4DFB-'AABC,
設(shè)△ABC的三個(gè)內(nèi)角分別為NA,ZB,ZC,三條邊長(zhǎng)分別為BC=a,C4=b,AB=c,
由ADFBsAZBC有空=處=巴,可得FD=竺.
ebbb
故由BD=a可得BM=¥①
b+c
在△ABM中Z718M=%+y,
由余弦定理得4M2=c2+留j一警cosfy+x)
(b+c)/b+ci'
2a2b22abca2+b2—c2
C.(b+c)2+b+c2ab
--------—(b2c2+2bc3+c44-a2b2+a2bc+a2c2+b3c+b2c2-be3-c4)
(b+c)2'7
=—(2b2c2+be3+b3c+a2b2+a2c2+a2bc)②
(b+c),
用同樣方法計(jì)算CN和AM時(shí),只需在上述BM與AM2的表達(dá)式①與②中將b,c交換.而由式②可見的表
達(dá)式關(guān)于,,c對(duì)稱,因此4N2=4M2,即4M=4N.
結(jié)論獲證.
12.【2013高中數(shù)學(xué)聯(lián)賽(第02試)】如圖,AB是圓3的一條弦,尸為弧AB內(nèi)一點(diǎn),E,尸為線段A3上兩點(diǎn),
滿足4E=EF=FB.聯(lián)結(jié)PE,PF并延長(zhǎng),與圓分別相交于點(diǎn)C,D求證EF,CD=4C?8D.
【答案】證明見解析
【解析】聯(lián)結(jié)AO,BC,CF,OE.由于AE=EF=尸8,
ri而嚴(yán)siMBCE_點(diǎn)B到直線CP的跑離_BE__y
ACsin&CE一點(diǎn)A到直線CP的跑離一族―
后]樣”列衛(wèi)竺_點(diǎn)A到直線PD的^離_竺_2⑨
口BDsinzBDF一點(diǎn)B到直線PD的距離-BF~
另一方面,由于乙BCE=4BCP=4BDP=4BDF,Z.ACE=Z.ACP=Z.ADP=^ADF.
故將式①與②相乘可得絲絲=4,即8c?4。=44c?BO
由托勒密定理4。BC^AC-BD+ABCD④
故由式③與④得4B-CD=3AC■BD,即EF■CD=AC-BD.
13.12012高中數(shù)學(xué)聯(lián)賽(第02試)】在銳角AABC中,AB>AC,M,N是BC邊上不同的兩點(diǎn),使得NBAM=
/CAN.設(shè)△ABC和的外心分別為Q,O2,求證:。,5,A三點(diǎn)共線.
【答案】證明見解析
【解析】如圖,聯(lián)結(jié)AOi,4。2,過點(diǎn)A作AOi的垂線4P交BC的延長(zhǎng)線于點(diǎn)P,則4P是圓。?的切線.因此
乙B=/.PAC.
因?yàn)镹8AM="AN,所以乙4Mp=M+4BAM=/.PAC+4CAN=/.PAN,
因而AP是的外接圓S的切線,故APJLA02-
所以01,。2,4三點(diǎn)共線.
14.12011高中數(shù)學(xué)聯(lián)賽(第02試)】如圖,P,。分別是圓內(nèi)接四邊形4BCD的對(duì)角線AC,BD的中點(diǎn)若/BP
A^ZDPA,證明:NAQB=NCQB.
【答案】證明見解析
【解析】如圖,延長(zhǎng)線段DP與圓交于另一點(diǎn)E,則ZTPE=NDH4=N8P4,
又P是線段AC的中點(diǎn),故和=",
E
從而NCDP=4BDA,又乙4BD=乙PCD,所以△ABD-△PCD,
于是竺=",BIJyiBCD=PC-BD,
BDCD
從而有AB-CD=-AC-BD=AC?(-BD)=AC-BQ,即吟=署,
又/4BQ=Z4CD,所以A/WQ?△"£),所以“48=z£MC,
延長(zhǎng)線段A。與圓交于另一點(diǎn)尸,則NC4B=4D4F,故肥=此,
又因?yàn)椤锽。的中點(diǎn),所以“QB=/DQF,
又4AQB=乙DQF,所以乙4QB=Z.CQB.
15.12010高中數(shù)學(xué)聯(lián)賽(第02試)】如圖,銳角△4BC的外心為。,K是邊BC上一點(diǎn)(不是邊BC的中點(diǎn)),D
是線段4K延長(zhǎng)線上一點(diǎn),直線8。與AC交于點(diǎn)N,直線C£>與AB交于點(diǎn)M.求證:若OKLMN,則A,B,
D,C四點(diǎn)共圓.
【答案】證明見解析
【解析】用反證法.若A,B,D,C四點(diǎn)不共圓,設(shè)△ABC的外接圓與A。交于點(diǎn)E,聯(lián)結(jié)BE并延長(zhǎng)交直線AN
于點(diǎn)。,聯(lián)結(jié)CE并延長(zhǎng)交直線AM于點(diǎn)P,聯(lián)結(jié)PQ
因?yàn)镻t?=P的呆(關(guān)于圓O)+K的幕(關(guān)于圓。)=(PO2-r2)+{KO2-r2),
A
同理QY=(QO2-r2)+(KO2-r2),所以PM-PK2=QO2-QK2,
故OKJ.PQ,由題設(shè)OKJ.MN,所以PQ〃MN,
于是絲="①
QNPM
由梅涅勞斯定理,得
”.空.絲=1②
BDEAQN
空.變.”=1③
CDEAPM
由式①,②,③可嘴造所以冷翳,
故4DMNsKDCB,于是ZDMN=4DCB,
所以BC〃MN,故。KJ.8C.
即K為8C的中點(diǎn),矛盾.
從而A,B,D,C四點(diǎn)共圓.
注1"「心=P的事(關(guān)于圓O)+K的基(關(guān)于圓O)”的證明:延長(zhǎng)PK至點(diǎn)F,
則P,E,F,A四點(diǎn)共圓,故NPFE=NP4E=NBCE,從而E,C,F,K四點(diǎn)共圓,
于是PKPFPEPC⑤
⑤一④,得PK?PE-PC-AK-KE=P的哥(關(guān)于圓0)+K的幕(關(guān)于圓0).
注2若點(diǎn)E在線段4。的延長(zhǎng)線上,完全類似.
16.12009高中數(shù)學(xué)聯(lián)賽(第02試)】如圖,M,N分別為銳角△A8C(NA<NB)的外接圓廠上弧BC,AC的中
點(diǎn).過點(diǎn)C作PC〃MN交圓于點(diǎn)P,/為△48C的內(nèi)心,聯(lián)結(jié)P/并延長(zhǎng)交圓r于7.
(1)求證:MP-MT=NP-NT;
(2)在弧AB(不含點(diǎn)。上任取一點(diǎn)Q(Q#A,T,B),記△AQC,△QCB的內(nèi)心分別為兒為,求證:Q,八,A,
四點(diǎn)共圓.
【答案】證明見解析
【解析】⑴聯(lián)結(jié)N/,M/.由于PC〃MN,P,C,M,N共圓,故PCMN是等腰梯形.
因此NP=MC,PM=NC,聯(lián)結(jié)AM,Cl,則AM與C7交于/.
因?yàn)?M/C=/.MAC+Z.ACI=乙MCB+Z.BC1=乙MCI,
所以MC=M/,同理NC=N/,
于是NP=MI,PM=NI,故四邊形MPM為平行四邊形.
因此SAPM產(chǎn)SA/W(同底,等局).
又P,N,T,M四點(diǎn)共圓,故ZTNP+4PMT=180°,
由三角形面積公式SdPMT=:PM?MTsinz.PMT=SAPNT=”N.NTsm^PNT
=LPN?NTsin乙PMT,
2
于是PM-MT=PN-NT.
(2)如圖,因?yàn)閆JVC/i=4NCA+N4C/I=ZJVQC+/QC。=“kN,
p
所以NC=NIi,
同理MC=Mb,
由MP-MT=NP-NT得”=—,
MPNP
由情形(1)所證MP=NC,NP=MC,故”=把,
NiiMI2
又因4N7="NT=3MT=/-12MT,有4/所?△l2MT,
故/N77i=4MTV2,從而//1Q/2=乙NQM=乙NTM=/"%,
因此Q/」2,T四點(diǎn)共圓.
17.12008高中數(shù)學(xué)聯(lián)賽(第02試)】如圖,給定凸四邊形A8C£>,ZB+ZZX18O0,P是平面上的動(dòng)點(diǎn),令f(P
)=PABC+PD-CA+PCAB,
(1)求證:當(dāng)火尸)達(dá)到最小值時(shí),P,A,B,C四點(diǎn)共圓;
⑵設(shè)E是△4BC外接圓。的弧AB上一點(diǎn),滿足:—=—,—=y/3-l,Z.ECB=-^ECA,又己知OA,0c是
AB2EC2
圓。的切線,AC=V2,求人P)的最小值.
【答案】(1)證明見解析;(2)V10.
【解析】證法一(1)如圖,由托勒密不等式,對(duì)平面上的任意點(diǎn)P,^PABC+PC-AB^PB-AC,
因此/'(P)=PA-BC+PC-AB+PD-CA^PB-CA+PD-CA=(PB+PD)-CA.
因?yàn)樯厦娴牟坏仁疆?dāng)且僅當(dāng)P,A,B,C順次共圓時(shí)取等號(hào),因此當(dāng)且僅當(dāng)P在△ABC的外接圓且在弧AC上
時(shí)/'(P)=(PB+P。)?CA,
又因?yàn)镻B+PD》BD,
此不等式當(dāng)且僅當(dāng)8,P,。共線且P在8。上時(shí)取等號(hào).因此當(dāng)且僅當(dāng)P為△4BC的外接圓與B。的交點(diǎn)時(shí)火P)
取最小值=4C,BD,
故當(dāng)4P)達(dá)到最小值時(shí),P,A,B,C四點(diǎn)共圓.
(2)記NECB=。,則NECA=2a,由正弦定理知些=*=在,
ABs1n3a2
從而舊sin3a=2sin2a,即8(3sina—4sin3a)=4sinacosa,
所以3g—4A/3(1—cos2a)—4cosa=0,整理得475cos?Q-4cosa-V3=0.
解得cosa=/或cosa=一嘉(舍去),
故a=30°tz.ACE=60°,
由已知能=V3-1=sin.4C-;o。)有sinQE4c-30°)=(V3-l)sinNE4C,
ECsinz.Ej4c
即與sin/EAC-^COSNEAC=(V3-l)sinz_E4C,
整理得Usin/EAC=-cos^EAC,
22
故tan/EAC==2+V3,
可得ZE4c=75°,從而乙4EC=45°.
所以Z7MC=Z.DCA=乙4EC=45",ZXADC為等腰直角三角形.
因?yàn)锳C=O,則CD=1,又因?yàn)椤鰽BC也是等腰直角三角形,
故BC=&,5D2=1+2-2■1-V2cosl35°=5,則8D=V5,
故/'(P)min=BD?AC=近?0=V10.
證法二(1)如圖,聯(lián)結(jié)BD交△4BC的外接圓。于點(diǎn)R)(因?yàn)镈在圓。外,故凡在8。上).
過A,C,。分別作P。4PoGPoD的垂線,兩兩相交得AaiBiG,
易知尸0在△ACO內(nèi),從而在△481G內(nèi),記△ABC的三內(nèi)角分別為x,y,z,則41Poe=180°—y=z+x,
又因?yàn)镴q1PoABMi1P0C,得乙Bi=y,
同理有=%,4C1=z,所以A41B1G-△ABC,
設(shè)&G=XBC.CiAi=A.CA,A^=AAB,
則對(duì)平面上任意點(diǎn)M,有
1/(PO)=MP0A-BC+P0D-CA+P0C-AB)=P0A-81G+P0D-G4+P0C-
=2sA4181cl4M",B1C1+MD-CtAr+MC-A1B1
=X(MA-BC+MD-CA+MC-AB)="(M),
從而f(Po)4f(M),
由點(diǎn)M的任意性,知點(diǎn)凡是使/(P)達(dá)到最小值的點(diǎn).由點(diǎn)H)在圓。上,故尸o,A,B,C四點(diǎn)共圓.
(2)由情形(1)知,犬P)的最小值f(P0)=2ASAXBC,
t己Z_ECB=a,貝iJz_EC/=2a,
由正弦定理得生=又歿=—,從而國(guó)sin3a=2sin2a,
ABsm3a2
即V5(3sina—4sin3a)=4sinacosa,
所以3V5—475(1—cos2a)—4cosa=0,整理得4v5cos2a—4cosa-V3=0,
解得cosa=3或cosa=——、(舍去),故a=30°,Z.ACE=60°,
22V3
由已知能=V3-1=有sin(z_E4c-30")=(V3-l)sin/E4C,
ECsincEAC
即當(dāng)sin/EAC-[COSNEAC=(V3-l)sinz_E4C,
整理得Usin/E4c=-COS/.EAC,
22
故tan/E4c=4=2+6,可得/E4C=75",所以N4EC=45°,
△ABC為等腰直角三角形,AC=五,SAABC=1,
因?yàn)橐?8£=45",點(diǎn)BI在圓。上,Z.ABXB=90°,
所以當(dāng)BOG為矩形,BG=BD=Vl+2-2-l-V2cosl35°=瓜
故;I=強(qiáng)所以“P)mm=2.強(qiáng)1=同.
18.12007高中數(shù)學(xué)聯(lián)賽(第02試)】如圖,在銳角△ABC中,A8<AC,A。是邊8c上的高,P是線段AD內(nèi)
一點(diǎn).過P作PE_L4C,垂足為E,作PFJ_AB,垂足為尸.0”。2分別是△BO凡△(?£)£;的外心求證:0|,02,
E,尸四點(diǎn)共圓的充要條件為P是△A8C的垂心.
【答案】證明見解析
【解析】聯(lián)結(jié)8P,CP,0102,E02,EF,F0I.
因?yàn)镻D_LBC,PF_L4B,故B,D,P,尸四點(diǎn)共圓,且BP為該圓的直徑.又因?yàn)椤J恰鰾OF的外心,故Q在
BP上且是8P的中點(diǎn).
同理可證,C,D,P,E四點(diǎn)共圓,且。2是C尸的中點(diǎn).
綜合以上知。1。2〃8酊所以"O2O1="CB.
因?yàn)锳B=4P?4。=4E所以8,C,E,尸四點(diǎn)共圓.
充分性.
設(shè)戶是△ABC的垂心,由于PEJ.AGPFJ.4B,所以B,O\,P,E四點(diǎn)共線,C,。2,P,F四點(diǎn)共線,且NF
。2。1=乙FCB=乙FEB="EOi,
故a,o2,E,尸四點(diǎn)共圓
必要性.設(shè)Oi,Q,E,尸四點(diǎn)共圓,故NOWZE+NEFOI=180°,
注意到乙尸。2。1=乙PCB=Z.ACB-UCP,
又因?yàn)椤?是直角的斜邊中點(diǎn),也就是的外心,所以NPO2E=2/4CP,
因?yàn)镺i是直角△BFP的斜邊中點(diǎn),也就是ABO的外心,
從而NPFOi=90°-4BFOi=90°-Z.ABP,
因?yàn)锽,C,E,F四點(diǎn)共圓,所以N4FE=〃CB,NPFE=90°-乙4CB,
于是,由NOIOZE+乙EFOi=180"
得(乙4cB-UCP)+2Z.ACP+(90°-乙4BP)+(90°-/.ACB)=180°,
即乙4BP=AACP,
又因?yàn)?B<4C,4D1BC,故BD<CD,
設(shè)方是點(diǎn)B關(guān)于直線AD的對(duì)稱點(diǎn),對(duì)8在線段DC上且&。=BD,
聯(lián)結(jié)PB1由對(duì)稱性,有乙48?=NABP,
從而P=^ACP,
所以AP,B',C四點(diǎn)共圓.由此可知NPB,8=4。4P=90°-乙4cB.
因?yàn)?P8C=乙PB,B,故"BC+/.ACB=(90°-4ACB)+乙4cB=90°,
故直線BP和AC垂直.
由題設(shè)P在邊BC的高AD上,所以P是/ABC的垂心.
19.12005高中數(shù)學(xué)聯(lián)賽(第02試)】如圖,在△4BC中,設(shè)AB>AC,過A作△"(?的外接圓的切線L又以A
為圓心,AC為半徑作圓分別交線段48于。,交直線/于E,F.
證明:直線。E,。尸分別通過△ABC的內(nèi)心與一個(gè)旁心.(注:與三角形的一邊及另兩邊的延長(zhǎng)線均相切的圓稱
為三角形的旁切圓,旁切圓的圓心稱為旁心).
【答案】證明見解析
【解析】(1)先證。E過△ABC的內(nèi)心.
如圖,聯(lián)結(jié)。E,OC,作NBAC的平分線,分別交DE于/,。。于G,聯(lián)結(jié)/C,
則由4。=4c得4G_LDC,ID=IC.
又D,C,E在圓A上,所以ZL4C=z/EC.
從而A,/,C,E四點(diǎn)共圓,所以4C/E=Z_C4E=/ABC,
而zZ7E=2Z.ICD,于是Z/CG=2BC.
所以=N/GC+N/CG=90°+^ABC,NAC/=故/為△ABC的內(nèi)心.
(2)再證DF過AABC的一個(gè)旁心
聯(lián)結(jié)FD并延長(zhǎng)交NABC的外角平分線于/1,聯(lián)結(jié)〃
由情形(1)知,為內(nèi)心,所以N/B/i=90°=NED/1.
于是,四點(diǎn)共圓.
因?yàn)閆B%=ZB%=90°-/.ADI=(2AC+NADG)-乙ADI=^BAC+乙IDG.
所以4/,/i共線.
因此,4是△ABC的BC邊外的旁心.
20.12004高中數(shù)學(xué)聯(lián)賽(第02試)】在銳角△ABC中,AB上的高CE與AC上的高B。相交于點(diǎn)”,以DE為
直徑的圓分別交AB,AC于尸,G兩點(diǎn).FG與A”相交于點(diǎn)K.己知8c=25,80=20,BE=7.求AK的長(zhǎng).
【答案】8.64
【解析】由題設(shè)知乙4DB=Z4EC=90°,所以△4DB?△4EC,
唬得說①
由于BC=25,8。=20,BE=7,所以CD=15,CE=24.
AD_5
重:“所以{黑二:?
{AD+156
所以點(diǎn)。是放△AEC的斜邊AC的中點(diǎn),因此DE=g/lC=15,
聯(lián)結(jié)。R因?yàn)辄c(diǎn)F在以CE為直徑的圓上,所以NDEF=90°,
所以=2AE=9,
2
因?yàn)镚,F,E,。四點(diǎn)共圓,D,E,B,C四點(diǎn)共圓.
所以Z_AFG=MADE=4ABC,所以GF〃CB.
延長(zhǎng)AH交BC于P,有祭=與②
因?yàn)椤笆恰鰽BC的垂心,所以力P±BC,
又因?yàn)?4=BC,所以AP=CH=24,
所以由式②有4K=竺絲=吧《8.64.
AB25
21.12003高中數(shù)學(xué)聯(lián)賽(第02試)】過圓外一點(diǎn)尸作圓的兩條切線和一條割線,切點(diǎn)為A,B,所作割線交圓
于C,。兩點(diǎn),C在P,。之間在弦C。上取一點(diǎn)Q,使ND4Q=NPBC.
求證:ZDBQ=ZPAC.
【答案】證明見解析
【解析】如圖,聯(lián)結(jié)AB,在△ADQ和△ABC中N4DQ=44BC,miQ=zPBC=S18,
故4ADQ~△ABC,
有益=器,即BC.力£>=48.DQ,
又由割線關(guān)系知ZiPCA-△PAD,故含=務(wù)
同理,由APCBsAPm瓷4,
又P4=PB,噴=器
即AC?B。=BC?4D=4B?DQ.
在圓內(nèi)接四邊形ACBO中,由托勒密定理,得4L8D+8c=4BCD,
所以48?CD=248-DQ,故DQ=gc。,即CQ=DQ.
在△CBQ和△ABD中,—=—=—,/.BCQ=/.BAD,
ABBCBC
于是ACBQ~AABD,故LCBQ=LABD,即/D8Q=NA8C=NPAC,
因?yàn)镹PQA=Z.QDA+Z.QAD=/.ABC+4PBC=4PBA,
所以P,A,Q,B四點(diǎn)共圓.
從而NPQB=/.PAB,
又ZPAB=/.PAC+^BAC=/.PAC+乙CDB,乙PQB=/.CDB+ADBQ,
所以/DBQ=Z.PAC.
22.12003高中數(shù)學(xué)聯(lián)賽(第02試)】設(shè)三角形的三邊長(zhǎng)分別是整數(shù)/,相,”,且/>機(jī)>〃,己知{'}={瑞}=
{蓋卜其中“}9一[劃,而㈤表示不超過x的最大整數(shù).求這種三角形的周長(zhǎng)的最小值.
【答案】3003
【解析】由題設(shè)可知言一圖="一圖=/一圖,
于是3,三37n三3n(modIO’),3'三3m三3n(mod2”,3(=3m=3n(mod54),
由于(3,2)=(3,5)=1,所以由上式可知3'f=3m-n=1(mod24).
現(xiàn)在設(shè)“是滿足3"三1(mod2,)的最小正整數(shù),則對(duì)任意滿足3V三1(mod2,)的正整數(shù)v,我們有”|也即〃整
除也
事實(shí)上,若則由帶余除法可知,存在非負(fù)整數(shù)“及從使得”=aiz+b,其中0<b4u-l.
從而可推出3b=3b+au=3V=1(mod24).
而這顯然與“的定義矛盾,所以“|R
注意到3三3(mod24),32=9(mod24),33=27=ll(mod24),34=1(mod24),
從而可設(shè)m—n=4,其中★為正整數(shù).
同理可由前式推出3加-“=1(mod54),故34kmi(mod5”.
現(xiàn)在我們求滿足3伙三1(mod5與的正整數(shù)k.
因?yàn)?4=1+5x23所以3曲-1=(l+5x2")k-1=0(mod54),即
5kx24+k(fk(-2)
2x52x286x53x212
=5k+52H3+(fc-1)x27]+及黑噂?=0(mod54),
或k+5fc[3+(fc-1)x27]+"黑鷺沼三℃mod53),
即有k=5t,并代入該式得t+5t[3+芳]三0(mod52),
即有t三0(mod52),即k=5t=53s,其中s為正整數(shù),
故7n-n=500s,s為正整數(shù).
同理可證1—n=500r,r為正整數(shù).
由于l>m>n,所以r>s,
有這樣一來,三角形的三個(gè)邊為500什〃,500s+"和〃.
由于兩邊之差小于第三邊,故n>500(r-s),
因此,當(dāng)5=1"=2,?=501時(shí),三角形的周長(zhǎng)最小,
其值為(1000+501)+(500+501)+501=3003.
23.12003高中數(shù)學(xué)聯(lián)賽(第02試)】由〃個(gè)點(diǎn)和這些點(diǎn)之間的/條連線段組成一個(gè)空間圖形,其中n=q2+q
+1,/>7f",q>2,q€N.已知任四點(diǎn)不共面,每點(diǎn)至少有一條連線段,存在一點(diǎn)至少有q+2條連線段.
證明:必存在一個(gè)空間四邊形(即由四點(diǎn)A,B,C,。和四條連線段A8,BC,CD,DA組成的圖形)
【答案】證明見解析
【解析】設(shè)這"個(gè)點(diǎn)的集合U={4O,4I,A2,…,力.-/為全集,
記A,的所有鄰點(diǎn)(與A,有連線段的點(diǎn))的集合為民,以中的點(diǎn)的個(gè)數(shù)記為|5|=bi,
顯然士口?仇且灰<n-1(/=0,1,2,-??,n-1).
若存在4="一1時(shí),只需取
+1=2q(q+l)2+L
l=(n—l)+味+142(Q+l)(n-l)
則必存在四邊形,因此下面只討論上1,2,〃一1)的情況.
不妨設(shè)q+2(仇V幾一1,
用反證法,若圖中不存在四邊形,則當(dāng)?shù)臅r(shí),民與馬無公共點(diǎn)對(duì),即回門即41(0<i<;<n-1)
因此同nBol)打一1(i=1,2,,,,,n—1),
n—1、一in-1
Zq;*》2r的
(當(dāng)斤1或2時(shí),令髭I=0)
九一1/7l—1\
1V?2…,c、、1(E匕1瓦¥c八U八,》,、
=仇一3瓦+2)》2"1--------3(Z瓦)+2(n-1)
i=l\i=l)
-------g—3(2/—b0)+2(n—1)=--------(2/—b0—n+1)(2/—b0—2n4-2)
n—1Z(n—1)
1rr
>57-----TT[(^一l)(q+1)+2—b—n+l][(n—l)(q+1)+2—b—2n4-2]
2(71-1)00
=”=1、(九q—q+2—bo)(nq—Q-n4-3—b。).
2g1)
故(n-l)(n-bo)(n一壇-1)
》(ziq—q+2—b0)(nq-q—幾+3—b°)q(q+1)(九一b0)(n-b0-1)
》(ziq-q+2—b0)?(nq-q-n+3—b0)①
但(ziq—Q-n+3—bo)—Q(n-b0—1)=(Q—l)b0—n4-3
》(q—l)(q+2)—+3=0②
及(nq-q+2一瓦)一(q+l)(n-bQ)=qbQ-q-n2
>q(q+2)-q-n+2=l>0②
由式②與③及(九-M(q+1),(n-b0-l)q皆是正整數(shù),
n
得(nq-q+2-bo)(nq-q-n+3-b0)>q(q+l)(n-b0)(一M一1)?
而這與所得的式①相矛盾,故原命題成立.
24.12002高中數(shù)學(xué)聯(lián)賽(第02試)】如圖,在△ABC中,ZA=60°,AAAC,點(diǎn)。是外心.兩條高BE,CF交
于點(diǎn)”.點(diǎn)M,N分別在線段HF±,且滿足BM=CN.求端色的值.
【答案】V3OH
【解析】如圖,在BE上取8K=CH,聯(lián)結(jié)。B,OC,OK.
由三角形外心的性質(zhì),知Z80C=2/4=120°,
由三角形垂心的性質(zhì),知=180°-Z4=120°,
所以4BOC=4BHC,所以B,C,H,。四點(diǎn)共圓.
所以NOBH=&OCH.
又OB=OC,BK=CH,所以ABOK三ACOH,
因?yàn)镹BOK="OH,OK=OH,
所以"OH=乙BOC=120°,4OKH=Z.OHK=30",
觀察△OKH,有」^=與,則KH=6OH,
sinl20sm30
又因?yàn)锽M=CN,BK=CH,所以KM=NH,
所以MH+NH=MH+KM=KN=y/30H,故=y/30H.
OH
25.12001高中數(shù)學(xué)聯(lián)賽(第02試)】如圖,在△4BC中,。為外心,三條高4£),I3E,CF交于點(diǎn)H,直線ED
和AB交于點(diǎn)M,FD和AC交于點(diǎn)M
求證:(1)OB_L£>F,OC1OE;Q)OHLMN.
【答案】證明見解析
【解析】解法一(1)因?yàn)?,C,D,尸四點(diǎn)共圓,所以4BDF=NB4C,
又乙OBC=|(180°-乙BOC)=90°-Z.BAC,所以O(shè)B1DF.
(2)因?yàn)镃F_LM4所以-M"2=一4出2①
因?yàn)锽E1NA,所以NB2-NH?=AB2-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 財(cái)務(wù)審簽制度
- 落實(shí)進(jìn)貨查驗(yàn)制度
- 雷達(dá)抗干擾技術(shù)
- 2026江蘇蘇州銀行私行客戶經(jīng)理精誠(chéng)招聘?jìng)淇伎荚囶}庫(kù)附答案解析
- 2026福建省煙草專賣局招聘(第二批)127人參考考試題庫(kù)附答案解析
- 2026公安部第三研究所招聘人民警察24人備考考試試題附答案解析
- 2026年蕪湖市文化和旅游局所屬事業(yè)單位公開招聘編外聘用人員參考考試試題附答案解析
- 2026重慶飛駛特人力資源管理有限公司人工智能訓(xùn)練項(xiàng)目招聘5人備考考試題庫(kù)附答案解析
- 巴中市公安局2026年度公開招聘警務(wù)輔助人員 (47人)參考考試題庫(kù)附答案解析
- 2026云南文山州教育體育局所屬事業(yè)單位選調(diào)37人(2026年第1號(hào))備考考試試題附答案解析
- 參軍心理測(cè)試題及答案
- 淘寶網(wǎng)店合同
- 以房抵工程款合同協(xié)議6篇
- GB/T 222-2025鋼及合金成品化學(xué)成分允許偏差
- 申報(bào)個(gè)稅申請(qǐng)書
- 中秋福利采購(gòu)項(xiàng)目方案投標(biāo)文件(技術(shù)方案)
- 固態(tài)電池技術(shù)在新能源汽車領(lǐng)域的產(chǎn)業(yè)化挑戰(zhàn)與對(duì)策研究
- 2025年廣電營(yíng)銷考試題庫(kù)
- 湖南省岳陽(yáng)市平江縣2024-2025學(xué)年高二上學(xué)期期末考試語(yǔ)文試題(解析版)
- DB5101∕T 161-2023 公園城市鄉(xiāng)村綠化景觀營(yíng)建指南
- 2024-2025學(xué)年湖北省武漢市江漢區(qū)七年級(jí)(下)期末數(shù)學(xué)試卷
評(píng)論
0/150
提交評(píng)論