2023屆湖南邵陽區(qū)六校聯(lián)考數學九上期末質量檢測試題含解析_第1頁
2023屆湖南邵陽區(qū)六校聯(lián)考數學九上期末質量檢測試題含解析_第2頁
2023屆湖南邵陽區(qū)六校聯(lián)考數學九上期末質量檢測試題含解析_第3頁
2023屆湖南邵陽區(qū)六校聯(lián)考數學九上期末質量檢測試題含解析_第4頁
2023屆湖南邵陽區(qū)六校聯(lián)考數學九上期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.若直線y=kx+b經過第一、二、四象限,則直線y=bx+k的圖象大致是()A. B. C. D.2.已知點P(2a+1,a﹣1)關于原點對稱的點在第一象限,則a的取值范圍是()A.a<﹣或a>1 B.a<﹣ C.﹣<a<1 D.a>13.如果一個扇形的半徑是1,弧長是,那么此扇形的圓心角的大小為()A.30° B.45°C.60° C.90°4.下列事件是必然事件的是()A.地球繞著太陽轉 B.拋一枚硬幣,正面朝上C.明天會下雨 D.打開電視,正在播放新聞5.平面直角坐標系內一點關于原點對稱點的坐標是()A. B. C. D.6.如圖1是一只葡萄酒杯,酒杯的上半部分是以拋物線為模型設計而成,且成軸對稱圖形.從正面看葡萄酒杯的上半部分是一條拋物線,若,,以頂點為原點建立如圖2所示的平面直角坐標系,則拋物線的表達式為()A. B. C. D.7.我國民間,流傳著許多含有吉祥意義的文字圖案,表示對幸福生活的向往,良辰佳節(jié)的祝賀.比如下列圖案分別表示“福”、“祿”、“壽”、“喜”,其中是中心對稱圖形的是()A.①③ B.①④ C.②③ D.②④8.下列標志既是軸對稱圖形又是中心對稱圖形的是().A. B.C. D.9.用配方法解一元二次方程時,下列變形正確的是().A. B. C. D.10.關于x的方程有一個根是2,則另一個根等于()A.-4 B. C. D.11.方程的根是()A.2 B.0 C.0或2 D.0或312.關于x的一元二次方程x2﹣mx+(m﹣2)=0的根的情況是()A.有兩個不相等的實數根B.有兩個相等的實數根C.沒有實數根D.無法確定二、填空題(每題4分,共24分)13.已知二次函數的自變量與函數的部分對應值列表如下:…-3-2-10……0-3-4-3…則關于的方程的解是______.14.已知,P為等邊三角形ABC內一點,PA=3,PB=4,PC=5,則S△ABC=_____.15.如圖所示,某建筑物有一拋物線形的大門,小明想知道這道門的高度,他先測出門的寬度,然后用一根長為的小竹竿豎直的接觸地面和門的內壁,并測得,則門高為__________.16.小麗生日那天要照全家福,她和爸爸、媽媽隨意排成一排,則小麗站在中間的概率是________.17.如圖,四邊形是的內接四邊形,若,則的大小為________.18.若是方程的一個根.則的值是________.三、解答題(共78分)19.(8分)如圖①,四邊形ABCD與四邊形CEFG都是矩形,點E,G分別在邊CD,CB上,點F在AC上,AB=3,BC=4(1)求的值;(2)把矩形CEFG繞點C順時針旋轉到圖②的位置,P為AF,BG的交點,連接CP(Ⅰ)求的值;(Ⅱ)判斷CP與AF的位置關系,并說明理由.20.(8分)已知:如圖,△ABC中,∠BAC=90°,AB=AC=1,點D是BC邊上的一個動點(不與B,C點重合),∠ADE=45°.(1)求證:△ABD∽△DCE;(2)設BD=x,AE=y(tǒng),求y關于x的函數關系式;(3)當△ADE是等腰三角形時,請直接寫出AE的長.21.(8分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.(1)如圖(1),連接AF、CE.①四邊形AFCE是什么特殊四邊形?說明理由;②求AF的長;(2)如圖(2),動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.22.(10分)如圖,內接于,,是的弦,與相交于點,平分,過點作,分別交,的延長線于點、,連接.(1)求證:是的切線;(2)求證:.23.(10分)問題提出(1)如圖①,在中,,求的面積.問題探究(2)如圖②,半圓的直徑,是半圓的中點,點在上,且,點是上的動點,試求的最小值.問題解決(3)如圖③,扇形的半徑為在選點,在邊上選點,在邊上選點,求的長度的最小值.24.(10分)解方程:x2-5=4x.25.(12分)某商場銷售一種電子產品,進價為元/件.根據以往經驗:當銷售單價為元時,每天的銷售量是件;銷售單價每上漲元,每天的銷售量就減少件.(1)銷售該電子產品時每天的銷售量(件)與銷售單價(元)之間的函數關系式為______;(2)商場決定每銷售件該產品,就捐贈元給希望工程,每天扣除捐贈后可獲得最大利潤為元,求的值.26.如圖將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處,(1)求證:△AME∽△BEC.(2)若△EMC∽△AME,求AB與BC的數量關系.

參考答案一、選擇題(每題4分,共48分)1、A【分析】首先根據線y=kx+b經過第一、二、四象限,可得k<0,b>0,再根據k<0,b>0判斷出直線y=bx+k的圖象所過象限即可.【詳解】根據題意可知,k<0,b>0,∴y=bx+k的圖象經過一,三,四象限.故選A.【點睛】此題主要考查了一次函數y=kx+b圖象所過象限與系數的關系:①k>0,b>0?y=kx+b的圖象在一、二、三象限;②k>0,b<0?y=kx+b的圖象在一、三、四象限;③k<0,b>0?y=kx+b的圖象在一、二、四象限;④k<0,b<0?y=kx+b的圖象在二、三、四象限.2、B【分析】直接利用關于原點對稱點的縱橫坐標均互為相反數分析得出答案.【詳解】點P(2a+1,a﹣1)關于原點對稱的點(﹣2a﹣1,﹣a+1)在第一象限,則,解得:a<﹣.故選:B.【點睛】此題主要考查了關于原點對稱點的性質以及不等式組的解法,正確解不等式是解題關鍵.3、C【分析】根據弧長公式,即可求解【詳解】設圓心角是n度,根據題意得,解得:n=1.故選C【點睛】本題考查了弧長的有關計算.4、A【解析】試題分析:根據必然事件、不可能事件、隨機事件的概念可區(qū)別各類事件.解:A、地球繞著太陽轉是必然事件,故A符合題意;B、拋一枚硬幣,正面朝上是隨機事件,故B不符合題意;C、明天會下雨是隨機事件,故C不符合題意;D、打開電視,正在播放新聞是隨機事件,故D不符合題意;故選A.點評:本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.5、D【分析】根據“平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(-x,-y),即關于原點的對稱點,橫縱坐標都變成相反數”解答.【詳解】解:根據關于原點對稱的點的坐標的特點,∴點A(-2,3)關于原點對稱的點的坐標是(2,-3),故選D.【點睛】本題主要考查點關于原點對稱的特征,解決本題的關鍵是要熟練掌握點關于原點對稱的特征.6、A【分析】由題意可知C(0,0),且過點(2,3),設該拋物線的解析式為y=ax2,將兩點代入即可得出a的值,進一步得出解析式.【詳解】根據題意,得該拋物線的頂點坐標為C(0,0),經過點(2,3).設該拋物線的解析式為y=ax2.3=a22.a=.該拋物線的解析式為y=x2.故選A.【點睛】本題考查了二次函數的應用,根據題意得出兩個坐標是解題的關鍵.7、D【分析】根據中心對稱圖形的定義,結合選項所給圖形進行判斷即可.【詳解】解:①不是中心對稱圖形,故本選項不合題意;②是中心對稱圖形,故本選項符合題意;③不是中心對稱圖形,故本選項不合題意;④是中心對稱圖形,故本選項符合題意;故選:D.【點睛】本題考查了中心對稱圖形的定義,熟悉掌握概念是解題的關鍵8、B【分析】根據軸對稱圖形與中心對稱圖形的定義解答.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形;B、是軸對稱圖形,也是中心對稱圖形;C、是中心對稱圖形,不是軸對稱圖形;D、是軸對稱圖形,不是中心對稱圖形.故選:B.【點睛】掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.9、D【分析】根據配方法的原理,湊成完全平方式即可.【詳解】解:,,,故選D.【點睛】本題主要考查配方法的掌握,關鍵在于一次項的系數等于2倍的二次項系數和常數項的乘積.10、B【分析】利用根與系數的關系,,由一個根為2,以及a,c的值求出另一根即可.【詳解】解:∵關于x的方程有一個根是2,∴,即∴,故選:B.【點睛】此題主要考查了根與系數的關系,熟練地運用根與系數的關系可以大大降低計算量.11、D【分析】先把右邊的x移到左邊,然后再利用因式分解法解出x即可.【詳解】解:故選D.【點睛】本題是對一元二次方程的考查,熟練掌握一元二次方程的解法是解決本題的關鍵.12、A【解析】試題解析:△=b2-4ac=m2-4(m-2)=m2-4m+8=(m-2)2+4>0,所以方程有兩個不相等的實數根.故選:A.點睛:一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數根;(3)△<0?方程沒有實數根.二、填空題(每題4分,共24分)13、,【分析】首先根據與函數的部分對應值求出二次函數解析式,然后即可得出一元二次方程的解.【詳解】將(0,-3)(-1,-4)(-3,0)代入二次函數,得解得∴二次函數解析式為∴方程為∴方程的解為,故答案為,.【點睛】此題主要考查二次函數與一元二次方程的綜合應用,熟練掌握,即可解題.14、【分析】將△BPC繞點B逆時針旋轉60°得△BEA,根據旋轉的性質得BE=BP=4,AE=PC=5,∠PBE=60°,則△BPE為等邊三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延長BP,作AF⊥BP于點F,根據勾股定理的逆定理可得到△APE為直角三角形,且∠APE=90°,即可得到∠APB的度數,在Rt△APF中利用三角函數求得AF和PF的長,則在Rt△ABF中利用勾股定理求得AB的長,進而求得三角形ABC的面積.【詳解】解:∵△ABC為等邊三角形,∴BA=BC,可將△BPC繞點B逆時針旋轉60°得△BEA,連EP,且延長BP,作AF⊥BP于點F.如圖,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE為等邊三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE為直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.∴△ABC的面積=AB2=(25+12)=;故答案為:.【點睛】本題考查了旋轉的性質:旋轉前后的兩個圖形全等,對應點與旋轉中心的連線段的夾角等于旋轉角,對應點到旋轉中心的距離相等.也考查了等邊三角形的判定與性質以及勾股定理的逆定理.15、【分析】根據題意分別求出A,B,D三點的坐標,利用待定系數法求出拋物線的表達式,從而找到頂點,即可找到OE的高度.【詳解】根據題意有∴設拋物線的表達式為將A,B,D代入得解得∴當時,故答案為:.【點睛】本題主要考查二次函數的最大值,掌握待定系數法是解題的關鍵.16、【分析】先利用樹狀圖展示所有6種等可能的結果數,再找出小麗恰好排在中間的結果數,然后根據概率公式求解.【詳解】解:畫樹狀圖為:共有種等可能的結果數,其中小麗站在中間的結果數為,所以小麗站在中間的概率.故答案為:.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.17、100°【分析】根據圓內接四邊形的性質求出∠D的度數,根據圓周角定理計算即可.【詳解】∵四邊形ABCD是⊙O的內接四邊形,

∴∠B+∠D=180°,

∴∠D=180°-130°=50°,

由圓周角定理得,∠AOC=2∠D=100°,

故答案是:100°.【點睛】考查的是圓內接四邊形的性質、圓周角定理,掌握圓內接四邊形的對角互補、同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關鍵.18、【解析】根據一元二次方程的解的定義,將x=2代入已知方程,列出關于q的新方程,通過解該方程即可求得q的值.【詳解】∵x=2是方程x2-3x+q=0的一個根,

∴x=2滿足該方程,

∴22-3×2+q=0,

解得,q=2.

故答案為2.【點睛】本題考查了方程的解的定義.一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數的值.即用這個數代替未知數所得式子仍然成立.三、解答題(共78分)19、(1);(2)(Ⅰ);(Ⅱ)CP⊥AF,理由:見解析.【解析】(1)根據矩形的性質得到∠B=90°,根據勾股定理得到AC=5,根據相似三角形的性質即可得到結論;(2)(Ⅰ)連接CF,根據旋轉的性質得到∠BCG=∠ACF,根據相似三角形的判定和性質定理得到結論;(Ⅱ)根據相似三角形的性質得到∠BGC=∠AFC,推出點C,F(xiàn),G,P四點共圓,根據圓周角定理得到∠CPF=∠CGF=90°,于是得到結論.【詳解】(1)∵四邊形ABCD是矩形,∴∠B=90°,∵AB=3,BC=4,∴AC=5,∴,∵四邊形CEFG是矩形,∴∠FGC=90°,∴GF∥AB,∴△CGF∽△CBA,∴,∵FG∥AB,∴;(2)(Ⅰ)連接CF,∵把矩形CEFG繞點C順時針旋轉到圖②的位置,∴∠BCG=∠ACF,∵,∴△BCG∽△ACF,∴;(Ⅱ)CP⊥AF,理由:∵△BCG∽△ACF,∴∠BGC=∠AFC,∴點C,F(xiàn),G,P四點共圓,∴∠CPF=∠CGF=90°,∴CP⊥AF.【點睛】本題考查了相似三角形的判定和性質,矩形的性質,平行線分線段成比例定理,旋轉的性質,熟練掌握相似三角形的判定定理是解題的關鍵.20、(1)證明見解析;(2)y=x2-x+1=(x-)2+;(3)AE的長為2-或.【分析】(1)根據等腰直角三角形的性質及三角形內角與外角的關系,易證△ABD∽△DCE.

(2)由△ABD∽△DCE,對應邊成比例及等腰直角三角形的性質可求出y與x的函數關系式;

(3)當△ADE是等腰三角形時,因為三角形的腰和底不明確,所以應分AD=DE,AE=DE,AD=AE三種情況討論求出滿足題意的AE的長即可.【詳解】(1)證明:

∵∠BAC=90°,AB=AC

∴∠B=∠C=∠ADE=45°

∵∠ADC=∠B+∠BAD=∠ADE+∠CDE

∴∠BAD=∠CDE

∴△ABD∽△DCE;

(2)由(1)得△ABD∽△DCE,

∴=,

∵∠BAC=90°,AB=AC=1,

∴BC=,CD=-x,EC=1-y,

∴=,

∴y=x2-x+1=(x-)2+;

(3)當AD=DE時,△ABD≌△CDE,

∴BD=CE,

∴x=1-y,即x-x2=x,

∵x≠0,

∴等式左右兩邊同時除以x得:x=-1

∴AE=1-x=2-,

當AE=DE時,DE⊥AC,此時D是BC中點,E也是AC的中點,

所以,AE=;

當AD=AE時,∠DAE=90°,D與B重合,不合題意;

綜上,在AC上存在點E,使△ADE是等腰三角形,

AE的長為2-或.【點睛】本題考查相似三角形的性質、等腰直角三角形的性質、等腰三角形的判定和性質、二次函數的性質等知識,解題的關鍵是學會構建二次函數解決最值問題,學會用分類討論的思想思考問題,屬于中考壓軸題.21、(1)①菱形,理由見解析;②AF=1;(2)秒.【分析】(1)①先證明四邊形ABCD為平行四邊形,再根據對角線互相垂直平分的平行四邊形是菱形作出判定;②根據勾股定理即可求AF的長;(2)分情況討論可知,P點在BF上;Q點在ED上時;才能構成平行四邊形,根據平行四邊形的性質列出方程求解即可.【詳解】(1)①∵四邊形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE.∵EF垂直平分AC,∴OA=OC.在△AOE和△COF中,∴△AOE≌△COF(AAS),∴OE=OF(AAS).∵EF⊥AC,∴四邊形AFCE為菱形.②設菱形的邊長AF=CF=xcm,則BF=(8﹣x)cm,在Rt△ABF中,AB=4cm,由勾股定理,得16+(8﹣x)2=x2,解得:x=1,∴AF=1.(2)由作圖可以知道,P點AF上時,Q點CD上,此時A,C,P,Q四點不可能構成平行四邊形;同理P點AB上時,Q點DE或CE上,也不能構成平行四邊形.∴只有當P點在BF上,Q點在ED上時,才能構成平行四邊形,∴以A,C,P,Q四點為頂點的四邊形是平行四邊形時,∴PC=QA,∵點P的速度為每秒1cm,點Q的速度為每秒4cm,運動時間為t秒,∴PC=1t,QA=12﹣4t,∴1t=12﹣4t,解得:t=.∴以A,C,P,Q四點為頂點的四邊形是平行四邊形時,t=秒.【點睛】本題考查了矩形的性質的運用,菱形的判定及性質的運用,勾股定理的運用,平行四邊形的判定及性質的運用,解答時分析清楚動點在不同的位置所構成的圖形的形狀是解答本題的關鍵.22、(1)詳見解析;(2)詳見解析.【分析】(1)根據圓的對稱性即可求出答案;(2)先證明△BCD∽△BDF,利用相似三角形的性質可知:,利用BC=AC即可求證=AC?BF;【詳解】解:(1)∵,平分,∴,,∴是圓的直徑∵AB∥EF,∴,∵是圓的半徑,∴是的切線;(2)∵,∴,∴,∴,∴,∵,∴.【點睛】本題主要考查了圓周角定理,切線的判定與性質,相似三角形的判定與性質,掌握圓周角定理,切線的判定與性質,相似三角形的判定與性質是解題的關鍵.23、(1)12;(2);(3).【分析】(1)如圖1中,過點作,交延長線于點,通過構造直角三角形,求出BD利用三角形面積公式求解即可.(2)如圖示,作點關于的對稱點,交于點,連接,交于點,連接、、,過點作,交延長線于點,確定點P的位置,利用勾股定理與矩形的性質求出CQ的長度即為答案.(3)解圖3所示,在上這一點作點關于的對稱點,作點關于的對稱點,連接,交于點,交于點,連接,通過軸對稱性質的轉化,最終確定最小值轉化為SN的長.【詳解】(1)如解圖1所示,過點作,交延長線于點,,,,交延長線于點,為等腰直角三角形,且,,在中,,,即,,,解得:,,.(2)如解圖2所示,作點關于的對稱點,交于點,連接,交于點,連接、、,過點作,交延長線于點,關于的對稱點,交于點,,,點為上的動點,,當點處于解圖2中的位置,取最小值,且最小值為的長度,點為半圓的中點,,,,,,在中,由作圖知,,且,,,由作圖知,四邊形為矩形,,,,的最小值為.(3)如解圖3所示,在上這一點作點關于的對稱點,作點關于的對稱點,連接,交于點,交于點,連接,點關于的對稱點,點關于的對稱點,連

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論