2022-2023學(xué)年黑龍江省牡丹江市愛民區(qū)牡丹江一中數(shù)學(xué)高三第一學(xué)期期末綜合測(cè)試模擬試題含解析_第1頁(yè)
2022-2023學(xué)年黑龍江省牡丹江市愛民區(qū)牡丹江一中數(shù)學(xué)高三第一學(xué)期期末綜合測(cè)試模擬試題含解析_第2頁(yè)
2022-2023學(xué)年黑龍江省牡丹江市愛民區(qū)牡丹江一中數(shù)學(xué)高三第一學(xué)期期末綜合測(cè)試模擬試題含解析_第3頁(yè)
2022-2023學(xué)年黑龍江省牡丹江市愛民區(qū)牡丹江一中數(shù)學(xué)高三第一學(xué)期期末綜合測(cè)試模擬試題含解析_第4頁(yè)
2022-2023學(xué)年黑龍江省牡丹江市愛民區(qū)牡丹江一中數(shù)學(xué)高三第一學(xué)期期末綜合測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.為得到函數(shù)的圖像,只需將函數(shù)的圖像()A.向右平移個(gè)長(zhǎng)度單位 B.向右平移個(gè)長(zhǎng)度單位C.向左平移個(gè)長(zhǎng)度單位 D.向左平移個(gè)長(zhǎng)度單位2.設(shè),滿足約束條件,若的最大值為,則的展開式中項(xiàng)的系數(shù)為()A.60 B.80 C.90 D.1203.函數(shù),,的部分圖象如圖所示,則函數(shù)表達(dá)式為()A. B.C. D.4.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.5.已知函數(shù)是偶函數(shù),當(dāng)時(shí),函數(shù)單調(diào)遞減,設(shè),,,則的大小關(guān)系為()A. B. C. D.6.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則在復(fù)平面內(nèi)復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.38.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他和高斯、牛頓并列被稱為世界三大數(shù)學(xué)家.據(jù)說,他自己覺得最為滿意的一個(gè)數(shù)學(xué)發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個(gè)結(jié)論,要求后人在他的墓碑上刻著一個(gè)圓柱容器里放了一個(gè)球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.9.設(shè),分別是橢圓的左、右焦點(diǎn),過的直線交橢圓于,兩點(diǎn),且,,則橢圓的離心率為()A. B. C. D.10.已知,,則等于().A. B. C. D.11.對(duì)于定義在上的函數(shù),若下列說法中有且僅有一個(gè)是錯(cuò)誤的,則錯(cuò)誤的一個(gè)是()A.在上是減函數(shù) B.在上是增函數(shù)C.不是函數(shù)的最小值 D.對(duì)于,都有12.如圖是函數(shù)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將的圖象上的所有的點(diǎn)()A.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?,縱坐標(biāo)不變B.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變C.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?,縱坐標(biāo)不變D.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項(xiàng)滿足,則______.14.設(shè)為偶函數(shù),且當(dāng)時(shí),;當(dāng)時(shí),.關(guān)于函數(shù)的零點(diǎn),有下列三個(gè)命題:①當(dāng)時(shí),存在實(shí)數(shù)m,使函數(shù)恰有5個(gè)不同的零點(diǎn);②若,函數(shù)的零點(diǎn)不超過4個(gè),則;③對(duì),,函數(shù)恰有4個(gè)不同的零點(diǎn),且這4個(gè)零點(diǎn)可以組成等差數(shù)列.其中,正確命題的序號(hào)是_______.15.函數(shù)在內(nèi)有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是________.16.已知為偶函數(shù),當(dāng)時(shí),,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)當(dāng)時(shí),證明:.18.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程(為參數(shù)),若直線的交點(diǎn)為,當(dāng)變化時(shí),點(diǎn)的軌跡是曲線(1)求曲線的普通方程;(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,設(shè)射線的極坐標(biāo)方程為,,點(diǎn)為射線與曲線的交點(diǎn),求點(diǎn)的極徑.19.(12分)如圖,已知平面與直線均垂直于所在平面,且.(1)求證:平面;(2)若,求與平面所成角的正弦值.20.(12分)已知橢圓的右頂點(diǎn)為,點(diǎn)在軸上,線段與橢圓的交點(diǎn)在第一象限,過點(diǎn)的直線與橢圓相切,且直線交軸于.設(shè)過點(diǎn)且平行于直線的直線交軸于點(diǎn).(Ⅰ)當(dāng)為線段的中點(diǎn)時(shí),求直線的方程;(Ⅱ)記的面積為,的面積為,求的最小值.21.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.22.(10分)已知函數(shù).(1)若,求的取值范圍;(2)若,對(duì),不等式恒成立,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】,所以要的函數(shù)的圖象,只需將函數(shù)的圖象向左平移個(gè)長(zhǎng)度單位得到,故選D2、B【解析】

畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到,再利用二項(xiàng)式定理計(jì)算得到答案.【詳解】如圖所示:畫出可行域和目標(biāo)函數(shù),,即,故表示直線與截距的倍,根據(jù)圖像知:當(dāng)時(shí),的最大值為,故.展開式的通項(xiàng)為:,取得到項(xiàng)的系數(shù)為:.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃求最值,二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.3、A【解析】

根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點(diǎn)求出,化簡(jiǎn)即得所求.【詳解】由圖像知,,,解得,因?yàn)楹瘮?shù)過點(diǎn),所以,,即,解得,因?yàn)?,所以?故選:A【點(diǎn)睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.4、D【解析】

根據(jù)三視圖判斷出幾何體為正四棱錐,由此計(jì)算出幾何體的表面積.【詳解】根據(jù)三視圖可知,該幾何體為正四棱錐.底面積為.側(cè)面的高為,所以側(cè)面積為.所以該幾何體的表面積是.故選:D【點(diǎn)睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計(jì)算,屬于基礎(chǔ)題.5、A【解析】

根據(jù)圖象關(guān)于軸對(duì)稱可知關(guān)于對(duì)稱,從而得到在上單調(diào)遞增且;再根據(jù)自變量的大小關(guān)系得到函數(shù)值的大小關(guān)系.【詳解】為偶函數(shù)圖象關(guān)于軸對(duì)稱圖象關(guān)于對(duì)稱時(shí),單調(diào)遞減時(shí),單調(diào)遞增又且,即本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)奇偶性、對(duì)稱性和單調(diào)性比較函數(shù)值的大小關(guān)系問題,關(guān)鍵是能夠通過奇偶性和對(duì)稱性得到函數(shù)的單調(diào)性,通過自變量的大小關(guān)系求得結(jié)果.6、D【解析】

根據(jù)復(fù)數(shù)運(yùn)算,求得,再求其對(duì)應(yīng)點(diǎn)即可判斷.【詳解】,故其對(duì)應(yīng)點(diǎn)的坐標(biāo)為.其位于第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo),屬綜合基礎(chǔ)題.7、A【解析】

根據(jù)正切函數(shù)的圖象求出A、B兩點(diǎn)的坐標(biāo),再求出向量的坐標(biāo),根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算求出結(jié)果.【詳解】由圖象得,令=0,即=kπ,k=0時(shí)解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點(diǎn)睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運(yùn)算,屬于綜合題,但是難度不大,解題關(guān)鍵是利用圖象與正切函數(shù)圖象求出坐標(biāo),再根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算可得結(jié)果,屬于簡(jiǎn)單題.8、C【解析】

設(shè)球的半徑為R,根據(jù)組合體的關(guān)系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設(shè)球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點(diǎn)睛】本題主要考查組合體的表面積和體積,還考查了對(duì)數(shù)學(xué)史了解,屬于基礎(chǔ)題.9、C【解析】

根據(jù)表示出線段長(zhǎng)度,由勾股定理,解出每條線段的長(zhǎng)度,再由勾股定理構(gòu)造出關(guān)系,求出離心率.【詳解】設(shè),則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項(xiàng).【點(diǎn)睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個(gè)常用方法,通過幾何關(guān)系,構(gòu)造出關(guān)系,得到離心率.屬于中檔題.10、B【解析】

由已知條件利用誘導(dǎo)公式得,再利用三角函數(shù)的平方關(guān)系和象限角的符號(hào),即可得到答案.【詳解】由題意得,又,所以,結(jié)合解得,所以,故選B.【點(diǎn)睛】本題考查三角函數(shù)的誘導(dǎo)公式、同角三角函數(shù)的平方關(guān)系以及三角函數(shù)的符號(hào)與位置關(guān)系,屬于基礎(chǔ)題.11、B【解析】

根據(jù)函數(shù)對(duì)稱性和單調(diào)性的關(guān)系,進(jìn)行判斷即可.【詳解】由得關(guān)于對(duì)稱,若關(guān)于對(duì)稱,則函數(shù)在上不可能是單調(diào)的,故錯(cuò)誤的可能是或者是,若錯(cuò)誤,則在,上是減函數(shù),在在上是增函數(shù),則為函數(shù)的最小值,與矛盾,此時(shí)也錯(cuò)誤,不滿足條件.故錯(cuò)誤的是,故選:.【點(diǎn)睛】本題主要考查函數(shù)性質(zhì)的綜合應(yīng)用,結(jié)合對(duì)稱性和單調(diào)性的關(guān)系是解決本題的關(guān)鍵.12、A【解析】

由函數(shù)的最大值求出,根據(jù)周期求出,由五點(diǎn)畫法中的點(diǎn)坐標(biāo)求出,進(jìn)而求出的解析式,與對(duì)比結(jié)合坐標(biāo)變換關(guān)系,即可求出結(jié)論.【詳解】由圖可知,,又,,又,,,為了得到這個(gè)函數(shù)的圖象,只需將的圖象上的所有向左平移個(gè)長(zhǎng)度單位,得到的圖象,再將的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼模v坐標(biāo)不變)即可.故選:A【點(diǎn)睛】本題考查函數(shù)的圖象求解析式,考查函數(shù)圖象間的變換關(guān)系,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由已知寫出用代替的等式,兩式相減后可得結(jié)論,同時(shí)要注意的求解方法.【詳解】∵①,∴時(shí),②,①-②得,∴,又,∴().故答案為:.【點(diǎn)睛】本題考查求數(shù)列通項(xiàng)公式,由已知條件.類比已知求的解題方法求解.14、①②③【解析】

根據(jù)偶函數(shù)的圖象關(guān)于軸對(duì)稱,利用已知中的條件作出偶函數(shù)的圖象,利用圖象對(duì)各個(gè)選項(xiàng)進(jìn)行判斷即可.【詳解】解:當(dāng)時(shí)又因?yàn)闉榕己瘮?shù)可畫出的圖象,如下所示:可知當(dāng)時(shí)有5個(gè)不同的零點(diǎn);故①正確;若,函數(shù)的零點(diǎn)不超過4個(gè),即,與的交點(diǎn)不超過4個(gè),時(shí)恒成立又當(dāng)時(shí),在上恒成立在上恒成立由于偶函數(shù)的圖象,如下所示:直線與圖象的公共點(diǎn)不超過個(gè),則,故②正確;對(duì),偶函數(shù)的圖象,如下所示:,使得直線與恰有4個(gè)不同的交點(diǎn)點(diǎn),且相鄰點(diǎn)之間的距離相等,故③正確.故答案為:①②③【點(diǎn)睛】本題考查函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.15、【解析】

設(shè),,設(shè),函數(shù)為奇函數(shù),,函數(shù)單調(diào)遞增,,畫出簡(jiǎn)圖,如圖所示,根據(jù),解得答案.【詳解】,設(shè),,則.原函數(shù)等價(jià)于函數(shù),即有兩個(gè)解.設(shè),則,函數(shù)為奇函數(shù).,函數(shù)單調(diào)遞增,,,.當(dāng)時(shí),易知不成立;當(dāng)時(shí),根據(jù)對(duì)稱性,考慮時(shí)的情況,,畫出簡(jiǎn)圖,如圖所示,根據(jù)圖像知:故,即,根據(jù)對(duì)稱性知:.故答案為:.【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)問題,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算能力,畫出圖像是解題的關(guān)鍵.16、【解析】

由偶函數(shù)的性質(zhì)直接求解即可【詳解】.故答案為【點(diǎn)睛】本題考查函數(shù)的奇偶性,對(duì)數(shù)函數(shù)的運(yùn)算,考查運(yùn)算求解能力三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】

(1)求導(dǎo)得,分類討論和,利用導(dǎo)數(shù)研究含參數(shù)的函數(shù)單調(diào)性;(2)根據(jù)(1)中求得的的單調(diào)性,得出在處取得最大值為,構(gòu)造函數(shù),利用導(dǎo)數(shù),推出,即可證明不等式.【詳解】解:(1)由于,得,當(dāng)時(shí),,此時(shí)在上遞增;當(dāng)時(shí),由,解得,若,則,若,,此時(shí)在遞增,在上遞減.(2)由(1)知在處取得最大值為:,設(shè),則,令,則,則在單調(diào)遞減,∴,即,則在單調(diào)遞減∴,∴,∴.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類討論和構(gòu)造新函數(shù),通過導(dǎo)數(shù)證明不等式,考查轉(zhuǎn)化思想和計(jì)算能力.18、(1);(2)【解析】

(1)將兩直線化為普通方程,消去參數(shù),即可求出曲線的普通方程;(2)設(shè)Q點(diǎn)的直角坐標(biāo)系坐標(biāo)為,求出,代入曲線C可求解.【詳解】(1)直線的普通方程為,直線的普通方程為聯(lián)立直線,方程消去參數(shù)k,得曲線C的普通方程為整理得.(2)設(shè)Q點(diǎn)的直角坐標(biāo)系坐標(biāo)為,由可得代入曲線C的方程可得,解得(舍),所以點(diǎn)的極徑為.【點(diǎn)睛】本題主要考查了直線的參數(shù)方程化為普通方程,普通方程化為極坐標(biāo)方程,極徑的求法,屬于中檔題.19、(1)見解析;(2)【解析】

(Ⅰ)證明:過點(diǎn)作于點(diǎn),∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴點(diǎn)是的中點(diǎn),連結(jié),則∴平面∴∥,∴四邊形是矩形設(shè),得:,又∵,∴,從而,過作于點(diǎn),則∴是與平面所成角∴,∴與平面所成角的正弦值為考點(diǎn):面面垂直的性質(zhì)定理;線面平行的判定定理;線面垂直的性質(zhì)定理;直線與平面所成的角.點(diǎn)評(píng):本題主要考查了線面平行的證明和直線與平面所成的角,屬立體幾何中的??碱}型,較難.本題也可以用向量法來做:用向量法解題的關(guān)鍵是;首先正確的建立空間直角坐標(biāo)系,正確求解平面的一個(gè)法向量.注意計(jì)算要仔細(xì)、認(rèn)真.≌20、(Ⅰ)直線的方程為(Ⅱ)【解析】

(1)設(shè)點(diǎn),利用中點(diǎn)坐標(biāo)公式表示點(diǎn)B,并代入橢圓方程解得,從而求出直線的方程;(2)設(shè)直線的方程為:,表示點(diǎn),然后聯(lián)立方程,利用相切得出,然后求出切點(diǎn),再設(shè)出設(shè)直線的方程,求出點(diǎn),利用兩點(diǎn)坐標(biāo),求出直線的方程,從而求出,最后利用以上已求點(diǎn)的坐標(biāo)表示面積,根據(jù)基本不等式求最值即可.【詳解】解:(Ⅰ)由橢圓,可得:由題意:設(shè)點(diǎn),當(dāng)為的中點(diǎn)時(shí),可得:代入橢圓方程,可得:所以:所以.故直線的方程為.(Ⅱ)由題意,直線的斜率存在且不為0,故設(shè)直線的方程為:令,得:,所以:.聯(lián)立:,消,整理得:.因?yàn)橹本€與橢圓相切,所以.即.設(shè),則,,所以.又直線直線,所以設(shè)直線的方程為:.令,得,所以:.因?yàn)?,所以直線的方程為:.令,得,所以:.所以.又因?yàn)?.所以(當(dāng)且僅當(dāng),即時(shí)等號(hào)成立)所以.【點(diǎn)睛】本小題主要考查直線和橢圓的位置關(guān)系,考查直線方程以及求橢圓中的最值問題,最值問題一般是把目標(biāo)式求出,結(jié)合目標(biāo)式特點(diǎn)選用合適的方法求解,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng),本題利用了基本不等式求最小值的方法,運(yùn)算量較大,屬于難題.21、(1)證明見解析(2)【解析】

(1)取中點(diǎn)連接,得,可得,可證,可得,進(jìn)而平面,即可證明結(jié)論;(2)設(shè)分別為邊的中點(diǎn),連,可得,,可得(或補(bǔ)角)是異面直線與所成的角,,可得,為二面角的平面角,即,設(shè),求解,即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論