版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆青海省西寧市海湖中學數(shù)學九上期末達標檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.已知函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列5個結論,其中正確的結論有()①abc<0②3a+c>0③4a+2b+c<0④2a+b=0⑤b2>4acA.2 B.3 C.4 D.52.以下事件屬于隨機事件的是()A.小明買體育彩票中了一等獎B.2019年是中華人民共和國建國70周年C.正方體共有四個面D.2比1大3.如圖,為的直徑,弦于點,若,,則的半徑為()A.3 B.4 C.5 D.64.拋物線關于軸對稱的拋物線的解析式為().A. B.C. D.5.如圖所示為兩把按不同比例尺進行刻度的直尺,每把直尺的刻度都是均勻的,已知兩把直尺在刻度10處是對齊的,且上面的直尺在刻度15處與下面的直尺在刻度18處也剛好對齊,則上面直尺的刻度16與下面直尺對應的刻度是()A.19.4 B.19.5 C.19.6 D.19.76.二次函數(shù)的圖象的頂點在坐標軸上,則m的值()A.0 B.2 C. D.0或7.下列一元二次方程中,有兩個不相等的實數(shù)根的是()A. B. C. D.8.對一批襯衣進行抽檢,得到合格襯衣的頻數(shù)表如下,若出售1200件襯衣,則其中次品的件數(shù)大約是()抽取件數(shù)(件)501001502005008001000合格頻數(shù)4898144193489784981A.12 B.24 C.1188 D.11769.如圖,點的坐標為,點,分別在軸,軸的正半軸上運動,且,下列結論:①②當時四邊形是正方形③四邊形的面積和周長都是定值④連接,,則,其中正確的有()A.①② B.①②③ C.①②④ D.①②③④10.海南漁民從事海洋捕撈已有上千年歷史,南海是海南漁民的“祖宗?!?,目前海南共有約25萬人從事漁業(yè)生產(chǎn).這個數(shù)據(jù)用科學記數(shù)法表示為()A.2.5×106人 B.25×104人 C.2.5×104人 D.2.5×105人11.如圖,點B,C,D在⊙O上,若∠BCD=30°,則∠BOD的度數(shù)是()A.75° B.70° C.65° D.60°12.等于()A. B.2 C.3 D.二、填空題(每題4分,共24分)13.如圖,在△ABC中,∠BAC=75°,以點A為旋轉中心,將△ABC繞點A逆時針旋轉,得△AB'C',連接BB',若BB'∥AC',則∠BAC′的度數(shù)是______________.14.如圖,網(wǎng)格中的四個格點組成菱形ABCD,則tan∠DBC的值為___________.15.如圖,已知一次函數(shù)y=kx﹣3(k≠0)的圖象與x軸,y軸分別交于A,B兩點,與反比例函數(shù)y=(x>0)交于C點,且AB=AC,則k的值為_____.16.如圖,在Rt△ABC中,∠C=90°,邊AB的垂直平分線分別交邊BC、AB于點D、E如果BC=8,,那么BD=_____.17.如圖,在△ABC中,AB=4,BC=7,∠B=60°,將△ABC繞點A按順時針旋轉一定角度得到△ADE,當點B的對應點D恰好落在BC邊上時,則CD的長為__________.18.如圖,△ABC繞點B逆時針方向旋轉到△EBD的位置,∠A=20°,∠C=15°,E、B、C在同一直線上,則旋轉角度是_______.三、解答題(共78分)19.(8分)為了解某小區(qū)居民使用共享單車次數(shù)的情況,某研究小組隨機采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車的次數(shù)統(tǒng)計如下:使用次數(shù)05101520人數(shù)11431(1)這10位居民一周內(nèi)使用共享單車次數(shù)的中位數(shù)是次,眾數(shù)是次.(2)若小明同學把數(shù)據(jù)“20”看成了“30”,那么中位數(shù),眾數(shù)和平均數(shù)中不受影響的是.(填“中位數(shù)”,“眾數(shù)”或“平均數(shù)”)(3)若該小區(qū)有2000名居民,試估計該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).20.(8分)如圖1,拋物線與軸交于,兩點,過點的直線分別與軸及拋物線交于點(1)求直線和拋物線的表達式(2)動點從點出發(fā),在軸上沿的方向以每秒1個單位長度的速度向左勻速運動,設運動時間為秒,當為何值時,為直角三角形?請直接寫出所有滿足條件的的值.(3)如圖2,將直線沿軸向下平移4個單位后,與軸,軸分別交于,兩點,在拋物線的對稱軸上是否存在點,在直線上是否存在點,使的值最???若存在,求出其最小值及點,的坐標,若不存在,請說明理由.21.(8分)如圖,點O為Rt△ABC斜邊AB上的一點,以OA為半徑的⊙O與邊BC交于點D,與邊AC交于點E,連接AD,且AD平分∠BAC.(1)試判斷BC與⊙O的位置關系,并說明理由;(2)若∠BAC=60°,OA=2,求陰影部分的面積(結果保留π).22.(10分)解方程:(1)x2+3=4x(2)3x(x-3)=-423.(10分)新羅區(qū)某校元旦文藝匯演,需要從3名女生和1名男生中隨機選擇主持人.(1)如果選擇1名主持人,那么男生當選的概率是多少?(2)如果選擇2名主持人,用畫樹狀圖(或列表)求出2名主持人恰好是1男1女的概率.24.(10分)如圖,在中,,,,平分交于點,過點作交于點,點是線段上的動點,連結并延長分別交,于點、.(1)求的長.(2)若點是線段的中點,求的值.(3)請問當?shù)拈L滿足什么條件時,在線段上恰好只有一點,使得?25.(12分)如圖,已知直線AB與軸交于點C,與雙曲線交于A(3,)、B(-5,)兩點.AD⊥軸于點D,BE∥軸且與軸交于點E.(1)求點B的坐標及直線AB的解析式;(2)判斷四邊形CBED的形狀,并說明理由.26.證明相似三角形對應角平分線的比等于相似比.已知:如圖,△ABC∽△A′B′C′,相似比為k,.求證.(先填空,再證明)證明:
參考答案一、選擇題(每題4分,共48分)1、B【解析】根據(jù)二次函數(shù)的圖象與性質即可求出答案.【詳解】①由拋物線的對稱軸可知:1,∴ab<1.∵拋物線與y軸的交點可知:c>1,∴abc<1,故①正確;②∵1,∴b=﹣2a,∴由圖可知x=﹣1,y<1,∴y=a﹣b+c=a+2a+c=3a+c<1,故②錯誤;③由(﹣1,1)關于直線x=1對稱點為(3,1),(1,1)關于直線x=1對稱點為(2,1),∴x=2,y>1,∴y=4a+2b+c>1,故③錯誤;④由②可知:2a+b=1,故④正確;⑤由圖象可知:△>1,∴b2﹣4ac>1,∴b2>4ac,故⑤正確.故選B.【點睛】本題考查了二次函數(shù)的圖象,解題的關鍵是熟練運用二次函數(shù)的圖象與性質,本題屬于中等題型.2、A【分析】隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件,依據(jù)隨機事件定義可以作出判斷.【詳解】A、小明買體育彩票中了一等獎是隨機事件,故本選項正確;B、2019年是中華人民共和國建國70周年是確定性事件,故本選項錯誤;C、正方體共有四個面是不可能事件,故本選項錯誤;D、2比1大是確定性事件,故本選項錯誤;故選:A.【點睛】此題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、C【分析】根據(jù)題意,連接OC,通過垂徑定理及勾股定理求半徑即可.【詳解】如下圖,連接OC,∵,,∴CE=4,∵,,∴,故選:C.【點睛】本題主要考查了圓半徑的求法,熟練掌握垂徑定理及勾股定理是解決本題的關鍵.4、B【解析】先求出拋物線y=2(x﹣2)2﹣1關于x軸對稱的頂點坐標,再根據(jù)關于x軸對稱開口大小不變,開口方向相反求出a的值,即可求出答案.【詳解】拋物線y=2(x﹣2)2﹣1的頂點坐標為(2,﹣1),而(2,﹣1)關于x軸對稱的點的坐標為(2,1),所以所求拋物線的解析式為y=﹣2(x﹣2)2+1.故選B.【點睛】本題考查了二次函數(shù)的軸對稱變換,此圖形變換包括x軸對稱和y軸對稱兩種方式.二次函數(shù)關于x軸對稱的圖像,其形狀不變,但開口方向相反,因此a值為原來的相反數(shù),頂點位置改變,只要根據(jù)關于x軸對稱的點坐標特征求出新的頂點坐標,即可確定解析式.二次函數(shù)關于y軸對稱的圖像,其形狀不變,開口方向也不變,因此a值不變,但是頂點位置改變,只要根據(jù)關于y軸對稱的點坐標特征求出新的頂點坐標,即可確定解析式.5、C【分析】根據(jù)兩把直尺在刻度10處是對齊的及上面直尺的刻度11與下面直尺對應的刻度是11.6,得出上面直尺的10個小刻度,對應下面直尺的16個小刻度,進而判斷出上面直尺的刻度16與下面直尺對應的刻度即可.【詳解】解:由于兩把直尺在刻度10處是對齊的,觀察圖可知上面直尺的刻度11與下面直尺對應的刻度是11.6,即上面直尺的10個小刻度,對應下面直尺的16個小刻度,且上面的直尺在刻度15處與下面的直尺在刻度18處也剛好對齊,因此上面直尺的刻度16與下面直尺對應的刻度是18+1.6=19.6,故答案為C【點睛】本題考查了學生對圖形的觀察能力,通過圖形得出上面直尺的10個小刻度,對應下面直尺的16個小刻度是解題的關鍵.6、D【解析】試題解析:當圖象的頂點在x軸上時,∵二次函數(shù)的圖象的頂點在x軸上,∴二次函數(shù)的解析式為:∴m=±2.當圖象的頂點在y軸上時,m=0,故選D.7、B【分析】先將各選項一元二次方程化為一般式,再計算判別式即得.【詳解】A選項中,則,,,則,有兩個相等的實數(shù)根,不符合題意;B選項可化為,則,,,則,有兩個不相等的實數(shù)根,符合題意;C選項可化為,則,,,則,無實數(shù)根,不符合題意;D選項可化為,則,,,則,無實數(shù)根,不符合題意.故選:B.【點睛】本題考查了一元二次方程根的判別式,解題關鍵是熟知:判別式時,一元二次方程有兩個不相等的實數(shù)根;判別式時,一元二次方程有兩個相等的實數(shù)根;判別式時,一元二次方程無實數(shù)根.8、B【分析】由表中數(shù)據(jù)可判斷合格襯衣的頻率穩(wěn)定在0.98,于是利于頻率估計概率可判斷任意抽取一件襯衣是合格品的概率為0.98,從而得出結論.【詳解】解:根據(jù)表中數(shù)據(jù)可得任抽取一件襯衣是合格品的概率為0.98,次品的概率為0.02,
出售1200件襯衣,其中次品大約有1200×0.02=24(件),
故選:B.【點睛】此題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.9、A【分析】過P作PM⊥y軸于M,PN⊥x軸于N,易得出四邊形PMON是正方形,推出OM=OM=ON=PN=1,證得△APM≌△BPN,可對①進行判斷,推出AM=BN,求出OA+OB=ON+OM=2,當OA=OB時,OA=OB=1,然后可對②作出判斷,由△APM≌△BPN可對四邊形OAPB的面積作出判斷,由OA+OB=2,然后依據(jù)AP和PB的長度變化情況可對四邊形OAPB的周長作出判斷,求得AB的最大值以及OP的長度可對④作出判斷.【詳解】過P作PM⊥y軸于M,PN⊥x軸于N,
∵P(1,1),
∴PN=PM=1.
∵x軸⊥y軸,
∴∠MON=∠PNO=∠PMO=90°,則四邊形MONP是正方形,
∴OM=ON=PN=PM=1,
∵∠MPN=∠APB=90°,
∴∠MPA=∠NPB.
在△MPA≌△NPB中,,
∴△MPA≌△NPB,
∴PA=PB,故①正確.
∵△MPA≌△NPB,
∴AM=BN,
∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.
當OA=OB,即OA=OB=1時,則點A、B分別與點M、N重合,此時四邊形OAPB是正方形,故②正確.
∵△MPA≌△NPB,
∴.
∵OA+OB=2,PA=PB,且PA和PB的長度會不斷的變化,故周長不是定值,故③錯誤.
∵∠AOB+∠APB=180°,
∴點A、O、B、P共圓,且AB為直徑,所以AB≥OP,故④錯誤.
故選:A.【點睛】本題考查了全等三角形的性質和判定,三角形的內(nèi)角和定理,坐標與圖形性質,正方形的性質的應用,圓周角定理,關鍵是推出AM=BN和推出OA+OB=OM+ON10、D【分析】對于一個絕對值較大的數(shù),用科學記數(shù)法寫成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).【詳解】25萬人=2.5×105人.故選D.【點睛】此題考查了科學記數(shù)法的表示方法,科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.11、D【分析】根據(jù)在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半,即可求得答案.【詳解】∵∠BCD=30°,∴∠BOD=2∠BCD=2×30°=60°.故選:D.【點睛】本題考查了圓的角度問題,掌握圓周角定理是解題的關鍵.12、A【分析】先計算60度角的正弦值,再計算加減即可.【詳解】故選A.【點睛】本題考查了特殊角的三角函數(shù)值的計算,能夠熟練掌握特殊角的三角函數(shù)值是解題的關鍵.二、填空題(每題4分,共24分)13、105°【分析】根據(jù)旋轉的性質得AB′=AB,∠B′AB=∠C′AC,再根據(jù)等腰三角形的性質得∠AB′B=∠ABB′,然后根據(jù)平行線的性質得到∠AB′B=∠C′AB′=75°,于是得到結論.【詳解】解:∵△ABC繞點A逆時針旋轉到△AB′C′,
∴AB′=AB,∠B′AB=∠C′AC,∠C′AB′=∠CAB=75°,
∴△AB′B是等腰三角形,∴∠AB′B=∠ABB′
∵BB'∥AC,
∴∠AB′B=∠C′AB′=75°,
∴∠C′AC=∠B′AB=180°-2×75°=30°,
∴∠BAC′=∠C′AC+∠BAC=30°+75°=105°,故答案為:105°.【點睛】本題考查了旋轉的性質:旋轉前后兩圖形全等;對應點到旋轉中心的距離相等;對應點與旋轉中心的連線段的夾角等于旋轉角.也考查了平行線的性質.14、3【解析】試題分析:如圖,連接AC與BD相交于點O,∵四邊形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案為3.考點:3.菱形的性質;3.解直角三角形;3.網(wǎng)格型.15、k=【解析】試題分析:如圖:作CD⊥x軸于D,則OB∥CD,∴△AOB∽△ADC,∴,∵AB=AC,∴OB=CD,由直線y=kx﹣3(k≠0)可知B(0,﹣3),∴OB=3,∴CD=3,把y=3代入y=(x>0)解得,x=4,∴C(4,3),代入y=kx﹣3(k≠0)得,3=4k﹣3,解得k=,故答案為.考點:反比例函數(shù)與一次函數(shù)的交點問題.16、【解析】:∵在RT△ABC中,∠C=90°,BC=8,tanA=,∴AC=,∴AB=,∵邊AB的垂直平分線交邊AB于點E,∴BE=,∵在RT△BDE中,∠BED=90°,∴cosB=,∴BD=,故答案為.點睛:本題考查了解直角三角形,線段平分線的性質,掌握直角三角形中邊角之間的關系是解答本題的關鍵.17、3【解析】試題解析:由旋轉的性質可得:AD=AB,∴△ABD是等邊三角形,∴BD=AB,∵AB=4,BC=7,∴CD=BC?BD=7?4=3.故答案為3.18、35°【分析】根據(jù)旋轉角度的概念可得∠ABE為旋轉角度,然后根據(jù)三角形外角的性質可進行求解.【詳解】解:由題意得:∠ABE為旋轉角度,∵∠A=20°,∠C=15°,E、B、C在同一直線上,∴∠ABE=∠A+∠C=35°;故答案為35°.【點睛】本題主要考查旋轉及三角形外角的性質,熟練掌握旋轉的性質及三角形外角的性質是解題的關鍵.三、解答題(共78分)19、(1)10,10;(2)中位數(shù)和眾數(shù);(3)22000【分析】(1)根據(jù)眾數(shù)、中位數(shù)和平均數(shù)的定義分別求解可得;
(2)由中位數(shù)和眾數(shù)不受極端值影響可得答案;
(3)用總人數(shù)乘以樣本中居民的平均使用次數(shù)即可得.【詳解】解:(1)這10位居民一周內(nèi)使用共享單車次數(shù)的中位數(shù)是:(次),根據(jù)使用次數(shù)可得:眾數(shù)為10次;(2)把數(shù)據(jù)“20”看成了“30”,那么中位數(shù),眾數(shù)和平均數(shù)中不受影響的是中位數(shù)和眾數(shù),
故答案為:中位數(shù)和眾數(shù);(3)平均數(shù)為(次),(次)估計該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù)為22000次.【點睛】本題考查的是平均數(shù)、眾數(shù)、中位數(shù)的定義及其求法,牢記定義是關鍵.20、(1),;(2)或3或4或12;(3)存在,,,最小值【分析】(1)利用待定系數(shù)法求解即可;(2)先求點D坐標,再求點C坐標,然后分類討論即可;(3)通過做對稱點將折線轉化成兩點間距離,用兩點之間線段最短來解答即可.【詳解】解:(1)把代入,得解得,∴拋物線解析式為,∵過點B的直線,∴把代入,解得,∴直線解析式為(2)聯(lián)立,解得或,所以,直線:與軸交于點,則,根據(jù)題意可知線段,則點則,,因為為直角二角形①若,則,化簡得:,或②若,則,化簡得③若,則,化簡得綜上所述,或3或4或12,滿足條件(3)在拋物線上取點的對稱點,過點作于點,交拋物線對稱軸于點,過點作于點,此時最小拋物線的對稱軸為直線,則的對稱點為,直線的解析式為因為,設直線:,將代入得,則直線:,聯(lián)立,解得,則,聯(lián)立,解得,則,【點睛】本題是一代代數(shù)綜合題,考查了一次函數(shù)、二次函數(shù)和動點問題,能夠充分調(diào)動所學知識是解題的關鍵.21、(1)BC與⊙O相切,理由見解析;(2).【解析】試題分析:(1)連接推出根據(jù)切線的判定推出即可;
(2)連接求出陰影部分的面積=扇形的面積,求出扇形的面積即可.試題解析:(1)BC與相切,理由:連接OD,∵AD平分∠BAC,∴∠BAD=∠DAC,∵AO=DO,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴OD⊥BC,∴BC與相切;(2)連接OE,ED,∴△OAE為等邊三角形,又∴陰影部分的面積=S扇形ODE22、(1)x=3,x=1;(2)x=,x=.【分析】(1)根據(jù)因式分解法即可求解;(2)根據(jù)公式法即可求解.【詳解】(1)稱項得:x2-4x+3=0∵(x-3)(x-1)=0∴x-3=0,x-1=0∴x=3,x=1(2)整理得:3x2-9x+4=0∵a=3,b=﹣9,c=4∴△=b2﹣4ac=(﹣9)2﹣4×3×4=33>0∴方程有兩個不相等的實數(shù)根為x=x=,x=.【點睛】此題主要考查一元二次方程的求解,解題的關鍵是熟知解解法.23、(1);(2)見解析,【分析】(1)由題意根據(jù)所有出現(xiàn)的可能情況,然后由概率公式即可求出男生當選的概率;(2)首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結果與選出的是1名男生1名女生的情況,然后由概率公式即可求解.【詳解】解:(1)∵需要從3名女生和1名男生中隨機選擇1名主持人,∴男生當選的概率P(男生)=.(2)根據(jù)題意畫畫樹狀圖,總共有12種結果,每種結果出現(xiàn)的可能性相同,而2名主持人恰好是1男1女的結果有6種,所以2名主持人恰好是1男1女的概率P(一男一女)=.【點睛】本題考查的是用列表法或樹狀圖法求概率.注意樹狀圖與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;另外注意概率=所求情況數(shù)與總情況數(shù)之比.24、(1);(2);(3)當或時,滿足條件的點只有一個.【解析】(1)由角平分線定義得,在中,根據(jù)銳角三角函數(shù)正切定義即可求得長.(2)由題意易求得,,由全等三角形判定得,根據(jù)全等三角形性質得,根據(jù)相似三角形判定得,由相似三角形性質得,將代入即可求得答案.(3)由圓周角定理可得是頂角為120°的等腰三角形,再分情況討論:①當與相切時,結合題意畫出圖形,過點作,并延長與交于點,連結,,設半徑為,由相似三角形的判定和性質即可求得長;②當經(jīng)過點時,結合題意畫出圖形,過點作,設半徑為,在中,根據(jù)勾股定理求得,再由相似三角形的判定和性質即可求得長;③當經(jīng)過點時,結合題意畫出圖形,此時點與點重合,且恰好在點處,由此可得長.【詳解】(1)解:∵平分,,∴.在中,(2)解:易得,,.由,得,.∵,∴,∴.由,得,∴∴(3)解:∵,過,,作外接圓,圓心為,∴是頂角為120°的等腰三角形.①當與相切時,如圖1,過點作,并延
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護理專業(yè)課件制作中的評估與反饋機制
- 影視置景制作員常識模擬考核試卷含答案
- 飼草種子繁育工成果評優(yōu)考核試卷含答案
- 鉆石琢磨工變革管理知識考核試卷含答案
- 2024年哈爾濱音樂學院輔導員考試真題
- 雪迪龍監(jiān)測系統(tǒng)培訓課件
- 痛風患者的飲食與藥物相互作用
- 醫(yī)院感染預防與控制風險管理指南
- 愛崗敬業(yè)模范人物先進事跡匯編
- 技術團隊敏捷開發(fā)流程實踐指南
- 銷售部年終總結及明年工作計劃
- 工作計劃執(zhí)行跟蹤表格:工作計劃執(zhí)行情況統(tǒng)計表
- (完整版)現(xiàn)用九年級化學電子版教材(下冊)
- 城市道路路基土石方施工合同
- 教學計劃(教案)-2024-2025學年人教版(2024)美術一年級上冊
- 國家基本公共衛(wèi)生服務項目之健康教育
- DL∕ T 1166-2012 大型發(fā)電機勵磁系統(tǒng)現(xiàn)場試驗導則
- 新人教版日語七年級全一冊單詞默寫清單+答案
- HJ 636-2012 水質 總氮的測定 堿性過硫酸鉀消解紫外分光光度法
- QBT 2739-2005 洗滌用品常用試驗方法 滴定分析 (容量分析)用試驗溶液的制備
- 血液透析中低血壓的預防和治療
評論
0/150
提交評論