江蘇省南京市六校聯(lián)考2022年數(shù)學九年級第一學期期末質(zhì)量檢測模擬試題含解析_第1頁
江蘇省南京市六校聯(lián)考2022年數(shù)學九年級第一學期期末質(zhì)量檢測模擬試題含解析_第2頁
江蘇省南京市六校聯(lián)考2022年數(shù)學九年級第一學期期末質(zhì)量檢測模擬試題含解析_第3頁
江蘇省南京市六校聯(lián)考2022年數(shù)學九年級第一學期期末質(zhì)量檢測模擬試題含解析_第4頁
江蘇省南京市六校聯(lián)考2022年數(shù)學九年級第一學期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.二次函數(shù)y=ax2+bx+c的部分對應值如表:利用該二次函數(shù)的圖象判斷,當函數(shù)值y>0時,x的取值范圍是()A.0<x<8 B.x<0或x>8 C.﹣2<x<4 D.x<﹣2或x>42.隨機擲一枚均勻的硬幣兩次,落地后至少有一次正面朝上的概率是()A. B. C. D.13.如圖,點P是矩形ABCD的邊上一動點,矩形兩邊長AB、BC長分別為15和20,那么P到矩形兩條對角線AC和BD的距離之和是()A.6 B.12 C.24 D.不能確定4.已知x=1是方程x2+m=0的一個根,則m的值是()A.﹣1 B.1 C.﹣2 D.25.如圖,四邊形ABCD內(nèi)接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,則∠BDC的度數(shù)為()A.100° B.105° C.110° D.115°6.拋物線y=2(x﹣2)2﹣1的頂點坐標是()A.(0,﹣1) B.(﹣2,﹣1) C.(2,﹣1) D.(0,1)7.在中,,若已知,則()A. B. C. D.8.點、都在反比例函數(shù)的圖象上,則、的大小關系是()A. B. C. D.不能確定9.拋物線y=2x2+3與兩坐標軸的公共點個數(shù)為()A.0個 B.1個 C.2個 D.3個10.二次函數(shù)圖象上部分點的坐標對應值列表如下:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…則該函數(shù)圖象的對稱軸是()A.直線x=﹣3 B.直線x=﹣2 C.直線x=﹣1 D.直線x=011.已知拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個公共點,其橫坐標為1,則一次函數(shù)y=bx+ac的圖象可能是(

)A.

B.

C.

D.12.如圖,在第一象限內(nèi),,是雙曲線()上的兩點,過點作軸于點,連接交于點,則點的坐標為()A. B. C. D.二、填空題(每題4分,共24分)13.已知關于x方程x2﹣3x+a=0有一個根為1,則方程的另一個根為_____.14.如圖,正六邊形ABCDEF內(nèi)接于O,點M是邊CD的中點,連結AM,若圓O的半徑為2,則AM=____________.15.已知扇形的面積為4π,半徑為6,則此扇形的圓心角為_____度.16.在Rt△ABC中,∠ACB=90°,若tanA=3,AB=,則BC=___17.如圖,點G為△ABC的重心,GE∥AC,若DE=2,則DC=_____.18.甲、乙兩同學在最近的5次數(shù)學測驗中數(shù)學成績的方差分別為甲,乙,則數(shù)學成績比較穩(wěn)定的同學是____________三、解答題(共78分)19.(8分)已知菱形的兩條對角線長度之和為40厘米,面積S(單位:cm2)隨其中一條對角線的長x(單位:cm)的變化而變化.(1)請直接寫出S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍.(2)當x取何值時,菱形的面積最大,最大面積是多少?20.(8分)感知定義在一次數(shù)學活動課中,老師給出這樣一個新定義:如果三角形的兩個內(nèi)角α與β滿足α+2β=90°,那么我們稱這樣的三角形為“類直角三角形”.嘗試運用(1)如圖1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分線.①證明△ABD是“類直角三角形”;②試問在邊AC上是否存在點E(異于點D),使得△ABE也是“類直角三角形”?若存在,請求出CE的長;若不存在,請說明理由.類比拓展(2)如圖2,△ABD內(nèi)接于⊙O,直徑AB=10,弦AD=6,點E是弧AD上一動點(包括端點A,D),延長BE至點C,連結AC,且∠CAD=∠AOD,當△ABC是“類直角三角形”時,求AC的長.21.(8分)如圖,四邊形ABCD內(nèi)接于⊙O,AC為⊙O的直徑,D為的中點,過點D作DE∥AC,交BC的延長線于點E.(1)判斷DE與⊙O的位置關系,并說明理由;(2)若CE=,AB=6,求⊙O的半徑.22.(10分)“鐵路建設助推經(jīng)濟發(fā)展”,近年來我國政府十分重視鐵路建設.渝利鐵路通車后,從重慶到上海比原鐵路全程縮短了320千米,列車設計運行時速比原鐵路設計運行時速提高了120千米/小時,全程設計運行時間只需8小時,比原鐵路設計運行時間少用16小時.(1)渝利鐵路通車后,重慶到上海的列車設計運行里程是多少千米?(2)專家建議:從安全的角度考慮,實際運行時速要比設計時速減少m%,以便于有充分時間應對突發(fā)事件,這樣,從重慶到上海的實際運行時間將增加11023.(10分)如圖,在平面直角坐標系中,已知點A的坐標是(4,0),并且OA=OC=4OB,動點P在過A,B,C三點的拋物線上.(1)求拋物線的解析式;(2)在AC上方的拋物線上有一動點G,如圖,當點G運動到某位置時,以AG,AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上,求出此時點G的坐標;(3)若拋物線上存在點P,使得△ACP是以AC為直角邊的直角三角形,直接寫出所有符合條件的點P的坐標.24.(10分)如圖,直線y=ax+b與x軸交于點A(4,0),與y軸交于點B(0,﹣2),與反比例函數(shù)y=(x>0)的圖象交于點C(6,m).(1)求直線和反比例函數(shù)的表達式;(2)連接OC,在x軸上找一點P,使△OPC是以OC為腰的等腰三角形,請求出點P的坐標;(3)結合圖象,請直接寫出不等式≥ax+b的解集.25.(12分)如圖,在Rt△ABC中,∠A=90°,AC=3,AB=4,動點P從點A出發(fā),沿AB方向以每秒2個單位長度的速度向終點B運動,點Q為線段AP的中點,過點P向上作PM⊥AB,且PM=3AQ,以PQ、PM為邊作矩形PQNM.設點P的運動時間為t秒.(1)線段MP的長為(用含t的代數(shù)式表示).(2)當線段MN與邊BC有公共點時,求t的取值范圍.(3)當點N在△ABC內(nèi)部時,設矩形PQNM與△ABC重疊部分圖形的面積為S,求S與t之間的函數(shù)關系式.(4)當點M到△ABC任意兩邊所在直線距離相等時,直接寫出此時t的值.26.解方程:x2+2x﹣1=1.

參考答案一、選擇題(每題4分,共48分)1、C【分析】觀察表格得出拋物線頂點坐標是(1,9),對稱軸為直線x=1,而當x=-2時,y=0,則拋物線與x軸的另一交點為(1,0),由表格即可得出結論.【詳解】由表中的數(shù)據(jù)知,拋物線頂點坐標是(1,9),對稱軸為直線x=1.當x<1時,y的值隨x的增大而增大,當x>1時,y的值隨x的增大而減小,則該拋物線開口方向向上,所以根據(jù)拋物線的對稱性質(zhì)知,點(﹣2,0)關于直線直線x=1對稱的點的坐標是(1,0).所以,當函數(shù)值y>0時,x的取值范圍是﹣2<x<1.故選:C.【點睛】本題考查了二次函數(shù)與x軸的交點、二次函數(shù)的性質(zhì)等知識,解答本題的關鍵是要認真觀察,利用表格中的信息解決問題.2、C【解析】先求出兩次擲一枚硬幣落地后朝上的面的所有情況,再根據(jù)概率公式求解.【詳解】隨機擲一枚均勻的硬幣兩次,落地后情況如下:至少有一次正面朝上的概率是.故選C.【點睛】如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.3、B【分析】由矩形ABCD可得:S△AOD=S矩形ABCD,又由AB=15,BC=20,可求得AC的長,則可求得OA與OD的長,又由S△AOD=S△APO+S△DPO=OA?PE+OD?PF,代入數(shù)值即可求得結果.【詳解】連接OP,如圖所示:∵四邊形ABCD是矩形,∴AC=BD,OA=OC=AC,OB=OD=BD,∠ABC=90°,S△AOD=S矩形ABCD,∴OA=OD=AC,∵AB=15,BC=20,∴AC===25,S△AOD=S矩形ABCD=×15×20=75,∴OA=OD=,∴S△AOD=S△APO+S△DPO=OA?PE+OD?PF=OA?(PE+PF)=×(PE+PF)=75,∴PE+PF=1.∴點P到矩形的兩條對角線AC和BD的距離之和是1.故選B.【點睛】本題考查了矩形的性質(zhì)、勾股定理、三角形面積.熟練掌握矩形的性質(zhì)和勾股定理是解題的關鍵.4、A【分析】把x=1代入方程,然后解一元一次方程即可.【詳解】把x=1代入方程得:1+m=0,解得:m=﹣1.故選A.【點睛】本題考查了一元二次方程的解.掌握一元二次方程的解的定義是解答本題的關鍵.5、B【解析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù),進而利用平行線的性質(zhì)得出∠ABC的度數(shù),利用角平分線的定義和三角形內(nèi)角和解答即可.【詳解】∵四邊形ABCD內(nèi)接于⊙O,∠A=130°,

∴∠C=180°-130°=50°,

∵AD∥BC,

∴∠ABC=180°-∠A=50°,

∵BD平分∠ABC,

∴∠DBC=25°,

∴∠BDC=180°-25°-50°=105°,

故選:B.【點睛】本題考查了圓內(nèi)接四邊形的性質(zhì),關鍵是根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù).6、C【解析】根據(jù)二次函數(shù)頂點式頂點坐標表示方法,直接寫出頂點坐標即可.【詳解】解:∵頂點式y(tǒng)=a(x﹣h)2+k,頂點坐標是(h,k),∴y=2(x﹣2)2﹣1的頂點坐標是(2,﹣1).故選:C.【點睛】本題考查了二次函數(shù)頂點式,解決本題的關鍵是熟練掌握二次函數(shù)頂點式中頂點坐標的表示方法.7、B【分析】根據(jù)題意利用三角函數(shù)的定義,定義成三角形的邊的比值,進行分析計算即可求解.【詳解】解:在中,,∵,設BC=3x,則AC=4x,根據(jù)勾股定理可得:,∴.故選:B.【點睛】本題主要考查三角函數(shù)的定義,注意掌握求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,通過設參數(shù)的方法求三角函數(shù)值,或者利用同角(或余角)的三角函數(shù)關系式求三角函數(shù)值.8、A【分析】根據(jù)反比例函數(shù)的性質(zhì),圖象在二、四象限,在雙曲線的同一支上,y隨x的增大而增大,則-3<-1<0,可得.【詳解】解:∵k=-1<0,

∴圖象在二、四象限,且在雙曲線的同一支上,y隨x增大而增大

∵-3<-1<0

∴y1<y2,

故選:A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,熟練掌握反比例函數(shù)的性質(zhì)是解題的關鍵.9、B【分析】根據(jù)一元二次方程2x2+3=1的根的判別式的符號來判定拋物線y=2x2+3與x軸的交點個數(shù),當x=1時,y=3,即拋物線y=2x2+3與y軸有一個交點.【詳解】解:當y=1時,2x2+3=1.

∵△=12-4×2×3=-24<1,

∴一元二次方程2x2+3=1沒有實數(shù)根,即拋物線y=2x2+3與x軸沒有交點;

當x=1時,y=3,即拋物線y=2x2+3與y軸有一個交點,

∴拋物線y=2x2+3與兩坐標軸的交點個數(shù)為1個.

故選B.【點睛】本題考查了拋物線與x軸、y軸的交點.注意,本題求得是“拋物線y=2x2+3與兩坐標軸的交點個數(shù)”,而非“拋物線y=2x2+3與x軸交點的個數(shù)”.10、B【分析】根據(jù)二次函數(shù)的對稱性確定出二次函數(shù)的對稱軸,然后解答即可.【詳解】解:∵x=﹣3和﹣1時的函數(shù)值都是﹣3相等,∴二次函數(shù)的對稱軸為直線x=﹣1.故選B.【點睛】本題考查二次函數(shù)的圖象.11、B【解析】分析:根據(jù)拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個公共點,可得b>0,根據(jù)交點橫坐標為1,可得a+b+c=b,可得a,c互為相反數(shù),依此可得一次函數(shù)y=bx+ac的圖象.詳解:∵拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個公共點,∴b>0,∵交點橫坐標為1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函數(shù)y=bx+ac的圖象經(jīng)過第一、三、四象限.故選B.點睛:考查了一次函數(shù)的圖象,反比例函數(shù)的性質(zhì),二次函數(shù)的性質(zhì),關鍵是得到b>0,ac<0.12、D【分析】先根據(jù)P點坐標計算出反比例函數(shù)的解析式,進而求出M點的坐標,再根據(jù)M點的坐標求出OM的解析式,進而將代入求解即得.【詳解】解:將代入得:∴∴反比例函數(shù)解析式為將代入得:∴∴設OM的解析式為:∴將代入得∴∴OM的解析式為:當時∴點的坐標為.故選:D.【點睛】本題考查待定系數(shù)法求解反比例函數(shù)和正比例函數(shù)解析式,解題關鍵是熟知求反比例函數(shù)和正比例函數(shù)解析式只需要一個點的坐標.二、填空題(每題4分,共24分)13、1【解析】分析:設方程的另一個根為m,根據(jù)兩根之和等于-,即可得出關于m的一元一次方程,解之即可得出結論.詳解:設方程的另一個根為m,根據(jù)題意得:1+m=3,解得:m=1.故答案為1.點睛:本題考查了根與系數(shù)的關系,牢記兩根之和等于-是解題的關鍵.14、【分析】連接AD,過M作MG⊥AD于G,根據(jù)正六邊形的相關性質(zhì),求得AD,MD的值,再根據(jù)∠CDG=60°,求出DG,MG的值,最后利用勾股定理求出AM的值.【詳解】解:連接AD,過M作MG⊥AD于G,則由正六邊形可得,AD=2AB=4,∠CDA=60°,又MD=CD=1,∴DG=,MG=,∴AG=AD-DG=,∴AM=故答案為.【點睛】本題考查了正多邊形和圓、正六邊形的性質(zhì)、三角函數(shù)、勾股定理;熟練掌握正六邊形的性質(zhì),作出輔助線構造直角三角形是解題的關鍵.15、1【分析】利用扇形面積計算公式:設圓心角是n°,圓的半徑為R的扇形面積為S,則由此構建方程即可得出答案.【詳解】解:設該扇形的圓心角度數(shù)為n°,∵扇形的面積為4π,半徑為6,∴4π=,解得:n=1.∴該扇形的圓心角度數(shù)為:1°.故答案為:1.【點睛】此題考查了扇形面積的計算,熟練掌握公式是解此題的關鍵.16、1【分析】由tanA==1可設BC=1x,則AC=x,依據(jù)勾股定理列方程求解可得.【詳解】∵在Rt△ABC中,tanA==1,∴設BC=1x,則AC=x,由BC2+AC2=AB2可得9x2+x2=10,解得:x=1(負值舍去),則BC=1,故答案為:1.【點睛】本題考查了解直角三角形的問題,掌握銳角三角函數(shù)的定義以及勾股定理是解題的關鍵.17、1.【分析】根據(jù)重心的性質(zhì)可得AG:DG=2:1,然后根據(jù)平行線分線段成比例定理可得==2,從而求出CE,即可求出結論.【詳解】∵點G為△ABC的重心,∴AG:DG=2:1,∵GE∥AC,∴==2,∴CE=2DE=2×2=4,∴CD=DE+CE=2+4=1.故答案為:1.【點睛】此題考查的是重心的性質(zhì)和平行線分線段成比例定理,掌握重心的性質(zhì)和平行線分線段成比例定理是解決此題的關鍵.18、甲【分析】根據(jù)方差的意義即方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定進行分析即可.【詳解】解:由于甲<乙,則數(shù)學成績較穩(wěn)定的同學是甲.故答案為:甲.【點睛】本題考查方差的意義.注意掌握方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.三、解答題(共78分)19、(1)S=﹣x2+20x,0<x<40;(2)當x=20時,菱形的面積最大,最大面積是1.【分析】(1)直接利用菱形面積公式得出S與x之間的關系式;(2)利用配方法求出最值即可.【詳解】(1)由題意可得:,∵x為對角線的長,∴x>0,40﹣x>0,即0<x<40;(2),===,即當x=20時,菱形的面積最大,最大面積是1.【點睛】本題考查二次函數(shù)的應用,熟練掌握菱形的性質(zhì),建立二次函數(shù)模型是解題的關鍵.20、(1)①證明見解析;②CE=;(2)當△ABC是“類直角三角形”時,AC的長為或.【分析】(1)①證明∠A+2∠ABD=90°即可解決問題.②如圖1中,假設在AC邊設上存在點E(異于點D),使得△ABE是“類直角三角形”,證明△ABC∽△BEC,可得,由此構建方程即可解決問題.(2)分兩種情形:①如圖2中,當∠ABC+2∠C=90°時,作點D關于直線AB的對稱點F,連接FA,FB.則點F在⊙O上,且∠DBF=∠DOA.②如圖3中,由①可知,點C,A,F共線,當點E與D共線時,由對稱性可知,BA平分∠FBC,可證∠C+2∠ABC=90°,利用相似三角形的性質(zhì)構建方程即可解決問題.【詳解】(1)①證明:如圖1中,∵BD是∠ABC的角平分線,∴∠ABC=2∠ABD,∵∠C=90°,∴∠A+∠ABC=90°,∴∠A+2∠ABD=90°,∴△ABD為“類直角三角形”;②如圖1中,假設在AC邊設上存在點E(異于點D),使得△ABE是“類直角三角形”,在Rt△ABC中,∵AB=5,BC=3,∴AC=,∵∠AEB=∠C+∠EBC>90°,∴∠ABE+2∠A=90°,∵∠ABE+∠A+∠CBE=90°,∴∠A=∠CBE,∴△ABC∽△BEC,∴,∴CE=,(2)∵AB是直徑,∴∠ADB=90°,∵AD=6,AB=10,∴BD=,①如圖2中,當∠ABC+2∠C=90°時,作點D關于直線AB的對稱點F,連接FA,FB,則點F在⊙O上,且∠DBF=∠DOA,∵∠DBF+∠DAF=180°,且∠CAD=∠AOD,∴∠CAD+∠DAF=180°,∴C,A,F(xiàn)共線,∵∠C+∠ABC+∠ABF=90°,∴∠C=∠ABF,∴△FAB∽△FBC,∴,即,∴AC=.②如圖3中,由①可知,點C,A,F共線,當點E與D共線時,由對稱性可知,BA平分∠FBC,∴∠C+2∠ABC=90°,∵∠CAD=∠CBF,∠C=∠C,∴△DAC∽△FBC,∴,即,∴CD=(AC+6),在Rt△ADC中,[(ac+6)]2+62=AC2,∴AC=或﹣6(舍棄),綜上所述,當△ABC是“類直角三角形”時,AC的長為或.【點睛】本題主要考查圓綜合題,考查了相似三角形的判定和性質(zhì),“類直角三角形”的定義等知識,解題的關鍵是理解題意,學會用分類討論的思想思考問題,學會利用參數(shù)構建方程解決問題.21、(1)DE與⊙O相切;理由見解析;(2)4.【分析】(1)連接OD,由D為的中點,得到,進而得到AD=CD,根據(jù)平行線的性質(zhì)得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到結論;

(2)連接BD,根據(jù)四邊形對角互補得到∠DAB=∠DCE,由得到∠DAC=∠DCA=45°,求得△ABD∽△CDE,根據(jù)相似三角形的性質(zhì)即可得到結論.【詳解】(1)解:DE與⊙O相切證:連接OD,在⊙O中∵D為的中點∴∴AD=DC∵AD=DC,點O是AC的中點∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE經(jīng)過半徑OD的外端點D∴DE與⊙O相切.(2)解:連接BD∵四邊形ABCD是⊙O的內(nèi)接四邊形∴∠DAB+∠DCB=180°又∵∠DCE+∠DCB=180°∴∠DAB=∠DCE∵AC為⊙O的直徑,點D、B在⊙O上,∴∠ADC=∠ABC=90°∵,∴∠ABD=∠CBD=45°∵AD=DC,∠ADC=90°∴∠DAC=∠DCA=45°∵DE∥AC∴∠DCA=∠CDE=45°在△ABD和△CDE中∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE∴=∴=∴AD=DC=4,CE=,AB=6,在Rt△ADC中,∠ADC=90°,AD=DC=4,∴AC==8∴⊙O的半徑為4.【點睛】本題考查了直線與圓的位置關系,等腰直角三角形的性質(zhì),圓周角定理,相似三角形的判定和性質(zhì),正確的識別圖形是解題的關鍵.22、(2)2600;(2)2.【分析】(2)利用“從重慶到上海比原鐵路全程縮短了32千米,列車設計運行時速比原鐵路設計運行時速提高了l2千米/小時,全程設計運行時間只需8小時,比原鐵路設計運行時間少用26小時”,分別得出等式組成方程組求出即可;(2)根據(jù)題意得出:(80+120)(1-m%)(8+1【詳解】試題解析:(2)設原時速為xkm/h,通車后里程為ykm,則有:8(120+x)=y(8+16)x=320+y解得:x=80y=1600答:渝利鐵路通車后,重慶到上海的列車設計運行里程是2600千米;(2)由題意可得出:(80+120)(1-m%)(8+1解得:m1=20,答:m的值為2.考點:2.一元二次方程的應用;二元一次方程組的應用.23、(1)拋物線的解析式為y=﹣x2+3x+4;(2)點G的坐標為(,);(3)點P(2,6)或(﹣2,﹣6).【分析】(1)由點A的坐標及OA=OC=4OB,可得出點B,C的坐標,根據(jù)點A,B,C的坐標,利用待定系數(shù)法即可求出拋物線的解析式;(2)由二次函數(shù)的解析式利用二次函數(shù)的性質(zhì)可得出拋物線的對稱軸,由AO的長度結合平行四邊形的性質(zhì)可得出點G的橫坐標,再利用二次函數(shù)圖象上點的坐標特征,即可求出點G的坐標;(3)設點P的坐標為(m,-m2+3m+4),結合點A,C的坐標可得出AP2,CP2,AC2的值,分∠ACP=90°及∠PAC=90°兩種情況,利用勾股定理即可得出關于m的一元二次方程,解之即可得出結論.【詳解】解:(1)∵點A的坐標是(4,0),∴OA=4,又∵OA=OC=4OB,∴OA=OC=4,OB=1,∴點C的坐標為(0,4),點B的坐標為(﹣1,0).設拋物線的解析式為y=ax2+bx+c(a≠0),將A(4,0),B(﹣1,0),C(0,4)代入y=ax2+bx+c,得,解得:,∴拋物線的解析式為y=﹣x2+3x+4,(2)∵拋物線的解析式為y=﹣x2+3x+4,∴拋物線的對稱軸為直線x=,∵如圖1,動點G在AC上方的拋物線上,且以AG,AO為鄰邊的平行四邊形的第四個頂點H也在拋物線上,∴GH∥AO,GH=AO=4,∵點G,H都在拋物線上,∴G,H關于直線x=對稱,∴點G的橫坐標為,∵當x=時,y=﹣x2+3x+4=,∴點G的坐標為(,).(3)假設存在,設點P的坐標為(m,-m2+3m+4),∵點A的坐標為(4,0),點C的坐標為(0,4),∴AP2=(m-4)2+(-m2+3m+4-0)2=m4-6m3+2m2+16m+32,CP2=(m-0)2+(-m2+3m+4-4)2=m4-6m3+10m2,AC2=(0-4)2+(4-0)2=32,分兩種情況考慮,如圖2所示,①當∠ACP=90°時,AP2=CP2+AC2,即m4-6m3+2m2+16m+32=m4-6m3+10m2+32,整理得:m2-2m=0,解得:m1=0(舍去),m2=2,∴點P的坐標為(2,6);整理得:m2-2m-8=0,解得:m3=-2,m4=4(舍去),∴點P的坐標為(-2,-6).綜上所述,假設成立,拋物線上存在點P(2,6)或(﹣2,﹣6),使得△ACP是以為直角邊的直角三角形.【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)圖象上點的坐標特征、平行四邊形的性質(zhì)、二次函數(shù)的性質(zhì)以及勾股定理,解決本題的關鍵是要熟練掌握二次函數(shù)圖象性質(zhì)和平行四邊形的性質(zhì).24、(1)y=x﹣1;y=;(1)點P1的坐標為(,0),點P1的坐標為(﹣,0),(11,0);(3)0<x≤2【解析】(1)根據(jù)點A,B的坐標,利用待定系數(shù)法即可求出直線AB的函數(shù)表達式,利用一次函數(shù)圖象上點的坐標特征可得出點C的坐標,由點C的坐標,利用待定系數(shù)法即可求出反比例函數(shù)的表達式;(1)過點C作CD⊥x軸,垂足為D點,利用勾股定理看求出OC的長,分OC=OP和CO=CP兩種情況考慮:①當OP=OC時,由OC的長可得出OP的長,進而可求出點P的坐標;②當CO=CP時,利用等腰三角形的性質(zhì)可得出OD=PD,結合OD的長可得出OP的長,進而可得出點P的坐標;(3)觀察圖形,由兩函數(shù)圖象的上下位置關系,即可求出不等式≥ax+b的解集.【詳解】解:(1)將A(4,0),B(0,﹣1)代入y=ax+b,得:,解得:,∴直線AB的函數(shù)表達式為y=x﹣1.當x=2時,y=x﹣1=1,∴點C的坐標為(2,1).將C(2,1)代入y=,得:1=,解得:k=2,∴反比例函數(shù)的表達式為y=.(1)過點C作CD⊥x軸,垂足為D點,則OD=2,CD=1,∴OC=.∵OC為腰,∴分兩種情況考慮,如圖1所示:①當OP=OC時,∵OC=,∴OP=,∴點P1的坐標為(,0),點P1的坐標為(﹣,0);②當CO=CP時,DP=DO=2,∴OP=1OD=11,∴點P3的坐標為(11,0).(3)觀察函數(shù)圖象,可知:當0<x<2時,反比例函數(shù)y=的圖象在直線y=x﹣1的上方,∴不等式≥ax+b的解集為0<x≤2.【點睛】本題考查了待定系數(shù)法求一次函數(shù)解析式、一次函數(shù)圖象上點的坐標特征、待定系數(shù)法求反比例函數(shù)解析式、等腰三角形的性質(zhì)、勾股定理以及反比例函數(shù)圖象上點的坐標特征,解題的關鍵是:(1)根據(jù)點的坐標,利用待定系數(shù)法求出一次(反比例)函數(shù)的關系式;(1)分OC=OP和CO=CP兩種情況求出點P的坐標;(3)根據(jù)兩函數(shù)圖象的上下位置關系,找出不等式的解集.25、(1)3t;(2)滿足條件的t的值為≤t≤;(3)S=;(4)滿足條件的t的值為或或.【分析】(1)根據(jù)路程、速

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論