數(shù)學(xué)建模成果總結(jié)模板范文_第1頁
數(shù)學(xué)建模成果總結(jié)模板范文_第2頁
數(shù)學(xué)建模成果總結(jié)模板范文_第3頁
數(shù)學(xué)建模成果總結(jié)模板范文_第4頁
數(shù)學(xué)建模成果總結(jié)模板范文_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

數(shù)學(xué)建模成果總結(jié)模板范文第一篇數(shù)學(xué)建模成果總結(jié)模板范文第一篇一、數(shù)學(xué)建模與數(shù)學(xué)建模意識

數(shù)學(xué)建模是對實際問題本質(zhì)屬性進行抽象而又簡潔刻劃的數(shù)學(xué)符號、數(shù)學(xué)式子、程序或圖形,它或能解釋某些客觀現(xiàn)象,或能預(yù)測未來的發(fā)展規(guī)律,或能為控制某一現(xiàn)象的發(fā)展提供某種意義下的最優(yōu)策略或較好策略。而應(yīng)用各種知識從實際問題中抽象、提煉出數(shù)學(xué)模型的過程,我們稱之為數(shù)學(xué)建模。它的靈魂是數(shù)學(xué)的運用,它就象陣陣微風(fēng),不斷地將數(shù)學(xué)的種子吹撒在時間和空間的每一個角落,從而讓數(shù)學(xué)之花處處綻放。

高中數(shù)學(xué)課程新標(biāo)準(zhǔn)要求把數(shù)學(xué)文化內(nèi)容與各模塊的內(nèi)容有機結(jié)合,數(shù)學(xué)建模是其中十分重要的一部分。作為基礎(chǔ)教育階段――高中,我們更應(yīng)該重視學(xué)生的數(shù)學(xué)應(yīng)用意識的早期培養(yǎng),我們應(yīng)該通過各種各樣的形式來增強學(xué)生的應(yīng)用意識,提高他們將數(shù)學(xué)理論知識結(jié)合實際生活的能力,進而激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣和熱情。

二、高中數(shù)學(xué)教師必須提高自己的建模意識、積累自己的建模知識。

我們在教學(xué)內(nèi)容和要求上的變化,更意味著教育思想和教學(xué)觀念的更新。數(shù)學(xué)建模源于生活,用于生活。高中數(shù)學(xué)教師除需要了解數(shù)學(xué)科學(xué)的發(fā)展歷史和發(fā)展動態(tài)之外,還需要不斷地學(xué)習(xí)一些新的數(shù)學(xué)建模理論,并且努力鉆研如何把高中數(shù)學(xué)知識應(yīng)用于現(xiàn)實生活。作為高中數(shù)學(xué)教師,在日常生活上必須做數(shù)學(xué)的有心人,不斷積累與數(shù)學(xué)相關(guān)的實際問題。

三、在數(shù)學(xué)建?;顒又幸浞种匾晫W(xué)生的主體性

提高學(xué)生的主體意識是新課程改革的基本要求。在課堂教學(xué)中真正落實學(xué)生的主體地位,讓學(xué)生真正成為數(shù)學(xué)課堂的主人,促進學(xué)生自主地發(fā)展,是現(xiàn)代數(shù)學(xué)課堂的重要標(biāo)志,是高中數(shù)學(xué)素質(zhì)教育的核心思想,也是全面實施素質(zhì)教育的關(guān)鍵。高中數(shù)學(xué)建?;顒又荚谂囵B(yǎng)學(xué)生的探究能力和獨立解決問題的能力,學(xué)生是建模的主體,學(xué)生在進行建?;顒舆^程中表現(xiàn)出的主體性表現(xiàn)為自主完成建模任務(wù)和在建?;顒又械幕ハ鄥f(xié)作性。中學(xué)生具有好奇、好問、好動、好勝、好玩的心理特點,思維開始從經(jīng)驗型走向理論型,出現(xiàn)了思維的獨立性和批判性,表現(xiàn)為喜歡獨立思考、尋根究底和質(zhì)疑爭辯。因此,教師在課堂上應(yīng)該讓學(xué)生充分進行自主體驗,在數(shù)學(xué)建模的實踐中運用這些數(shù)學(xué)知識,感受和體驗數(shù)學(xué)的應(yīng)用價值。

教師可作適當(dāng)?shù)狞c撥指導(dǎo),但要重視學(xué)生的參與過程和主體意識,不能越俎代庖,目的是提高學(xué)生進行探究性學(xué)習(xí)的能力、提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

四、處理好數(shù)學(xué)建模的過程與結(jié)果的關(guān)系

我國的中學(xué)數(shù)學(xué)新課程改革已進入全面實施階段。新的高中數(shù)學(xué)課程標(biāo)準(zhǔn)強調(diào)要拓寬學(xué)生的數(shù)學(xué)知識面,改善學(xué)生的學(xué)習(xí)方式,關(guān)注學(xué)生的學(xué)習(xí)情感和情緒體驗,培養(yǎng)學(xué)生進行探究性學(xué)習(xí)的習(xí)慣和能力。數(shù)學(xué)建?;顒邮且环N使學(xué)生在探究性活動中受到數(shù)學(xué)教育的學(xué)習(xí)方式,是運用已有的數(shù)學(xué)知識解決問題的教與學(xué)的雙邊活動,是學(xué)生圍繞某個數(shù)學(xué)問題自主探究、學(xué)習(xí)的過程。新的高中數(shù)學(xué)課程標(biāo)準(zhǔn)要求把數(shù)學(xué)探究、數(shù)學(xué)建模的思想以不同的形式滲透在各模塊和專題內(nèi)容之中,突出強調(diào)建立科學(xué)探究的學(xué)習(xí)方式,讓學(xué)生通過探究活動來學(xué)習(xí)數(shù)學(xué)知識和方法,增進對數(shù)學(xué)的理解,體驗探究的樂趣。五、數(shù)學(xué)建模教學(xué)與素質(zhì)教育

數(shù)學(xué)建模問題貼近實際生活,往往一個問題有很多種思路,有較強的趣味性、靈活性,能激發(fā)學(xué)生的學(xué)習(xí)興趣,可以觸發(fā)不同水平的學(xué)生在不同層次上的創(chuàng)造性,使他們有各自的收獲和成功的體驗。由于給了學(xué)生一個縱情創(chuàng)造的空間,就為學(xué)生提供了展示其創(chuàng)造才華的機會,從而促進學(xué)生素質(zhì)能力的培養(yǎng)和提高,對中學(xué)素質(zhì)教育起到積極推動作用。

1.構(gòu)建建模意識,培養(yǎng)學(xué)生的轉(zhuǎn)換能力

_曾說過:“由一種形式轉(zhuǎn)化為另一種形式不是無聊的游戲而是數(shù)學(xué)的杠桿,如果沒有它,就不能走很遠?!庇捎跀?shù)學(xué)建模就是把實際問題轉(zhuǎn)換成數(shù)學(xué)問題,因此如果我們在數(shù)學(xué)教學(xué)中注重轉(zhuǎn)化,用好這根有力的杠桿,對培養(yǎng)學(xué)生思維品質(zhì)的靈活性、創(chuàng)造性及開發(fā)智力、培養(yǎng)能力、提高解題速度是十分有益的。學(xué)生對問題的研究過程,無疑會激發(fā)其學(xué)習(xí)數(shù)學(xué)的主動性,且能開拓學(xué)生的創(chuàng)造性思維能力,養(yǎng)成善于發(fā)現(xiàn)問題、獨立思考的習(xí)慣。教材的每一章都由一個有關(guān)的實際問題引入,可直接告訴學(xué)生,學(xué)了本章的教學(xué)內(nèi)容及方法后,這個實際問題就能用數(shù)學(xué)模型得到解決,這樣,學(xué)生就會產(chǎn)生創(chuàng)新意識。

2.注重直覺思維,培養(yǎng)學(xué)生的想象能力

眾所周知,數(shù)學(xué)史上不少的數(shù)學(xué)發(fā)現(xiàn)都來源于直覺思維,如笛卡爾坐標(biāo)系、歌德巴赫猜想等,應(yīng)該說它們不是任何邏輯思維的產(chǎn)物,而是數(shù)學(xué)家通過觀察、比較、領(lǐng)悟、突發(fā)靈感發(fā)現(xiàn)的。通過數(shù)學(xué)建模教學(xué),使學(xué)生有獨到的見解和與眾不同的思考方法,如善于發(fā)現(xiàn)問題,溝通各類知識之間的內(nèi)在聯(lián)系等是培養(yǎng)學(xué)生創(chuàng)新思維的核心。七年級的教材里,以游戲的方式編排了簡單而有趣的概率知識,如轉(zhuǎn)盤游戲,扔硬幣來驗證出現(xiàn)正面或反面的概率等等。通過有趣的游戲,激起了學(xué)生學(xué)習(xí)的興趣,并了解到概率統(tǒng)計知識在社會中應(yīng)用的廣泛性和重要性。

3.灌輸“構(gòu)造”思想,培養(yǎng)學(xué)生的創(chuàng)新能力

“一個好的數(shù)學(xué)家與一個蹩腳的數(shù)學(xué)家之間的差別,就在于前者有許多具體的例子,而后者則只有抽象的理論?!蔽覀兦懊嬷v到,“建?!本褪菢?gòu)造模型,但模型的構(gòu)造并不是一件容易的事,又需要有足夠強的構(gòu)造能力,而學(xué)生構(gòu)造能力的提高則是學(xué)生創(chuàng)造性思維和創(chuàng)造能力的基礎(chǔ):創(chuàng)造性地使用已知條件,創(chuàng)造性地應(yīng)用數(shù)學(xué)知識。

數(shù)學(xué)建模成果總結(jié)模板范文第二篇數(shù)學(xué)建模比賽的獲獎感言

尊敬的各位老師、同學(xué)們:

大家好!我是通工xx班的xx。今天很榮幸在這里發(fā)言。

參加數(shù)學(xué)建模比賽就三天,當(dāng)然算上準(zhǔn)備階段那就幾個月了。三天,說長不長,說短不短。用一句時髦的話概括這三天給我的感受就是:痛并快樂著,快樂是因為我有幸享受了這三天的比賽,大家積極討論,充分交流帶來的快樂,還認識了許多新朋友以及對我們?nèi)缗笥寻愕睦蠋焸?。大家好像生活在一個密閉的小社會里,感覺就像一家人一樣。痛是因為在比賽三天里很累,每天都得對著問題思考,幾乎都是通宵達旦的做。在這里我首先要感謝陪伴我們一路走過來的老師。一路走來,校領(lǐng)導(dǎo)、老師對我們很關(guān)心,很支持,盡量為我們營造一個良好的外界環(huán)境。正是因為有他們的關(guān)心和支持,我們才取得了這么好的成績。

在數(shù)學(xué)建模的過程中我也得到了許多收獲,是建模鍛煉了我,是建模讓我得到了提高。在學(xué)習(xí)建模的過程中,我失去了很多,但也得到了很多。參加數(shù)學(xué)建模后,我的視野更加開闊了,看待問題的角度和別人不同,遇到問題,我總是與別人有不一樣的見解,同時我學(xué)會了用數(shù)學(xué)來解決實際問題,又一次體會到了數(shù)學(xué)的'博大精深。更重要的是,數(shù)學(xué)建模教會了我怎樣心無雜念的去做一些事情、只要耐下心來去解決問題所有問題都將不再是問題。我一直都覺得重在過程,只要我努力了,認真地實施這個過程,結(jié)果是不會騙我的,同樣,這次我又一次驗證了這個真理。

另外,在這里我要感謝和我一起參賽的隊員,通過這次競賽,我深刻地認識到:什么事情僅靠個人是不行的,團隊精神很重要,只有懂得與別人合作才可能成功,回首整個過程,一路走來,我們?nèi)齻€一直都是相互依偎相互鼓勵著走過來的,同時在這個過程中,我們?nèi)齻€隊員也建立了深厚的友誼。同時我也希望有更多的同學(xué)能夠參加到數(shù)學(xué)建模中,我也相信,我們學(xué)校的實力也會越來越強大。

回首望去,這樣的一次競賽也使我終身受益,在身體和心理各方面,數(shù)學(xué)建模都給了我極大地鍛煉,我得到的不只是人生的一段美好的回憶,更是我人生的一筆巨大的財富!

感謝在這里與大家分享我的感受和體會。

數(shù)學(xué)建模成果總結(jié)模板范文第三篇全國數(shù)學(xué)建模大賽一、數(shù)學(xué)模型、數(shù)學(xué)建模與數(shù)學(xué)建模大賽簡單地說:數(shù)學(xué)模型就是對實際問題的一種數(shù)學(xué)表述。具體一點說:數(shù)學(xué)模型是關(guān)于部分現(xiàn)實世界為某種目的的一個抽象的簡化的數(shù)學(xué)結(jié)構(gòu)。

更確切地說:數(shù)學(xué)模型就是對于一個特定的對象為了一個特定目標(biāo),根據(jù)特有的內(nèi)在規(guī)律,做出一些必要的簡化假設(shè),運用適當(dāng)?shù)臄?shù)學(xué)工具,得到的一個數(shù)學(xué)結(jié)構(gòu)。數(shù)學(xué)結(jié)構(gòu)可以是數(shù)學(xué)公式,算法、表格、圖示等。數(shù)學(xué)建模就是建立數(shù)學(xué)模型,建立數(shù)學(xué)模型的過程就是數(shù)學(xué)建模的過程。

數(shù)學(xué)建模是一種數(shù)學(xué)的思考方法,是運用數(shù)學(xué)的語言和方法,通過抽象、簡化建立能近似刻畫并“解決“實際問題的一種強有力的數(shù)學(xué)手段。

二、數(shù)學(xué)建模題型、方法與建模過程題型賽題題型結(jié)構(gòu)形式有三個基本組成部分:

1、實際問題背景涉及面寬--有社會,經(jīng)濟,管理,生活,環(huán)境,自然現(xiàn)象,工程技術(shù),現(xiàn)代科學(xué)中出現(xiàn)的新問題等。一般都有一個比較確切的現(xiàn)實問題。

2、若干假設(shè)條件有如下幾種情況:蘊涵著某些機動、可發(fā)揮的補充假設(shè)條件,或參賽者可以根據(jù)自己收集或模擬產(chǎn)生數(shù)據(jù)。

3、要求回答的問題往往有幾個問題(一般不是唯一答案):數(shù)學(xué)建模方法:機理分析法從基本物理定律以及系統(tǒng)的結(jié)構(gòu)數(shù)據(jù)來推導(dǎo)出模型??煞譃椋哼壿嫹椒?-是數(shù)學(xué)理論研究的重要方法,對社會學(xué)和經(jīng)濟學(xué)等領(lǐng)域的實際問題,在決策,對策等學(xué)科中得到廣泛應(yīng)用。

常微分方程--解決兩個變量之間的變化規(guī)律,關(guān)鍵是建立“瞬時變化率“的表達式。偏微分方程--解決因變量與兩個以上自變量之間的變化規(guī)律。數(shù)據(jù)分析法從大量的觀測數(shù)據(jù)利用統(tǒng)計方法建立數(shù)學(xué)模型。

回歸分析法--用于對函數(shù)f(x)的一組觀測值(xi,fi)i=1,2n,確定函數(shù)的表達式,由于處理的是靜態(tài)的獨立數(shù)據(jù),故稱為數(shù)理統(tǒng)計方法。回歸分析法--用于對函數(shù)f(x)的一組觀測值(xi,fi)i=1,2n,確定函數(shù)的表達式,由于處理的是靜態(tài)的獨立數(shù)據(jù),故稱為數(shù)理統(tǒng)計方法。

時序分析法--處理的是動態(tài)的相關(guān)數(shù)據(jù),又稱為過程統(tǒng)計方法。仿真和其他方法因子試驗法--在系統(tǒng)上作局部試驗,再根據(jù)試驗結(jié)果進行不斷分析修改,求得所需的模型結(jié)構(gòu)。

人工現(xiàn)實法--基于對系統(tǒng)過去行為的了解和對未來希望達到的目標(biāo),并考慮到系統(tǒng)有關(guān)因素的可能變化,人為地組成一個系統(tǒng)。

模型準(zhǔn)備:了解問題的實際背景,明確其實際意義,掌握對象的各種信息。用數(shù)學(xué)語言來描述問模型假設(shè):根據(jù)實際對象的特征和建模的目的,對問題進行必要的簡化,并用精確的語言提出一些恰當(dāng)?shù)募僭O(shè)。

數(shù)學(xué)建模成果總結(jié)模板范文第四篇當(dāng)我談數(shù)學(xué)建模時我談些什么——美賽一等獎經(jīng)驗總結(jié)

前言:20xx年3月28號晚,我知道了美賽成績,一等獎(MeritoriousWinner),沒有太多的喜悅,只是感覺釋懷,一年以來的努力總算有了回報。從國賽遺憾丟掉國獎,到美賽一等,這一路走來太多的不易,感謝我的家人、隊友以及朋友的支持,沒有你們,我無以為繼。

這篇文章在美賽結(jié)束后就已經(jīng)寫好了,算是對自己建模心得體會的一個總結(jié)?,F(xiàn)在成績塵埃落定,我也有足夠的自信把它貼出來,希望能夠幫到各位對數(shù)模感興趣的同學(xué)。

歡迎大家批評指正,歡迎與我交流,這樣我們才都能進步。

個人背景:我20xx年入學(xué),所在的學(xué)校是廣東省一所普通大學(xué),今年大二,學(xué)工商管理專業(yè),沒學(xué)過編程。

學(xué)校組織參加過幾屆美賽,之前唯一的一個一等獎是三年前拿到的,那一隊的主力師兄憑借這一獎項去了北卡羅來納大學(xué)教堂山分校,學(xué)運籌學(xué)。今年再次拿到一等獎,我創(chuàng)了兩個校記錄:一是第一個在大二拿到數(shù)模美賽一等獎,二是第一個在文科專業(yè)拿數(shù)模美賽一等獎。我的數(shù)模歷程如下:

校內(nèi)賽三等獎

通過選拔參加暑期國賽培訓(xùn)(學(xué)校之前不允許大一學(xué)生參加)

數(shù)學(xué)建模成果總結(jié)模板范文第五篇數(shù)學(xué)建模大賽經(jīng)驗交流會活動總結(jié)

日晚六點二十,數(shù)學(xué)建模協(xié)會的數(shù)學(xué)建模大賽經(jīng)驗交流會在科教大樓9704如期舉辦。活動到場的人有,數(shù)學(xué)建模協(xié)會中心組成員,數(shù)學(xué)建模協(xié)會會員,協(xié)會邀請的嘉賓,還有社團聯(lián)的對口干事?;顒佑擅貢坎块L付蓉蓉主持?;顒忧捌?,中心組成員從數(shù)統(tǒng)學(xué)院系辦公室準(zhǔn)備了凳子,并買了水果、盤子還有飲料放在第一排供嘉賓食用?;顒佑兴膫€環(huán)節(jié)。第一個環(huán)節(jié)由會長講述活動目的,活動要求,并宣布活動正式開始。會長希望通過這次活動,大家都能夠盡可能的對數(shù)學(xué)建模大賽產(chǎn)生濃厚的興趣,并積極參加數(shù)學(xué)建模大賽。第二個環(huán)節(jié)由來自數(shù)統(tǒng)學(xué)院大三的學(xué)長學(xué)姐講述他們參加數(shù)學(xué)建模大賽的經(jīng)歷及經(jīng)驗,內(nèi)容從隊友的選擇,題目的分類及確定,賽時時間安排等展開,內(nèi)容精彩豐富,大家受益匪淺。第三個環(huán)節(jié)是自由提問環(huán)節(jié),大家積極提問關(guān)于數(shù)學(xué)建模心中的疑惑,現(xiàn)場熱鬧而有序。第四個環(huán)節(jié)由會長做總結(jié)陳詞。并宣布會議結(jié)束?;顒雍?,由中心組成員收拾教室整潔,并將凳子送回原處。

總的來說,這次活動準(zhǔn)備充足,會場井然有序,氣氛活躍,與會人員都表示收獲很大。但是有一個缺點就是會場紀(jì)律有待提高,個別同學(xué)低聲講話,不過會長最后總結(jié)已經(jīng)指出,相信以后我們的活動會更好。

數(shù)學(xué)建模成果總結(jié)模板范文第六篇大學(xué)生數(shù)學(xué)建模競賽是全國高校規(guī)模最大的課外科技活動之一,是教育部高等教育司和中國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會共同主辦的面向全國大學(xué)生的群眾性科技活動。為了更好地增進各二級院、系之間的學(xué)習(xí)交流與合作,也為了給我院學(xué)生參加科技創(chuàng)新活動提供有效渠道,進一步創(chuàng)造我院良好的科技創(chuàng)新氛圍,院團委于20XX年4月17日舉行了太原師范學(xué)院數(shù)學(xué)建模競賽。我系同學(xué)在此次競賽中取得了非常優(yōu)異的成績,為化學(xué)系爭得了榮譽!

當(dāng)時學(xué)習(xí)部接到通知后立即向我系所有同學(xué)進行宣傳、鼓勵,大一、大二、大三年級的同學(xué)都踴躍報名,當(dāng)時我們對數(shù)學(xué)建模一無所知,沒有教材、資料,沒有軟件,極具挑戰(zhàn)性與競爭性。同學(xué)們自覺從圖書館借閱有關(guān)書籍,研究了大學(xué)生數(shù)學(xué)建模方面的教輔,參加了數(shù)學(xué)系組織的數(shù)學(xué)建模培訓(xùn),經(jīng)過短時間高效率的訓(xùn)練,我系同學(xué)胸有成竹的參加了此次競賽并取得了如此優(yōu)異的成績!

參賽同學(xué)能夠取得如此優(yōu)異的成績不僅離不開個人的努力,更是與團隊的合作息息相關(guān),此次競賽是以小組形式參加,在整整三天的做題過程中,大家沒有因為個人意見發(fā)生任何的爭執(zhí),而是互相商量討論,認真思考作答。

我院系領(lǐng)導(dǎo)重視,各部門積極配合,為活動的順利進行提供有力保障。

①我院把組織數(shù)模競賽作為一項重要的教學(xué)活動納入了校園科技文化節(jié)的日程中,由數(shù)學(xué)系主管承辦,負責(zé)報名和競賽組織,選派業(yè)務(wù)精良、經(jīng)驗豐富的教師組成數(shù)學(xué)建模授課和指導(dǎo)教師隊伍進行數(shù)學(xué)建模授課和培訓(xùn)。

②各系分團委書記針對建模競賽進行了開會研討、協(xié)調(diào)以保證大賽能夠順利進行。任主任、狄書記和左老師親自動員參賽選手,為了賽出好成績,想方設(shè)法改善賽場條件,做好后勤保障工作。不僅在比賽三天時間里為參賽選手提供系辦公電腦,還請王新年老師為我系做了一次關(guān)于數(shù)學(xué)建模的一次簡要培訓(xùn)。

辛勤的耕耘,愛心的培育,終于獲得了豐收的快樂。這里,我們要感謝我系各級領(lǐng)導(dǎo)對數(shù)學(xué)建模競賽的支持和幫助,也感謝刻苦好學(xué),頑強拼搏的學(xué)生,是他們?yōu)槲蚁祫?chuàng)造了輝煌,是我們一起努力,共同奮戰(zhàn),才能取得優(yōu)異的成績。

學(xué)習(xí)部

20XX-5-30

數(shù)學(xué)建模成果總結(jié)模板范文第七篇系別

班級

姓名

學(xué)號

教師時間

認識學(xué)習(xí)總結(jié)

數(shù)學(xué)建模隨著人類的進步,科技的發(fā)展和社會的日趨數(shù)字化,應(yīng)用領(lǐng)域越來越廣泛,人們身邊的數(shù)學(xué)內(nèi)容越來越豐富。強調(diào)數(shù)學(xué)應(yīng)用及培養(yǎng)應(yīng)用數(shù)學(xué)意識對推動素質(zhì)教育的實施意義十分巨大。數(shù)學(xué)建模在數(shù)學(xué)教育中的地位被提到了新的高度,通過數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題,提高學(xué)生的綜合素質(zhì)。

一、數(shù)學(xué)應(yīng)用題的特點

我們常把來源于客觀世界的實際,具有實際意義或?qū)嶋H背景,要通過數(shù)學(xué)建模的方法將問題轉(zhuǎn)化為數(shù)學(xué)形式表示,從而獲得解決的一類數(shù)學(xué)問題叫做數(shù)學(xué)應(yīng)用題。數(shù)學(xué)應(yīng)用題具有如下特點:

第二、數(shù)學(xué)應(yīng)用題的求解需要采用數(shù)學(xué)建模的方法,使所求問題數(shù)學(xué)化,即將問題轉(zhuǎn)化成數(shù)學(xué)形式來表示后再求解。

第三、數(shù)學(xué)應(yīng)用題涉及的知識點多。是對綜合運用數(shù)學(xué)知識和方法解決實際問題能力的檢驗,考查的是學(xué)生的綜合能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關(guān),很難將問題正確解答。

第四、數(shù)學(xué)應(yīng)用題的命題沒有固定的模式或類別。往往是一種新穎的實際背景,難于進行題型模式訓(xùn)練,用“題海戰(zhàn)術(shù)”無法解決變化多端的實際問題。必須依靠真實的能力來解題,對綜合能力的考查更具真實、有效性。因此它具有廣闊的發(fā)展空間和潛力。

二、數(shù)學(xué)應(yīng)用題如何建模

建立數(shù)學(xué)模型是解數(shù)學(xué)應(yīng)用題的關(guān)鍵,如何建立數(shù)學(xué)模型可分為以下幾個層次:

第一層次:直接建模。

根據(jù)題設(shè)條件,套用現(xiàn)成的數(shù)學(xué)公式、定理等數(shù)學(xué)模型。

第二層次:直接建模。可利用現(xiàn)成的數(shù)學(xué)模型,但必須概括這個數(shù)學(xué)模型,對應(yīng)用題進行分析,然后確定解題所需要的具體數(shù)學(xué)模型或數(shù)學(xué)模型中所需數(shù)學(xué)量需進一步求出,然后才能使用現(xiàn)有數(shù)學(xué)模型。

第三層次:多重建模。對復(fù)雜的關(guān)系進行提煉加工,忽略次要因素,建立若干個數(shù)學(xué)模型方能解決問題。

第四層次:假設(shè)建模。要進行分析、加工和作出假設(shè),然后才能建立數(shù)學(xué)模型。如研究十字路口車流量問題,假設(shè)車流平穩(wěn),沒有突發(fā)事件等才能建模。

三、建立數(shù)學(xué)模型應(yīng)具備的能力

從實際問題中建立數(shù)學(xué)模型,解決數(shù)學(xué)問題從而解決實際問題,這一數(shù)學(xué)全過程的教學(xué)關(guān)鍵是建立數(shù)學(xué)模型,數(shù)學(xué)建模能力的強弱,直接關(guān)系到數(shù)學(xué)應(yīng)用題的解題質(zhì)量,同時也體現(xiàn)一個學(xué)生的綜合能力。

3.1提高分析、理解、閱讀能力。

閱讀理解能力是數(shù)學(xué)建模的前提,數(shù)學(xué)應(yīng)用題一般都創(chuàng)設(shè)一個新的背景,也針對問題本身使用一些專門術(shù)語,并給出即時定義。如高考題第22題給出冷軋鋼帶的過程敘述,給出了“減薄率”這一專門術(shù)語,并給出了即時定義,能否深刻理解,反映了自身綜合素質(zhì),這種理解能力直接影響數(shù)學(xué)建模質(zhì)量。

3.2強化將文字語言敘述轉(zhuǎn)譯成數(shù)學(xué)符號語言的能力。

將數(shù)學(xué)應(yīng)用題中所有表示數(shù)量關(guān)系的文字、圖象語言翻譯成數(shù)學(xué)符號語言即數(shù)、式子、方程、不等式、函數(shù)等,這種譯釋能力是數(shù)學(xué)建成模的基礎(chǔ)性工作。例如:一種產(chǎn)品原來的成本為a元,在今后幾年內(nèi),計劃使成本平均每一年比上一年降低p%,經(jīng)過五年后的成本為多少

將題中給出的文字翻譯成符號語言,成本y=a(1-p%)5

3.3增強選擇數(shù)學(xué)模型的能力。

選擇數(shù)學(xué)模型是數(shù)學(xué)能力的反映。數(shù)學(xué)模型的建立有多種方法,怎樣選擇一個最佳的模型,體現(xiàn)數(shù)學(xué)能力的強弱。建立數(shù)學(xué)模型主要涉及到方程、函數(shù)、不等式、數(shù)列通項公式、求和公式、曲線方程等類型。結(jié)合教學(xué)內(nèi)容,以函數(shù)建模為例,以下實際問題所選擇的數(shù)學(xué)模型列表:

函數(shù)建模類型實際問題

一次函數(shù)成本、利潤、銷售收入等

二次函數(shù)優(yōu)化問題、用料最省問題、造價最低、利潤最大等

冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)細胞分裂、生物繁殖等

三角函數(shù)測量、交流量、力學(xué)問題等。

3.4加強數(shù)學(xué)運算能力。

數(shù)學(xué)應(yīng)用題一般運算量較大、較復(fù)雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數(shù)學(xué)運算推理能力是使數(shù)學(xué)建模正確求解的關(guān)鍵所在,忽視運算能力,特別是計算能力的培養(yǎng),只重視推理過程,不重視計算過程的做法是不可取的。

數(shù)學(xué)模型是數(shù)學(xué)知識與數(shù)學(xué)應(yīng)用的橋梁,研究和學(xué)習(xí)數(shù)學(xué)模型,能幫助學(xué)生探索數(shù)學(xué)的應(yīng)用,產(chǎn)生對數(shù)學(xué)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生的創(chuàng)新意識和實踐能力,加強數(shù)學(xué)建模教學(xué)與學(xué)習(xí)對學(xué)生的智力開發(fā)具有深遠的意義,現(xiàn)就如何加強高中數(shù)學(xué)建模教學(xué)談幾點體會。

一.要重視各章前問題的教學(xué),使學(xué)生明白建立數(shù)學(xué)模型的實際意義。

教材的每一章都由一個有關(guān)的實際問題引入,可直接告訴學(xué)生,學(xué)了本章的教學(xué)內(nèi)容及方法后,這個實際問題就能用數(shù)學(xué)模型得到解決,這樣,學(xué)生就會產(chǎn)生創(chuàng)新意識,對新數(shù)學(xué)模型的渴求,實踐意識,學(xué)完要在實踐中試一試。

如新教材“三角函數(shù)”章前提出:有一塊以O(shè)點為圓心的半圓形空地,要在這塊空地上劃出一個內(nèi)接矩形ABCD辟為綠冊,使其冊邊AD落在半圓的直徑上,另兩點BC落在半圓的圓周上,已知半圓的半徑長為a,如何選擇關(guān)于點O對稱的點A、D的位置,可以使矩形面積最大?

這是培養(yǎng)創(chuàng)新意識及實踐能力的好時機要注意引導(dǎo),對所考察的實際問題進行抽象分析,建立相應(yīng)的數(shù)學(xué)模型,并通過新舊兩種思路方法,提出新知識,激發(fā)學(xué)生的知欲,如不可挫傷學(xué)生的積極性,失去“亮點”。

這樣通過章前問題教學(xué),學(xué)生明白了數(shù)學(xué)就是學(xué)習(xí),研究和應(yīng)用數(shù)學(xué)模型,同時培養(yǎng)學(xué)生追求新方法的意識及參與實踐的意識。因此,要重視章前問題的教學(xué),還可據(jù)市場經(jīng)濟的建設(shè)與發(fā)展的需要及學(xué)生實踐活動中發(fā)現(xiàn)的問題,補充一些實例,強化這方面的教學(xué),使學(xué)生在日常生活及學(xué)習(xí)中重視數(shù)學(xué),培養(yǎng)學(xué)生數(shù)學(xué)建模意識。

二.通過幾何、三角形測量問題和列方程解應(yīng)用題的教學(xué)滲透數(shù)學(xué)建模的思想與思維過程。

學(xué)習(xí)幾何、三角的測量問題,使學(xué)生多方面全方位地感受數(shù)學(xué)建模思想,讓學(xué)生認識更多現(xiàn)在數(shù)學(xué)模型,鞏固數(shù)學(xué)建模思維過程、教學(xué)中對學(xué)生展示建模的如下過程:

現(xiàn)實原型問題

數(shù)學(xué)模型

數(shù)學(xué)抽象

簡化原則

演算推理

現(xiàn)實原型問題的解

數(shù)學(xué)模型的解

反映性原則

返回解釋

列方程解應(yīng)用題體現(xiàn)了在數(shù)學(xué)建模思維過程,要據(jù)所掌握的信息和背景材料,對問題加以變形,使其簡單化,以利于解答的思想。且解題過程中重要的步驟是據(jù)題意更出方程,從而使學(xué)生明白,數(shù)學(xué)建模過程的重點及難點就是據(jù)實際問題特點,通過觀察、類比、歸納、分析、概括等基本思想,聯(lián)想現(xiàn)成的數(shù)學(xué)模型或變換問題構(gòu)造新的數(shù)學(xué)模型來解決問題。如利息(復(fù)利)的數(shù)列模型、利潤計算的方程模型決策問題的函數(shù)模型以及不等式模型等。

三.結(jié)合各章研究性課題的學(xué)習(xí),培養(yǎng)學(xué)生建立數(shù)學(xué)模型的能力,拓展數(shù)學(xué)建模形式的多樣性式與活潑性。

高中新大綱要求每學(xué)期至少安排一個研究性課題,就是為了培養(yǎng)學(xué)生的數(shù)學(xué)建模能力,如“數(shù)列”章中的“分期付款問題”、“平面向是章中向量在物理中的應(yīng)用”等,同時,還可設(shè)計類似利潤調(diào)查、洽談、采購、銷售等問題。設(shè)計了如下研究性問題。

例1根據(jù)下表給出的數(shù)據(jù)資料,確定該國人口增長規(guī)律,預(yù)測該國的人口數(shù)。

時間(年份)191019201930194019501960197019801990

人中數(shù)(百萬)3950637692106123132145

分析:這是一個確定人口增長模型的問題,為使問題簡化,應(yīng)作如下假設(shè):

(1)該國的政治、經(jīng)濟、社會環(huán)境穩(wěn)定;(2)該國的人口增長數(shù)由人口的生育,死亡引起;(3)人口數(shù)量化是連續(xù)的?;谏鲜黾僭O(shè),我們認為人口數(shù)量是時間函數(shù)。建模思路是根據(jù)給出的數(shù)據(jù)資料繪出散點圖,然后尋找一條直線或曲線,使它們盡可能與這些散點吻合,該直線或曲線就被認為近似地描述了該國人口增長規(guī)律,從而進一步作出預(yù)測。

通過上題的研究,既復(fù)習(xí)鞏固了函數(shù)知識更培養(yǎng)了學(xué)生的數(shù)學(xué)建模能力和實踐能力及創(chuàng)新意識。在日常教學(xué)中注意訓(xùn)練學(xué)生用數(shù)學(xué)模型來解決現(xiàn)實生活問題;培養(yǎng)學(xué)生做生活的有心人及生活中“數(shù)”意識和觀察實踐能力,如記住一些常用及常見的數(shù)據(jù),如:人行車、自行車的速度,自己的身高、體重等。利用學(xué)校條件,組織學(xué)生到操場進行實習(xí)活動,活動一結(jié)束,就回課堂把實際問題化成相應(yīng)的數(shù)學(xué)模型來解決。如:推鉛球的角度與距離關(guān)系;全班同學(xué)手拉手圍成矩形圈,怎樣圍使圍成的面積最大等,用磚塊搭成多米諾牌骨等。

四、培養(yǎng)學(xué)生的其他能力,完善數(shù)學(xué)建模思想。

由于數(shù)學(xué)模型這一思想方法幾乎貫穿于整個中小學(xué)數(shù)學(xué)學(xué)習(xí)過程之中,小學(xué)解算術(shù)運用題中學(xué)建立函數(shù)表達式及解析幾何里的軌跡方程等都孕育著數(shù)學(xué)模型的思想方法,熟練掌握和運用這種方法,是培養(yǎng)學(xué)生運用數(shù)學(xué)分析問題、解決問題能力的關(guān)鍵,我認為這就要求培養(yǎng)學(xué)生以下幾點能力,才能更好的完善數(shù)學(xué)建模思想:

(1)理解實際問題的能力;

(2)洞察能力,即關(guān)于抓住系統(tǒng)要點的能力;

(3)抽象分析問題的能力;

(4)“翻譯”能力,即把經(jīng)過一生抽象、簡化的實際問題用數(shù)學(xué)的語文符號表達出來,形成數(shù)學(xué)模型的能力和對應(yīng)用數(shù)學(xué)方法進行推演或計算得到注結(jié)果能自然語言表達出來的能力;

(5)運用數(shù)學(xué)知識的能力;

(6)通過實際加以檢驗的能力。

只有各方面能力加強了,才能對一些知識觸類旁通,舉一反三,化繁為簡,如下例就要用到各種能力,才能順利解出。

數(shù)學(xué)建模隨著人類的進步,科技的發(fā)展和社會的日趨數(shù)字化,應(yīng)用領(lǐng)域越來越廣泛,人們身邊的數(shù)學(xué)內(nèi)容越來越豐富。強調(diào)數(shù)學(xué)應(yīng)用及培養(yǎng)應(yīng)用數(shù)學(xué)意識對推動素質(zhì)教育的實施意義十分巨大。數(shù)學(xué)建模在數(shù)學(xué)教育中的地位被提到了新的高度,通過數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題,提高學(xué)生的綜合素質(zhì)。

數(shù)學(xué)建模成果總結(jié)模板范文第八篇數(shù)學(xué)建模協(xié)會征文比賽活動策劃書

一、活動名稱:

校園數(shù)學(xué)建模征文-------“我心中的數(shù)學(xué)建?!?/p>

二、活動口號:“展現(xiàn)數(shù)學(xué)之美,盡顯理性的魅力”

三、活動對象:全院所有同學(xué)。

四、活動時間:xx年10月10-----xx年11月15日

五、活動地點:西安文理學(xué)院數(shù)學(xué)建模協(xié)會

六、活動目的:

通過“我心中的數(shù)學(xué)建?!闭魑幕顒?,向全校各個院系的同學(xué)宣傳數(shù)學(xué)建模,讓同學(xué)們對數(shù)學(xué)建模有一個基本的了解。借此吸引有興趣的同學(xué)來參加數(shù)學(xué)建模競賽,調(diào)動同學(xué)們對數(shù)學(xué)知識的積極性及挑戰(zhàn)思維的極限,培養(yǎng)大學(xué)生運用數(shù)學(xué)理論,管理理論,經(jīng)濟學(xué)等有關(guān)理論和方法、利用文獻、計算機等工具分析和解決實際問題的能力,培養(yǎng)學(xué)生的創(chuàng)新思維和合作精神,擴大學(xué)生競賽受益面。真正的把數(shù)學(xué)建模大賽推廣到全校學(xué)生中去!

七、活動意義:

通過這次征文大賽,使全院同學(xué)對數(shù)學(xué)建模有更深的了解,使更多的同學(xué)喜歡上建模并參家建模。在建模中培養(yǎng)同學(xué)們的創(chuàng)新精神和綜合運用各種知識解決實際問題的能力,增強了同學(xué)們學(xué)習(xí)的'主動性。通過參加建模使同學(xué)們能夠開動腦筋、拓寬思路,充分發(fā)揮自己的想象力、洞察力和創(chuàng)造力,激發(fā)同學(xué)們的學(xué)習(xí)興趣、培養(yǎng)良好學(xué)習(xí)習(xí)慣。而且數(shù)學(xué)建模這項活動也培養(yǎng)了同學(xué)們團結(jié)合作精神和誠信意識,有益于把同學(xué)們培養(yǎng)成為和諧社會中合格、優(yōu)秀的一員,并且貢獻自己的力量。這種團隊精神與協(xié)調(diào)能力在同學(xué)們畢業(yè)后的工作中,以及對一生的發(fā)展都是非常必要的。

八、活動安排:

①全院同學(xué)于11月01日前將自己的參賽稿交與院數(shù)學(xué)建模協(xié)會。

②數(shù)學(xué)建模協(xié)會組織部于11月02日統(tǒng)計參賽稿件并交與數(shù)學(xué)建模協(xié)會辦公室。

③數(shù)學(xué)建模協(xié)會于11月10日前對稿件審批并評選出優(yōu)秀文章,將優(yōu)秀學(xué)生名單教育組織

④組織部負責(zé)策劃對優(yōu)秀學(xué)生的獎勵并將優(yōu)秀學(xué)生名單全校公布。

⑤數(shù)學(xué)建模協(xié)會于11月15日前舉辦“關(guān)于對‘我心中的數(shù)學(xué)建?!魑幕顒又蝎@獎學(xué)生的獎勵”?!揪唧w時間另行通知】

九、活動獎項的設(shè)置:

一等獎<1名>50元+證書

二等獎<2名>30元+證書

三等獎<3名>20元+證書

優(yōu)秀獎證書若干>

十、活動經(jīng)費:總計170元整

十一、主辦方:西安文理學(xué)院數(shù)學(xué)建模協(xié)會

策劃書:數(shù)學(xué)建模協(xié)會

xx年9月2日

數(shù)學(xué)建模成果總結(jié)模板范文第九篇剛參加工作那陣子就接觸到“建?!边@個概念,也曾對之有過關(guān)注和嘗試,但終因功力不濟,未能持之以恒給力研究,也就一陣煙云飄過了一下罷了。

學(xué)校的講座再次激起了我們對這個曾經(jīng)的相識思考的熱情。

同樣一個名詞,但在新的時代背景下許校賦予了其更多新的內(nèi)涵。

首先是對“建?!钡睦斫獠町?。那時更多的是一種短視或者說應(yīng)試背景下的行為,“建?!钡睦斫饩褪墙o學(xué)生一個固定的模式的東西,通過教學(xué)行為讓學(xué)生接受而成為其解決問題的一種工具;而許校的“建?!备嗟氖且环N動態(tài)的或者說是一種有型而又不可僵化定型的東西,應(yīng)該是可以助力學(xué)生發(fā)展最終可以成為學(xué)生數(shù)學(xué)素養(yǎng)的一部分。

其次,對于如何建模我們可以看到更多不同。過去更多的是一種對數(shù)學(xué)模型簡單重復(fù)的強化行為,顯得單調(diào)而生硬;而許校的“建?!眲t更多的強調(diào)不同層面上引導(dǎo)學(xué)生通過“悟”、“辨”、“用”等環(huán)節(jié),讓學(xué)生立體式全方位的理解模型、建立模型,從而避免了過去那種“死?!倍鴮W(xué)生“模死”的現(xiàn)象。

學(xué)校的“?!?,強調(diào)應(yīng)該是一個利于學(xué)生可發(fā)展的模,可以進入到無意識和骨子里,成為學(xué)生真正的數(shù)學(xué)素養(yǎng),最終能夠跳出模,從而達到模而不模的去形式化境界。

數(shù)學(xué)建模成果總結(jié)模板范文第十篇一、在高等數(shù)學(xué)教學(xué)中運用數(shù)學(xué)建模思想的重要性

(1)將教材中的數(shù)學(xué)知識運用現(xiàn)實生活中的對象進行還原,讓學(xué)生樹立數(shù)學(xué)知識來源于現(xiàn)實生活的思想觀念。

(2)數(shù)學(xué)建模思想要求學(xué)生能夠通過運用相應(yīng)的數(shù)學(xué)工具和數(shù)學(xué)語言,對現(xiàn)實生活中的特定對象的信息、數(shù)據(jù)或者現(xiàn)象進行簡化,對抽象的數(shù)學(xué)對象進行翻譯和歸納,將所求解的數(shù)學(xué)問題中的數(shù)量關(guān)系運用數(shù)學(xué)關(guān)系式、數(shù)學(xué)圖形或者數(shù)學(xué)表格等形式進行表達,這種方式有利于培養(yǎng)、鍛煉學(xué)生的數(shù)學(xué)表達能力。

(3)在運用數(shù)學(xué)建模思想獲得實際的答案后,需要運用現(xiàn)實生活對象的相關(guān)信息對其進行檢驗,對計算結(jié)果的準(zhǔn)確性進行檢驗和確定。該流程能夠培養(yǎng)學(xué)生運用合理的數(shù)學(xué)方法對數(shù)學(xué)問題進行主動性、客觀性以及辯證性的分析,最后得到最有效的解決問題的方法。

二、高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模能力的培養(yǎng)策略

1.教師要具備數(shù)學(xué)建模思想意識

在對高等數(shù)學(xué)進行教學(xué)的過程中,培養(yǎng)學(xué)生運用數(shù)學(xué)建模思想,首先教師要具備足夠的數(shù)學(xué)建模意識。教師在進行高等數(shù)學(xué)教學(xué)之前,首先,要對所講數(shù)學(xué)內(nèi)容的相關(guān)實例進行查找,有意識的實現(xiàn)高等數(shù)學(xué)內(nèi)容和各個不同領(lǐng)域之間的聯(lián)系;其次,教師要實現(xiàn)高等數(shù)學(xué)教學(xué)內(nèi)容與教學(xué)要求的轉(zhuǎn)變,及時的更新自身的教學(xué)觀念和教學(xué)思想。例如,教師細心發(fā)現(xiàn)現(xiàn)實生活中的小事,然后運用這些小事建造相應(yīng)的數(shù)學(xué)模型,這樣不僅有利于營造活躍的課堂環(huán)境,而且還有利于激發(fā)學(xué)生的學(xué)習(xí)興趣。

2.實現(xiàn)數(shù)學(xué)建模思想和高等數(shù)學(xué)教材的互相結(jié)合

3.理清高等數(shù)學(xué)名詞的概念

高等數(shù)學(xué)中的數(shù)學(xué)概念是根據(jù)實際需要出現(xiàn)的,所以在數(shù)學(xué)的教學(xué)中,教師要引起從實際問題中提取數(shù)學(xué)概念的整個過程,對學(xué)生應(yīng)用數(shù)學(xué)的興趣進行培養(yǎng)。例如在高等數(shù)學(xué)

教材中,導(dǎo)數(shù)和定積分是其中的比較重要的概念,因此,教師在進行教學(xué)時,要引導(dǎo)學(xué)生理清這兩個的概念。比如導(dǎo)數(shù)概念是由幾何曲線中的切線斜率引導(dǎo)出來的,定積分的概念是由局部取近似值引出的,將常量轉(zhuǎn)變?yōu)樽兞俊?/p>

4.加強數(shù)學(xué)應(yīng)用問題的培養(yǎng)

高等數(shù)學(xué)中,主要有以下幾種應(yīng)用問題:

(1)最值問題

在高等數(shù)學(xué)教材中,最值問題是導(dǎo)數(shù)應(yīng)用中最重要的問題。教師在教學(xué)過程中通過對最值問題的解題步驟進行歸納,能夠有效地將數(shù)學(xué)建模的基本思想進行反映。因此,在對這部分內(nèi)容進行教學(xué)時,要增加例題,加大學(xué)生的練習(xí),開拓學(xué)生的思維,讓學(xué)生熟練掌握最值問題的解決辦法。

(2)微分方程

在微分方程的教學(xué)中運用數(shù)學(xué)建模思想,能夠有效地解決實際問題。微分方程所構(gòu)建的數(shù)學(xué)模型不具有通用的規(guī)則。首先,要確定方程中的變量,對變量和變化率、微元之間的關(guān)系進行分析,然后運用相關(guān)的物理理論、化學(xué)理論或者工程學(xué)理論對其進行實驗,運用所得出的定理、規(guī)律來構(gòu)建微分方程;其次,對其進行求解和驗證結(jié)果。微分方程的概念主要從實際引入,堅持由淺入深的原則,來對現(xiàn)實問題進行解決。例如,在對學(xué)生講解外有引力定律時,讓學(xué)生對萬有引力的提出、猜想進行探究,了解到在其發(fā)展的整個過程中,數(shù)學(xué)發(fā)揮著十分重要的作用。

(3)定積分

微元法思想用途比較廣泛,其主要以定積分概念為基礎(chǔ),在數(shù)學(xué)中滲入定積分概念,讓學(xué)生對定積分概念的意義進行分析和了解,這樣有利于在對實際問題進行解決時,樹立“欲積先分”意識,意識到運用定積分是解決微元實際問題的重要方法。教師在布置作業(yè)題時,要增加該問題的實例。

三、結(jié)語

總之,在高等數(shù)學(xué)中對學(xué)生的數(shù)學(xué)建模能力進行培養(yǎng),讓學(xué)生在解題的過程中運用數(shù)學(xué)建模思想和數(shù)學(xué)建模方法,能夠有效地激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的分析、解決問題的能力以及提高學(xué)生數(shù)學(xué)知識的運用能力。

數(shù)學(xué)建模成果總結(jié)模板范文第十一篇摘要:

將數(shù)學(xué)建模思想融入高等數(shù)學(xué)的教學(xué)中來,是目前大學(xué)數(shù)學(xué)教育的重要教學(xué)方式。建模思想的有效應(yīng)用,不僅顯著提高了學(xué)生應(yīng)用數(shù)學(xué)模式解決實際問題的能力,還在培養(yǎng)大學(xué)生發(fā)散思維能力和綜合素質(zhì)方面起到重要作用。本文試從當(dāng)前高等數(shù)學(xué)教學(xué)現(xiàn)狀著手,分析在高等數(shù)學(xué)中融入建模思想的重要性,并從教學(xué)實踐中給出相應(yīng)的教學(xué)方法,以期能給同行教師們一些幫助。

關(guān)鍵詞:

數(shù)學(xué)建模;高等數(shù)學(xué);教學(xué)研究

一、引言

建模思想使高等數(shù)學(xué)教育的基礎(chǔ)與本質(zhì)。從目前情況來看,將數(shù)學(xué)建模思想融入高等教學(xué)中的趨勢越來越明顯。但是在實際的教學(xué)過程中,大部分高校的數(shù)學(xué)教育仍處在傳統(tǒng)的理論知識簡單傳授階段。其教學(xué)成果與社會實踐還是有脫節(jié)的現(xiàn)象存在,難以讓學(xué)生學(xué)以致用,感受到應(yīng)用數(shù)學(xué)在現(xiàn)實生活中的魅力,這種教學(xué)方式需要亟待改善。

二、高等數(shù)學(xué)教學(xué)現(xiàn)狀

高等數(shù)學(xué)是現(xiàn)在大學(xué)數(shù)學(xué)教育中的基礎(chǔ)課程,也是一門必修的課程。他能為其他理工科專業(yè)的學(xué)生提供很多種解題方式與解題思路,是很多專業(yè),如自動化工程、機械工程、計算機、電氣化等必不可少的基礎(chǔ)課程。同時,現(xiàn)實生活中也有很多方面都涉及高數(shù)的運算,如,銀行理財基金的使用問題、彩票的概率計算問題等,從這些方面都可以看出人們不能僅僅把高數(shù)看成是一門學(xué)科而已,它還與日常生活各個方面有重要的聯(lián)系。但現(xiàn)在很多學(xué)校仍以應(yīng)試教育為主,采取填鴨式教學(xué)方式,加上高數(shù)的教材并沒有與時俱進,將其與生活的關(guān)系融入教材內(nèi),使學(xué)生無法意識到高數(shù)的重要性以及高數(shù)在日常生活中的魅力,因此產(chǎn)生排斥甚至對抗的心理,只是在臨考前突擊而已。因此,對高數(shù)進行教學(xué)改革是十分有必要的,而且怎么改,怎么讓學(xué)生發(fā)現(xiàn)高數(shù)的魅力,并積極主動學(xué)習(xí)高數(shù)也是作為教師所面臨的一個重大問題。

三、將數(shù)學(xué)建模思想融入高等數(shù)學(xué)的重要性

第一,能夠激發(fā)學(xué)生學(xué)習(xí)高數(shù)的興趣。建模思想實際上是使用數(shù)學(xué)語言來對生活中的實際現(xiàn)象進行描述的過程。把建模思想應(yīng)用到高等數(shù)學(xué)的學(xué)習(xí)中,能夠讓學(xué)生們在日常生活中理解數(shù)學(xué)的實際應(yīng)用狀況與解決日常生活問題的方便性,讓學(xué)生們了解到高數(shù)并不只是一門課程,而是整個日常生活的基礎(chǔ)。例如,在講解微分方程時,可以引入一些歷史上的一些著名問題,如以Vanmeegren偽造名畫案為代表的贗品鑒定問題、預(yù)報人口增長的Malthus模型與Logistic模型等。這樣,才能激發(fā)出學(xué)生對高等數(shù)學(xué)的興趣,并積極投入高等數(shù)學(xué)的學(xué)習(xí)中來。

第二,能夠提高學(xué)生的數(shù)學(xué)素質(zhì)。社會的高速發(fā)展不斷要求學(xué)生向更全面、更高素質(zhì)的方向發(fā)展。這就要求學(xué)生不僅要懂得專業(yè)知識,還要能夠?qū)I(yè)知識運用到實際生活中,擁有解決問題的頭腦和實際操作的技能。這些其實都可以通過建模思想在高等數(shù)學(xué)課堂中實現(xiàn)。高等數(shù)學(xué)的包容性、邏輯性都很強。將建模思想融入高等數(shù)學(xué)的教學(xué)中,既能提高學(xué)生的數(shù)學(xué)素質(zhì),還能鍛煉學(xué)生綜合分析問題,解決問題的能力。通過理論與生活實踐相結(jié)合,達到社會發(fā)展的要求,提高自身的社會競爭力。

第三,能夠培養(yǎng)學(xué)生的綜合創(chuàng)新能力?!叭f眾創(chuàng)新”不僅僅是一個口號,而應(yīng)該是現(xiàn)代大學(xué)生應(yīng)該具備的一種能力。將數(shù)學(xué)建模思想融入高等數(shù)學(xué)教學(xué)中,能讓大學(xué)生從實際生活出發(fā),多方位、多角度考慮問題,提高學(xué)生的創(chuàng)新能力。學(xué)生的潛力是可以在多次的建模活動中挖掘出來的。因此教師應(yīng)多組織建?;顒?,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論