銅仁市重點中學2024屆中考五模數(shù)學試題含解析_第1頁
銅仁市重點中學2024屆中考五模數(shù)學試題含解析_第2頁
銅仁市重點中學2024屆中考五模數(shù)學試題含解析_第3頁
銅仁市重點中學2024屆中考五模數(shù)學試題含解析_第4頁
銅仁市重點中學2024屆中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

銅仁市重點中學2024屆中考五模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1252.如圖1,點P從△ABC的頂點B出發(fā),沿B→C→A勻速運動到點A,圖2是點P運動時,線段BP的長度y隨時間x變化的關系圖象,其中M為曲線部分的最低點,則△ABC的面積是()A.10 B.12 C.20 D.243.如圖,將一副三角板如此擺放,使得BO和CD平行,則∠AOD的度數(shù)為()A.10° B.15° C.20° D.25°4.根據(jù)文化和旅游部發(fā)布的《“五一”假日旅游指南》,今年“五一”期間居民出游意愿達36.6%,預計“五一”期間全固有望接待國內游客1.49億人次,實現(xiàn)國內旅游收入880億元.將880億用科學記數(shù)法表示應為()A.8×107 B.880×108 C.8.8×109 D.8.8×10105.已知x1,x2是關于x的方程x2+ax-2b=0的兩個實數(shù)根,且x1+x2=-2,x1·x2=1,則ba的值是()A.14 B.-16.如圖,中,E是BC的中點,設,那么向量用向量表示為()A. B. C. D.7.如圖,在△ABC中,∠C=90°,AD是∠BAC的角平分線,若CD=2,AB=8,則△ABD的面積是()A.6 B.8 C.10 D.128.在一個不透明的口袋里有紅、黃、藍三種顏色的小球,這些球除顏色外都相同,其中有5個紅球,4個藍球.若隨機摸出一個藍球的概率為,則隨機摸出一個黃球的概率為()A. B. C. D.9.已知直線m∥n,將一塊含30°角的直角三角板ABC按如圖方式放置(∠ABC=30°),其中A,B兩點分別落在直線m,n上,若∠1=20°,則∠2的度數(shù)為()A.20° B.30° C.45° D.50°10.下列計算正確的是()A.x2x3=x6 B.(m+3)2=m2+9C.a10÷a5=a5 D.(xy2)3=xy6二、填空題(共7小題,每小題3分,滿分21分)11.計算:2cos60°-+(5-π)°=____________.12.分解因式:x2-9=_▲.13.已知是方程組的解,則3a﹣b的算術平方根是_____.14.某花店有單位為10元、18元、25元三種價格的花卉,如圖是該花店某月三種花卉銷售量情況的扇形統(tǒng)計圖,根據(jù)該統(tǒng)計圖可算得該花店銷售花卉的平均單價為_____元.15.如果拋物線y=(m﹣1)x2的開口向上,那么m的取值范圍是__.16.不等式組的解集為____.17.如圖,在矩形ABCD中,AB=4,AD=6,E是AB邊的中點,F(xiàn)是線段BC邊上的動點,將△EBF沿EF所在直線折疊得到△EB′F,連接B′D,則B′D的最小值是______.三、解答題(共7小題,滿分69分)18.(10分)我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.(1)問題探究:如圖1,△ABC是“等高底”三角形,BC是”等底”,作△ABC關于BC所在直線的對稱圖形得到△A'BC,連結AA′交直線BC于點D.若點B是△AA′C的重心,求的值.(3)應用拓展:如圖3,已知l1∥l1,l1與l1之間的距離為1.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l1上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉45°得到△A'B'C,A′C所在直線交l1于點D.求CD的值.19.(5分)如圖,正方形OABC的面積為9,點O為坐標原點,點A在x軸上,點C上y軸上,點B在反比例函數(shù)y=(k>0,x>0)的圖象上,點E從原點O出發(fā),以每秒1個單位長度的速度向x軸正方向運動,過點E作x的垂線,交反比例函數(shù)y=(k>0,x>0)的圖象于點P,過點P作PF⊥y軸于點F;記矩形OEPF和正方形OABC不重合部分的面積為S,點E的運動時間為t秒.(1)求該反比例函數(shù)的解析式.(2)求S與t的函數(shù)關系式;并求當S=時,對應的t值.(3)在點E的運動過程中,是否存在一個t值,使△FBO為等腰三角形?若有,有幾個,寫出t值.20.(8分)如圖,已知⊙O,請用尺規(guī)做⊙O的內接正四邊形ABCD,(保留作圖痕跡,不寫做法)21.(10分)如圖,已知∠AOB=45°,AB⊥OB,OB=1.(1)利用尺規(guī)作圖:過點M作直線MN∥OB交AB于點N(不寫作法,保留作圖痕跡);(1)若M為AO的中點,求AM的長.22.(10分)如圖,△ABC中,∠C=90°,∠A=30°.用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明);連接BD,求證:BD平分∠CBA.23.(12分)反比例函數(shù)的圖象經過點A(2,3).(1)求這個函數(shù)的解析式;(2)請判斷點B(1,6)是否在這個反比例函數(shù)的圖象上,并說明理由.24.(14分)如圖,在平面直角坐標系中,一次函數(shù)與反比例函數(shù)的圖像交于點和點,且經過點.求反比例函數(shù)和一次函數(shù)的表達式;求當時自變量的取值范圍.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,

又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,

∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,

∴CM=EM=MF=5,EF=10,

由勾股定理可知CE2+CF2=EF2=1.

故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關鍵是首先證明出△ECF為直角三角形.2、B【解析】

根據(jù)圖象可知點P在BC上運動時,此時BP不斷增大,而從C向A運動時,BP先變小后變大,從而可求出BC與AC的長度.【詳解】解:根據(jù)圖象可知點P在BC上運動時,此時BP不斷增大,

由圖象可知:點P從B向C運動時,BP的最大值為5,即BC=5,

由于M是曲線部分的最低點,

∴此時BP最小,即BP⊥AC,BP=4,

∴由勾股定理可知:PC=3,

由于圖象的曲線部分是軸對稱圖形,

∴PA=3,

∴AC=6,

∴△ABC的面積為:×4×6=12.故選:B.【點睛】本題考查動點問題的函數(shù)圖象,解題關鍵是注意結合圖象求出BC與AC的長度,本題屬于中等題型.3、B【解析】

根據(jù)題意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根據(jù)平行線的性質即可解答【詳解】根據(jù)題意可知∠AOB=∠ABO=45°,∠DOC=30°∵BO∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°故選B【點睛】此題考查三角形內角和,平行線的性質,解題關鍵在于利用平行線的性質得到角相等4、D【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】880億=88000000000=8.8×1010,

故選D.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.5、A【解析】

根據(jù)根與系數(shù)的關系和已知x1+x2和x1?x2的值,可求a、b的值,再代入求值即可.【詳解】解:∵x1,x2是關于x的方程x2+ax﹣2b=0的兩實數(shù)根,∴x1+x2=﹣a=﹣2,x1?x2=﹣2b=1,解得a=2,b=-1∴ba=(-12)2=故選A.6、A【解析】

根據(jù),只要求出即可解決問題.【詳解】解:四邊形ABCD是平行四邊形,,,,,,,故選:A.【點睛】本題考查平面向量,解題的關鍵是熟練掌握三角形法則,屬于中考??碱}型.7、B【解析】分析:過點D作DE⊥AB于E,先求出CD的長,再根據(jù)角平分線上的點到角的兩邊的距離相等可得DE=CD=2,然后根據(jù)三角形的面積公式列式計算即可得解.詳解:如圖,過點D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分線,∴DE=CD=2,∴△ABD的面積故選B.點睛:考查角平分線的性質,角平分線上的點到角兩邊的距離相等.8、A【解析】

設黃球有x個,根據(jù)摸出一個球是藍球的概率是,得出黃球的個數(shù),再根據(jù)概率公式即可得出隨機摸出一個黃球的概率.【詳解】解:設袋子中黃球有x個,根據(jù)題意,得:,解得:x=3,即袋中黃球有3個,所以隨機摸出一個黃球的概率為,故選A.【點睛】此題主要考查了概率公式的應用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.得到所求的情況數(shù)是解決本題的關鍵.9、D【解析】

根據(jù)兩直線平行,內錯角相等計算即可.【詳解】因為m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故選D.【點睛】本題主要考查平行線的性質,清楚兩直線平行,內錯角相等是解答本題的關鍵.10、C【解析】

根據(jù)乘方的運算法則、完全平方公式、同底數(shù)冪的除法和積的乘方進行計算即可得到答案.【詳解】x2?x3=x5,故選項A不合題意;(m+3)2=m2+6m+9,故選項B不合題意;a10÷a5=a5,故選項C符合題意;(xy2)3=x3y6,故選項D不合題意.故選:C.【點睛】本題考查乘方的運算法則、完全平方公式、同底數(shù)冪的除法和積的乘方解題的關鍵是掌握乘方的運算法則、完全平方公式、同底數(shù)冪的除法和積的乘方的運算.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】解:原式==1-2+1=1.故答案為1.12、(x+3)(x-3)【解析】

x2-9=(x+3)(x-3),故答案為(x+3)(x-3).13、2.【解析】

靈活運用方程的性質求解即可。【詳解】解:由是方程組的解,可得滿足方程組,由①+②的,3x-y=8,即可3a-b=8,故3a﹣b的算術平方根是,故答案:【點睛】本題主要考查二元一次方程組的性質及其解法。14、17【解析】

根據(jù)餅狀圖求出25元所占比重為20%,再根據(jù)加權平均數(shù)求法即可解題.【詳解】解:1-30%-50%=20%,∴.【點睛】本題考查了加權平均數(shù)的計算方法,屬于簡單題,計算25元所占權比是解題關鍵.15、m>2【解析】試題分析:根據(jù)二次函數(shù)的性質可知,當拋物線開口向上時,二次項系數(shù)m﹣2>2.解:因為拋物線y=(m﹣2)x2的開口向上,所以m﹣2>2,即m>2,故m的取值范圍是m>2.考點:二次函數(shù)的性質.16、x>1【解析】

分別解出兩不等式的解集再求其公共解.【詳解】由①得:x>1

由②得:x>∴不等式組的解集是x>1.【點睛】求不等式的解集須遵循以下原則:同大取較大,同小取較小.小大大小中間找,大大小小解不了.17、1﹣1【解析】

如圖所示點B′在以E為圓心EA為半徑的圓上運動,當D、B′、E共線時時,此時B′D的值最小,根據(jù)勾股定理求出DE,根據(jù)折疊的性質可知B′E=BE=1,即可求出B′D.【詳解】如圖所示點B′在以E為圓心EA為半徑的圓上運動,當D、B′、E共線時時,此時B′D的值最小,根據(jù)折疊的性質,△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB邊的中點,AB=4,∴AE=EB′=1,∵AD=6,∴DE=,∴B′D=1﹣1.【點睛】本題考查了折疊的性質、全等三角形的判定與性質、兩點之間線段最短的綜合運用;確定點B′在何位置時,B′D的值最小是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)△ABC是“等高底”三角形;(1);(3)CD的值為,1,1.【解析】

(1)過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,根據(jù)30°所對的直角邊等于斜邊的一半可得:根據(jù)“等高底”三角形的概念即可判斷.(1)點B是的重心,得到設則根據(jù)勾股定理可得即可求出它們的比值.(3)分兩種情況進行討論:①當時和②當時.【詳解】(1)△ABC是“等高底”三角形;理由:如圖1,過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴∴AD=BC=3,即△ABC是“等高底”三角形;(1)如圖1,∵△ABC是“等高底”三角形,BC是“等底”,∴∵△ABC關于BC所在直線的對稱圖形是,∴∠ADC=90°,∵點B是的重心,∴設則由勾股定理得∴(3)①當時,Ⅰ.如圖3,作AE⊥BC于E,DF⊥AC于F,∵“等高底”△ABC的“等底”為BC,l1∥l1,l1與l1之間的距離為1,.∴∴BE=1,即EC=4,∴∵△ABC繞點C按順時針方向旋轉45°得到△A'B'C,∴∠DCF=45°,設∵l1∥l1,∴∴即∴∴Ⅱ.如圖4,此時△ABC等腰直角三角形,∵△ABC繞點C按順時針方向旋轉45°得到,∴是等腰直角三角形,∴②當時,Ⅰ.如圖5,此時△ABC是等腰直角三角形,∵△ABC繞點C按順時針方向旋轉45°得到△A'B'C,∴∴Ⅱ.如圖6,作于E,則∴∴∴△ABC繞點C按順時針方向旋轉45°,得到時,點A'在直線l1上,∴∥l1,即直線與l1無交點,綜上所述,CD的值為【點睛】屬于新定義問題,考查對與等底高三角形概念的理解,勾股定理,等腰直角三角形的性質等,掌握等底高三角形的性質是解題的關鍵.19、(1)y=(x>0);(2)S與t的函數(shù)關系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當S=時,對應的t值為或6;(3)當t=或或3時,使△FBO為等腰三角形.【解析】

(1)由正方形OABC的面積為9,可得點B的坐標為:(3,3),繼而可求得該反比例函數(shù)的解析式.

(2)由題意得P(t,),然后分別從當點P1在點B的左側時,S=t?(-3)=-3t+9與當點P2在點B的右側時,則S=(t-3)?=9-去分析求解即可求得答案;

(3)分別從OB=BF,OB=OF,OF=BF去分析求解即可求得答案.【詳解】解:(1)∵正方形OABC的面積為9,∴點B的坐標為:(3,3),∵點B在反比例函數(shù)y=(k>0,x>0)的圖象上,∴3=,即k=9,∴該反比例函數(shù)的解析式為:y=y=(x>0);(2)根據(jù)題意得:P(t,),分兩種情況:①當點P1在點B的左側時,S=t?(﹣3)=﹣3t+9(0≤t≤3);若S=,則﹣3t+9=,解得:t=;②當點P2在點B的右側時,則S=(t﹣3)?=9﹣;若S=,則9﹣=,解得:t=6;∴S與t的函數(shù)關系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當S=時,對應的t值為或6;(3)存在.若OB=BF=3,此時CF=BC=3,∴OF=6,∴6=,解得:t=;若OB=OF=3,則3=,解得:t=;若BF=OF,此時點F與C重合,t=3;∴當t=或或3時,使△FBO為等腰三角形.【點睛】此題考查反比例函數(shù)的性質、待定系數(shù)法求函數(shù)的解析式以及等腰三角形的性質.此題難度較大,解題關鍵是注意掌握數(shù)形結合思想、分類討論思想與方程思想的應用.20、見解析【解析】

根據(jù)內接正四邊形的作圖方法畫出圖,保留作圖痕跡即可.【詳解】任作一條直徑,再作該直徑的中垂線,順次連接圓上的四點即可.【點睛】此題重點考察學生對圓內接正四邊形作圖的應用,掌握圓內接正四邊形的作圖方法是解題的關鍵.21、(1)詳見解析;(1).【解析】

(1)以點M為頂點,作∠AMN=∠O即可;(1)由∠AOB=45°,AB⊥OB,可知△AOB為等腰為等腰直角三角形,根據(jù)勾股定理求出OA的長,即可求出AM的值.【詳解】(1)作圖如圖所示;(1)由題知△AOB為等腰Rt△AOB,且OB=1,所以,AO=OB=1又M為OA的中點,所以,AM=1=【點睛】本題考查了尺規(guī)作圖,等腰直角三角形的判定,勾股定理等知識,熟練掌握作一個角等于已知角是解(1)的關鍵,證明△AOB為等腰為等腰直角三角形是解(1)的關鍵.22、(1)作圖見解析;(2)證明見解析.【解析】

(1)分別以A、B為圓心,以大于AB的長度為半徑畫弧,過兩弧的交點作直線,交AC于點D,AB于點E,直線DE就是所要作的AB邊上的中垂線;

(2)根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AD=BD,再根據(jù)等邊對等角的性質求出∠ABD=∠A=30°,然

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論