版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第11講對數(shù)與對數(shù)函數(shù)(精講)題型目錄一覽①對數(shù)式的化簡與求值②對數(shù)函數(shù)的圖像與性質③解對數(shù)方程與不等式④對數(shù)函數(shù)的綜合應用★【文末附錄-對數(shù)運算與對數(shù)函數(shù)思維導圖】一、知識點梳理一、知識點梳理1.對數(shù)式的運算(1)對數(shù)的定義:一般地,如果SKIPIF1<0且SKIPIF1<0,那么數(shù)SKIPIF1<0叫做以SKIPIF1<0為底SKIPIF1<0的對數(shù),記作SKIPIF1<0,讀作以SKIPIF1<0為底SKIPIF1<0的對數(shù),其中SKIPIF1<0叫做對數(shù)的底數(shù),SKIPIF1<0叫做真數(shù).(2)常見對數(shù):①一般對數(shù):以SKIPIF1<0且SKIPIF1<0為底,記為SKIPIF1<0,讀作以SKIPIF1<0為底SKIPIF1<0的對數(shù);②常用對數(shù):以SKIPIF1<0為底,記為SKIPIF1<0;③自然對數(shù):以SKIPIF1<0為底,記為SKIPIF1<0;(3)對數(shù)的性質和運算法則:①SKIPIF1<0;SKIPIF1<0;其中SKIPIF1<0且SKIPIF1<0;②SKIPIF1<0(其中SKIPIF1<0且SKIPIF1<0,SKIPIF1<0);③對數(shù)換底公式:SKIPIF1<0;④SKIPIF1<0;⑤SKIPIF1<0;⑥SKIPIF1<0,SKIPIF1<0;⑦SKIPIF1<0和SKIPIF1<0;⑧SKIPIF1<0;2.對數(shù)函數(shù)的定義及圖像(1)對數(shù)函數(shù)的定義:函數(shù)SKIPIF1<0SKIPIF1<0且SKIPIF1<0叫做對數(shù)函數(shù).對數(shù)函數(shù)的圖象SKIPIF1<0SKIPIF1<0圖象性質定義域:SKIPIF1<0值域:SKIPIF1<0過定點SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上增函數(shù)在SKIPIF1<0上是減函數(shù)當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0【常用結論】在同一坐標系內,當SKIPIF1<0時,隨SKIPIF1<0的增大,對數(shù)函數(shù)的圖象愈靠近SKIPIF1<0軸;當SKIPIF1<0時,對數(shù)函數(shù)的圖象隨SKIPIF1<0的增大而遠離SKIPIF1<0軸.(見下圖)二、題型分類精講二、題型分類精講刷真題明導向刷真題明導向一、單選題1.(2020·山東·統(tǒng)考高考真題)函數(shù)SKIPIF1<0的定義域是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)題意得到SKIPIF1<0,再解不等式組即可.【詳解】由題知:SKIPIF1<0,解得SKIPIF1<0且SKIPIF1<0.所以函數(shù)定義域為SKIPIF1<0.故選:B2.(2022·天津·統(tǒng)考高考真題)化簡SKIPIF1<0的值為(
)A.1 B.2 C.4 D.6【答案】B【分析】根據(jù)對數(shù)的性質可求代數(shù)式的值.【詳解】原式SKIPIF1<0SKIPIF1<0,故選:B3.(2021·天津·統(tǒng)考高考真題)若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】C【分析】由已知表示出SKIPIF1<0,再由換底公式可求.【詳解】SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:C.4.(2021·全國·高考真題)青少年視力是社會普遍關注的問題,視力情況可借助視力表測量.通常用五分記錄法和小數(shù)記錄法記錄視力數(shù)據(jù),五分記錄法的數(shù)據(jù)L和小數(shù)記錄表的數(shù)據(jù)V的滿足SKIPIF1<0.已知某同學視力的五分記錄法的數(shù)據(jù)為4.9,則其視力的小數(shù)記錄法的數(shù)據(jù)為(
)(SKIPIF1<0)A.1.5 B.1.2 C.0.8 D.0.6【答案】C【分析】根據(jù)SKIPIF1<0關系,當SKIPIF1<0時,求出SKIPIF1<0,再用指數(shù)表示SKIPIF1<0,即可求解.【詳解】由SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0.故選:C.5.(2020·全國·統(tǒng)考高考真題)Logistic模型是常用數(shù)學模型之一,可應用于流行病學領域.有學者根據(jù)公布數(shù)據(jù)建立了某地區(qū)新冠肺炎累計確診病例數(shù)I(t)(t的單位:天)的Logistic模型:SKIPIF1<0,其中K為最大確診病例數(shù).當I(SKIPIF1<0)=0.95K時,標志著已初步遏制疫情,則SKIPIF1<0約為(
)(ln19≈3)A.60 B.63 C.66 D.69【答案】C【分析】將SKIPIF1<0代入函數(shù)SKIPIF1<0結合SKIPIF1<0求得SKIPIF1<0即可得解.【詳解】SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,解得SKIPIF1<0.故選:C.【點睛】本題考查對數(shù)的運算,考查指數(shù)與對數(shù)的互化,考查計算能力,屬于中等題.6.(2020·海南·高考真題)已知函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞增,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】首先求出SKIPIF1<0的定義域,然后求出SKIPIF1<0的單調遞增區(qū)間即可.【詳解】由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0所以SKIPIF1<0的定義域為SKIPIF1<0因為SKIPIF1<0在SKIPIF1<0上單調遞增所以SKIPIF1<0在SKIPIF1<0上單調遞增所以SKIPIF1<0,故選:D7.(2021·天津·統(tǒng)考高考真題)函數(shù)SKIPIF1<0的圖像大致為(
)A. B.C. D.【答案】B【分析】由函數(shù)為偶函數(shù)可排除AC,再由當SKIPIF1<0時,SKIPIF1<0,排除D,即可得解.【詳解】設SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,關于原點對稱,又SKIPIF1<0,所以函數(shù)SKIPIF1<0為偶函數(shù),排除AC;當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,排除D.故選:B.8.(2022·北京·統(tǒng)考高考真題)在北京冬奧會上,國家速滑館“冰絲帶”使用高效環(huán)保的二氧化碳跨臨界直冷制冰技術,為實現(xiàn)綠色冬奧作出了貢獻.如圖描述了一定條件下二氧化碳所處的狀態(tài)與T和SKIPIF1<0的關系,其中T表示溫度,單位是K;P表示壓強,單位是SKIPIF1<0.下列結論中正確的是(
)A.當SKIPIF1<0,SKIPIF1<0時,二氧化碳處于液態(tài)B.當SKIPIF1<0,SKIPIF1<0時,二氧化碳處于氣態(tài)C.當SKIPIF1<0,SKIPIF1<0時,二氧化碳處于超臨界狀態(tài)D.當SKIPIF1<0,SKIPIF1<0時,二氧化碳處于超臨界狀態(tài)【答案】D【分析】根據(jù)SKIPIF1<0與SKIPIF1<0的關系圖可得正確的選項.【詳解】當SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,此時二氧化碳處于固態(tài),故A錯誤.當SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,此時二氧化碳處于液態(tài),故B錯誤.當SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0與4非常接近,故此時二氧化碳處于固態(tài),對應的是非超臨界狀態(tài),故C錯誤.當SKIPIF1<0,SKIPIF1<0時,因SKIPIF1<0,故此時二氧化碳處于超臨界狀態(tài),故D正確.故選:D9.(2021·天津·統(tǒng)考高考真題)設SKIPIF1<0,則a,b,c的大小關系為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的性質求出SKIPIF1<0的范圍即可求解.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:D.10.(2022·天津·統(tǒng)考高考真題)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用冪函數(shù)、對數(shù)函數(shù)的單調性結合中間值法可得出SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的大小關系.【詳解】因為SKIPIF1<0,故SKIPIF1<0.故答案為:C.11.(2020·全國·統(tǒng)考高考真題)設SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】分別將SKIPIF1<0,SKIPIF1<0改寫為SKIPIF1<0,SKIPIF1<0,再利用單調性比較即可.【詳解】因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:A.【點晴】本題考查對數(shù)式大小的比較,考查學生轉化與化歸的思想,是一道中檔題.12.(2021·全國·統(tǒng)考高考真題)設SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用對數(shù)的運算和對數(shù)函數(shù)的單調性不難對a,b的大小作出判定,對于a與c,b與c的大小關系,將0.01換成x,分別構造函數(shù)SKIPIF1<0,SKIPIF1<0,利用導數(shù)分析其在0的右側包括0.01的較小范圍內的單調性,結合f(0)=0,g(0)=0即可得出a與c,b與c的大小關系.【詳解】[方法一]:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0;下面比較SKIPIF1<0與SKIPIF1<0的大小關系.記SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0所以當0<x<2時,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調遞增,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0,在x>0時,SKIPIF1<0,所以SKIPIF1<0,即函數(shù)SKIPIF1<0在[0,+∞)上單調遞減,所以SKIPIF1<0,即SKIPIF1<0,即b<c;綜上,SKIPIF1<0,故選:B.[方法二]:令SKIPIF1<0SKIPIF1<0,即函數(shù)SKIPIF1<0在(1,+∞)上單調遞減SKIPIF1<0令SKIPIF1<0SKIPIF1<0,即函數(shù)SKIPIF1<0在(1,3)上單調遞增SKIPIF1<0綜上,SKIPIF1<0,故選:B.【點睛】本題考查比較大小問題,難度較大,關鍵難點是將各個值中的共同的量用變量替換,構造函數(shù),利用導數(shù)研究相應函數(shù)的單調性,進而比較大小,這樣的問題,憑借近似估計計算往往是無法解決的.二、填空題13.(2020·北京·統(tǒng)考高考真題)函數(shù)SKIPIF1<0的定義域是____________.【答案】SKIPIF1<0【分析】根據(jù)分母不為零、真數(shù)大于零列不等式組,解得結果.【詳解】由題意得SKIPIF1<0,SKIPIF1<0故答案為:SKIPIF1<0【點睛】本題考查函數(shù)定義域,考查基本分析求解能力,屬基礎題.14.(2020·山東·統(tǒng)考高考真題)若SKIPIF1<0,則實數(shù)SKIPIF1<0的值是______.【答案】SKIPIF1<0【分析】根據(jù)對數(shù)運算化簡為SKIPIF1<0,求解SKIPIF1<0的值.【詳解】SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0.故答案為:SKIPIF1<0三、雙空題15.(2022·全國·統(tǒng)考高考真題)若SKIPIF1<0是奇函數(shù),則SKIPIF1<0_____,SKIPIF1<0______.【答案】SKIPIF1<0;SKIPIF1<0.【分析】根據(jù)奇函數(shù)的定義即可求出.【詳解】[方法一]:奇函數(shù)定義域的對稱性若SKIPIF1<0,則SKIPIF1<0的定義域為SKIPIF1<0,不關于原點對稱SKIPIF1<0若奇函數(shù)的SKIPIF1<0有意義,則SKIPIF1<0且SKIPIF1<0SKIPIF1<0且SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0為奇函數(shù),定義域關于原點對稱,SKIPIF1<0,解得SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0,故答案為:SKIPIF1<0;SKIPIF1<0.[方法二]:函數(shù)的奇偶性求參SKIPIF1<0SKIPIF1<0SKIPIF1<0函數(shù)SKIPIF1<0為奇函數(shù)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0[方法三]:因為函數(shù)SKIPIF1<0為奇函數(shù),所以其定義域關于原點對稱.由SKIPIF1<0可得,SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,即函數(shù)的定義域為SKIPIF1<0,再由SKIPIF1<0可得,SKIPIF1<0.即SKIPIF1<0,在定義域內滿足SKIPIF1<0,符合題意.故答案為:SKIPIF1<0;SKIPIF1<0.題型一對數(shù)式的化簡與求值策略方法對數(shù)運算的一般思路【典例1】解答下列問題:(1)用SKIPIF1<0表示SKIPIF1<0;(2)已知SKIPIF1<0,且SKIPIF1<0,求M的值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)根據(jù)對數(shù)的運算公式化簡即可;(2)由題意可得SKIPIF1<0,再根據(jù)換底公式可得SKIPIF1<0由SKIPIF1<0,可得SKIPIF1<0,代入計算即可.【詳解】(1)解:因為SKIPIF1<0;(2)解:因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0又因為SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.【題型訓練】一、解答題1.(2023·全國·高三專題練習)計算:(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)根據(jù)對數(shù)的運算法則,逐步計算,即可得出結果;(2)根據(jù)指數(shù)冪的運算法則,以及對數(shù)的運算法則,直接計算,即可得出結果.【詳解】(1)原式SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.
(2)原式SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.2.(2023·全國·高三專題練習)(1)計算SKIPIF1<0;(2)已知SKIPIF1<0,求實數(shù)x的值;(3)若SKIPIF1<0,SKIPIF1<0,用a,b,表示SKIPIF1<0.【答案】(1)7;(2)109;(3)SKIPIF1<0.【解析】(1)利用對數(shù)恒等式和對數(shù)的運算法則計算即可;(2)利用指對互化可得實數(shù)x的值;(3)先求出SKIPIF1<0,再利用換底公式結合對數(shù)的運算法則求得結果.【詳解】(1)原式=SKIPIF1<0;(2)因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以x=109;(3)因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.二、單選題3.(2023秋·河南許昌·高三??计谀┤艉瘮?shù)SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先求得SKIPIF1<0,再代入SKIPIF1<0的解析式即可得答案.【詳解】解:因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:D.4.(2023·新疆烏魯木齊·統(tǒng)考二模)已知SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.9 C.SKIPIF1<0 D.16【答案】C【分析】根據(jù)給定條件,利用對數(shù)運算性質、指數(shù)式與對數(shù)式互化,及指數(shù)運算計算作答.【詳解】因為SKIPIF1<0,則SKIPIF1<0,因此SKIPIF1<0,所以SKIPIF1<0.故選:C5.(2023·新疆·統(tǒng)考二模)人們用分貝(dB)來劃分聲音的等級,聲音的等級SKIPIF1<0(單位:dB)與聲音強度x(單位:SKIPIF1<0)滿足SKIPIF1<0.一般兩人正常交談時,聲音的等級約為60dB,燃放煙花爆竹時聲音的等級約為150dB,那么燃放煙花爆竹時聲音強度約為兩人正常交談時聲音強度的(
)A.SKIPIF1<0倍 B.SKIPIF1<0倍 C.SKIPIF1<0倍 D.SKIPIF1<0倍【答案】C【分析】根據(jù)解析式分別求出對于聲音強度可得.【詳解】分別記正常交談和燃放煙花爆竹時的聲音強度分別為SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0.故選:C三、多選題6.(2023·重慶九龍坡·統(tǒng)考二模)若a,b,c都是正數(shù),且SKIPIF1<0則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【分析】設SKIPIF1<0,得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,再逐項判斷.【詳解】解:設SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,則等號不成立,所以SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,故選:BCD四、填空題7.(2023·上海黃浦·統(tǒng)考二模)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且當SKIPIF1<0時,SKIPIF1<0.若SKIPIF1<0,則實數(shù)a的值為____________.【答案】SKIPIF1<0【分析】根據(jù)給定條件,確定SKIPIF1<0,再借助奇函數(shù)性質及給定值列式計算作答.【詳解】函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且當SKIPIF1<0時,SKIPIF1<0,而SKIPIF1<0,于是SKIPIF1<0,解得SKIPIF1<0,所以實數(shù)a的值為SKIPIF1<0.故答案為:SKIPIF1<08.(2023·全國·東北師大附中校聯(lián)考模擬預測)大氣壓強SKIPIF1<0,它的單位是“帕斯卡”(Pa,SKIPIF1<0),已知大氣壓強SKIPIF1<0隨高度SKIPIF1<0的變化規(guī)律是SKIPIF1<0,其中SKIPIF1<0是海平面大氣壓強,SKIPIF1<0.當?shù)馗呱缴弦惶幋髿鈮簭娛呛F矫嫣幋髿鈮簭姷腟KIPIF1<0,則高山上該處的海拔為___________米.(答案保留整數(shù),參考數(shù)據(jù)SKIPIF1<0)【答案】SKIPIF1<0【分析】根據(jù)題意解方程SKIPIF1<0即可得解.【詳解】由題意可知:SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.題型二對數(shù)函數(shù)的圖像與性質策略方法1.利用對數(shù)函數(shù)的圖象解決的兩類問題及技巧(1)對一些可通過平移、對稱變換作出其圖象的對數(shù)型函數(shù),在求解其單調性(單調區(qū)間)、值域(最值)、零點時,常利用數(shù)形結合思想.(2)一些對數(shù)型方程、不等式問題常轉化為相應的函數(shù)圖象問題,利用數(shù)形結合法求解.2.比較對數(shù)值大小的常見類型及解題方法常見類型解題方法底數(shù)為同一常數(shù)可由對數(shù)函數(shù)的單調性直接進行判斷底數(shù)為同一字母需對底數(shù)進行分類討論底數(shù)不同,真數(shù)相同可以先用換底公式化為同底后,再進行比較底數(shù)與真數(shù)都不同常借助1,0等中間量進行比較【典例1】若對數(shù)SKIPIF1<0有意義,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由對數(shù)式有意義列不等式求SKIPIF1<0的取值范圍.【詳解】由對數(shù)SKIPIF1<0有意義可得SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0,故選:C.【典例2】在同一平面直角坐標系中,函數(shù)SKIPIF1<0,SKIPIF1<0且SKIPIF1<0的圖象可能是(
)A. B.C. D.【答案】A【分析】假設指數(shù)函數(shù)圖象正確,結合對數(shù)函數(shù)單調性和SKIPIF1<0處函數(shù)值的正負可得到正確圖象.【詳解】對于AB,若SKIPIF1<0圖象正確,則SKIPIF1<0,SKIPIF1<0單調遞減,又SKIPIF1<0時,SKIPIF1<0,A正確,B錯誤;對于CD,若SKIPIF1<0圖象正確,則SKIPIF1<0,SKIPIF1<0單調遞增,CD錯誤.故選:A.【典例3】已知直線SKIPIF1<0過函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)的定點T,則SKIPIF1<0的最小值為(
)A.4 B.6 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)SKIPIF1<0求出點SKIPIF1<0,再代入直線方程得到SKIPIF1<0,最后利用基本不等式里“1”的妙用求最值.【詳解】函數(shù)SKIPIF1<0過定點SKIPIF1<0,所以SKIPIF1<0,將SKIPIF1<0代入直線SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時“=”成立.故選:C.【典例4】分別比較下列各組數(shù)的大小:(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(3)SKIPIF1<0與SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【分析】(1)對于同底數(shù)的對數(shù),利用函數(shù)單調性,對于不同底數(shù)的對數(shù),利用中間值法;(2)對數(shù)與指數(shù)之間的比較,利用中間值法;(3)對于真數(shù)相同的對數(shù),利用函數(shù)圖象.【詳解】(1)因為SKIPIF1<0在SKIPIF1<0上是增函數(shù),所以SKIPIF1<0.又SKIPIF1<0在SKIPIF1<0上是增函數(shù),所以SKIPIF1<0,所以SKIPIF1<0.(2)因為SKIPIF1<0在R上是增函數(shù),所以SKIPIF1<0.因為SKIPIF1<0在SKIPIF1<0上是增函數(shù),所以SKIPIF1<0.因為SKIPIF1<0在SKIPIF1<0上是減函數(shù),所以SKIPIF1<0.所以SKIPIF1<0.(3)方法一:函數(shù)SKIPIF1<0和SKIPIF1<0的圖象如圖所示.當SKIPIF1<0時,SKIPIF1<0的圖象在SKIPIF1<0的圖象的上方,所以SKIPIF1<0.方法二:因為SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.【題型訓練】一、單選題1.(2023·湖南長沙·雅禮中學校考一模)已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0且SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)冪函數(shù)的性質及對數(shù)函數(shù)的性質分別求出集合SKIPIF1<0,SKIPIF1<0,再根據(jù)交集的定義求解即可.【詳解】解:由題意可得SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0且SKIPIF1<0.故選:C.2.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0(a,b為常數(shù),其中SKIPIF1<0且SKIPIF1<0)的圖象如圖所示,則下列結論正確的是(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】D【分析】由函數(shù)在定義域上單調遞增,可得SKIPIF1<0,排除A,C;代入SKIPIF1<0,得SKIPIF1<0,從而得答案.【詳解】解:由圖象可得函數(shù)在定義域上單調遞增,所以SKIPIF1<0,排除A,C;又因為函數(shù)過點SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:D3.(2023·全國·模擬預測)函數(shù)SKIPIF1<0的部分圖象為(
)A. B.C. D.【答案】A【分析】首先求出函數(shù)的定義域,即可判斷函數(shù)的奇偶性,再根據(jù)函數(shù)的取值情況或零點,利用排除法判斷即可.【詳解】因為SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0的定義域為SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),其圖象關于原點對稱,排除B,C;當SKIPIF1<0時,SKIPIF1<0,或當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,故排除D.故選:A.4.(2023·陜西榆林·統(tǒng)考二模)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】引入中間值,SKIPIF1<0與1比較大小,SKIPIF1<0與0比較大小即可.【詳解】因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:B.5.(2023·北京·高三專題練習)設SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關系是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)對數(shù)函數(shù)的單調性即可比較SKIPIF1<0,由指數(shù)的性質即可求解SKIPIF1<0.【詳解】SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,故選:A6.(2023·福建莆田·統(tǒng)考模擬預測)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】取中間值SKIPIF1<0,根據(jù)指、對數(shù)運算估算范圍,進而比較大小.【詳解】因為SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:A.7.(2023·河北承德·統(tǒng)考模擬預測)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】構造函數(shù)SKIPIF1<0,利用單調性得SKIPIF1<0,進而根據(jù)指對數(shù)的運算性質即可比較.【詳解】令SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調遞增,在SKIPIF1<0單調遞減,所以當SKIPIF1<0時,SKIPIF1<0取極小值也是最小值,故SKIPIF1<0,因此SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,進而SKIPIF1<0,故SKIPIF1<0,因此SKIPIF1<0,故選:D【點睛】比較值的大小,是對函數(shù)性質綜合運用的考查.一般常采用以下方法:利用指對冪函數(shù)的單調性比較大小,構造函數(shù),利用導數(shù)求解單調性比較大小,利用不等式的性質以及基本不等式,進行放縮比較.二、多選題8.(2023·全國·高三專題練習)若SKIPIF1<0,則下列關系成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】根據(jù)對數(shù)函數(shù)和指數(shù)函數(shù)的單調性進行判斷即可.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,因此有SKIPIF1<0,所以選項A正確;因為SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0,所以選項B正確;因為SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0,所以選項C不正確;因為SKIPIF1<0,所以SKIPIF1<0,因此有SKIPIF1<0,所以選項D正確,故選:ABD【點睛】關鍵點睛:判斷底數(shù)與1的大小關系,結合指數(shù)函數(shù)和對數(shù)函數(shù)的單調性是解題的關鍵.三、填空題9.(2023·全國·高三專題練習)SKIPIF1<0的定義域為_______________【答案】SKIPIF1<0【分析】根據(jù)解析式,求出使解析式有意義的自變量的范圍,即可得出結果.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,即函數(shù)SKIPIF1<0的定義域為SKIPIF1<0.故答案為:SKIPIF1<010.(2023秋·江西鷹潭·高三貴溪市實驗中學??茧A段練習)已知SKIPIF1<0且SKIPIF1<0,若函數(shù)SKIPIF1<0與SKIPIF1<0的圖象經(jīng)過同一個定點,則SKIPIF1<0__________.【答案】1【分析】由SKIPIF1<0可得出函數(shù)SKIPIF1<0所過定點,再由SKIPIF1<0可得出SKIPIF1<0的值,得出答案.【詳解】函數(shù)SKIPIF1<0的圖象經(jīng)過定點SKIPIF1<0所以SKIPIF1<0的圖象也過定點SKIPIF1<0,即SKIPIF1<0則SKIPIF1<0,所以SKIPIF1<0故答案為:111.(2023·全國·高三專題練習)函數(shù)SKIPIF1<0SKIPIF1<0的最小值為________.【答案】SKIPIF1<0/SKIPIF1<0【分析】利用換元法,結合對數(shù)函數(shù)的運算法則和二次函數(shù)的性質即可得出結論.【詳解】顯然SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,
令SKIPIF1<0,∵x∈SKIPIF1<0,∴t∈[-1,2],則SKIPIF1<0,當且僅當t=-SKIPIF1<0即x=SKIPIF1<0時,有SKIPIF1<0.故答案為:SKIPIF1<0四、解答題12.(2023秋·山東濰坊·高三統(tǒng)考期中)定義在SKIPIF1<0上的函數(shù)SKIPIF1<0和SKIPIF1<0,滿足SKIPIF1<0,且SKIPIF1<0,其中SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的解析式;(2)若不等式SKIPIF1<0的解集為SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)由題意SKIPIF1<0求SKIPIF1<0解析式,再由SKIPIF1<0求參數(shù)a,即可得解析式;(2)由(1)及題設得SKIPIF1<0,結合解集列方程組求m、a,即可得結果.【詳解】(1)由題意知,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.所以函數(shù)SKIPIF1<0的解析式SKIPIF1<0.(2)由SKIPIF1<0,得SKIPIF1<0,由題意知SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.題型三解對數(shù)方程與不等式策略方法求解對數(shù)不等式的兩種類型及方法類型方法logax>logab借助y=logax的單調性求解,如果a的取值不確定,需分a>1與0<a<1兩種情況討論logax>b需先將b化為以a為底的對數(shù)式的形式,再借助y=logax的單調性求解【典例1】(1)當SKIPIF1<0時,求實數(shù)x的取值范圍;(2)當SKIPIF1<0時,求實數(shù)x的取值范圍;(3)當SKIPIF1<0恒取正值時,求實數(shù)x的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.【分析】(1)由增函數(shù)性質去“SKIPIF1<0”解不等式即可;(2)由減函數(shù)性質去“SKIPIF1<0”解不等式即可;(3)分類討論底數(shù),由函數(shù)單調性去“SKIPIF1<0”解不等式即可.【詳解】(1)SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0為增函數(shù),故SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0為減函數(shù),故SKIPIF1<0,解得SKIPIF1<0;(3)若SKIPIF1<0,SKIPIF1<0為增函數(shù),當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0;若SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0為減函數(shù),當SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,綜上所述,SKIPIF1<0【題型訓練】一、單選題1.(2023·全國·高三專題練習)方程SKIPIF1<0的解是(
)A.1 B.2 C.e D.3【答案】D【分析】利用指數(shù)與對數(shù)的轉化即可得到結果.【詳解】∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故選:D.2.(2023·天津河西·天津市新華中學??寄M預測)已知全集SKIPIF1<0,集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】可解出集合SKIPIF1<0,SKIPIF1<0,然后進行補集、交集的運算即可.【詳解】集合SKIPIF1<0,SKIPIF1<0或SKIPIF1<0;SKIPIF1<0;則SKIPIF1<0SKIPIF1<0.故選:C3.(2023·安徽淮北·統(tǒng)考二模)已知集合SKIPIF1<0,則下列命題錯誤的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】求出集合SKIPIF1<0,由集合間的關系對選項一一判斷即可得出答案.【詳解】SKIPIF1<0,對于A,SKIPIF1<0,故A正確;對于B,因為SKIPIF1<0,所以SKIPIF1<0,故B正確;對于C,SKIPIF1<0,故C正確;對于D,SKIPIF1<0,故D不正確.故選:D.4.(2023·全國·模擬預測)已知正數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.1 C.2 D.4【答案】C【分析】先根據(jù)對數(shù)的運算得SKIPIF1<0,再利用基本不等式求解.【詳解】由正數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,結合SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,當且僅當SKIPIF1<0時,即SKIPIF1<0時取等號,故選:C二、填空題5.(2023·陜西咸陽·校考一模)已知函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集為______.【答案】SKIPIF1<0【分析】由題意結合函數(shù)的解析式分類討論求解不等式的解集即可.【詳解】解:當SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,綜上,不等式SKIPIF1<0的解集為SKIPIF1<0.故答案為:SKIPIF1<06.(2023·全國·高三專題練習)設命題SKIPIF1<0,命題SKIPIF1<0.若q是p的必要不充分條件,則實數(shù)m的取值范圍是______.【答案】SKIPIF1<0【分析】化簡命題SKIPIF1<0和SKIPIF1<0,利用真子集關系列式可求出結果.【詳解】由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0;由SKIPIF1<0,得SKIPIF1<0,因為q是p的必要不充分條件,所以SKIPIF1<0是SKIPIF1<0的真子集,所以SKIPIF1<0且兩個等號不同時取,解得SKIPIF1<0.故答案為:SKIPIF1<07.(2023·上?!そy(tǒng)考模擬預測)已知函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集是__________.【答案】SKIPIF1<0【分析】根據(jù)函數(shù)的單調性,以及SKIPIF1<0即可求解.【詳解】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0.因為SKIPIF1<0在SKIPIF1<0上為增函數(shù),SKIPIF1<0在SKIPIF1<0上為增函數(shù),所以SKIPIF1<0在SKIPIF1<0上為增函數(shù),又SKIPIF1<0,所以不等式SKIPIF1<0的解集為SKIPIF1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年安徽中醫(yī)藥高等??茖W校高職單招職業(yè)適應性考試備考題庫有答案解析
- 2026年撫州職業(yè)技術學院單招綜合素質筆試參考題庫帶答案解析
- 2026年湖南勞動人事職業(yè)學院單招綜合素質考試模擬試題帶答案解析
- 2026年湖南郵電職業(yè)技術學院單招綜合素質筆試備考試題帶答案解析
- 2026年貴州護理職業(yè)技術學院高職單招職業(yè)適應性測試參考題庫有答案解析
- 2026年成都工貿(mào)職業(yè)技術學院高職單招職業(yè)適應性考試備考題庫有答案解析
- 2026年安徽綠海商務職業(yè)學院高職單招職業(yè)適應性考試備考題庫有答案解析
- 2026年廣西農(nóng)業(yè)職業(yè)技術大學高職單招職業(yè)適應性測試備考試題有答案解析
- 2026年福建藝術職業(yè)學院單招職業(yè)技能筆試備考試題帶答案解析
- 2026年河北工藝美術職業(yè)學院單招綜合素質考試備考題庫帶答案解析
- 《中國特色高水平高職學校和專業(yè)建設計劃(2025-2029年)》深度解讀課件
- 2025耐高壓置入導管增強CT使用與安全專家共識課件
- 內蒙古能源集團招聘筆試題庫2026
- 生產(chǎn)線操作員技能培訓規(guī)范手冊
- 林草監(jiān)測與保護:空天地一體化體系構建方案
- DB54∕T 0378-2024 牦牛短期育肥技術規(guī)范
- 2025 年中國裝配式裝修產(chǎn)業(yè)發(fā)展研究報告
- 戶外拓展活動中中級攀巖指導員職責分工計劃
- 數(shù)據(jù)中心配電知識培訓課件
- 數(shù)據(jù)標注員專業(yè)技能考核試卷及答案
- 傳染病信息報告管理規(guī)范2025版
評論
0/150
提交評論