新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練4.2 等比數(shù)列(基礎(chǔ)版)(解析版)_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練4.2 等比數(shù)列(基礎(chǔ)版)(解析版)_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練4.2 等比數(shù)列(基礎(chǔ)版)(解析版)_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練4.2 等比數(shù)列(基礎(chǔ)版)(解析版)_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練4.2 等比數(shù)列(基礎(chǔ)版)(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩29頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

4.2等比數(shù)列(精講)(基礎(chǔ)版)思維導(dǎo)圖思維導(dǎo)圖考點(diǎn)呈現(xiàn)考點(diǎn)呈現(xiàn)例題剖析例題剖析考點(diǎn)一等比數(shù)列基本量的計(jì)算【例1】(1)(2022·北京豐臺(tái)·一模)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和等于(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0(2)(2022·重慶·模擬預(yù)測(cè))已知等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.3 D.4【答案】(1)C(2)B【解析】(1)因?yàn)镾KIPIF1<0,且SKIPIF1<0,所以數(shù)列SKIPIF1<0是以2為公比的等比數(shù)列,又SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0.故選:C(2)設(shè)等比數(shù)列公比為SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列可得,SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0.故選:B.1.1.等比數(shù)列中有五個(gè)量a1,n,q,an,Sn,一般可以“知三求二”,通過列方程(組)便可迎刃而解.2.等比數(shù)列的前n項(xiàng)和公式涉及對(duì)公比q的分類討論,當(dāng)q=1時(shí),{an}的前n項(xiàng)和Sn=na1;當(dāng)q≠1時(shí),{an}的前n項(xiàng)和Sn=eq\f(a11-qn,1-q)=eq\f(a1-anq,1-q).溫馨提示【一隅三反】1.(2022·江西·新余四中)已知SKIPIF1<0為等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,若SKIPIF1<0,SKIPIF1<0,則公比SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0或1 D.SKIPIF1<0或1【答案】C【解析】設(shè)等比數(shù)列SKIPIF1<0的公比為q.因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故選:C.2.(2022·河北廊坊·高三階段練習(xí))已知SKIPIF1<0為等比數(shù)列SKIPIF1<0的前n項(xiàng)和,且公比SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的(

)A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件【答案】C【解析】由SKIPIF1<0,得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故必要性滿足;SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故充分性滿足.所以“SKIPIF1<0”是“SKIPIF1<0”的充要條件.故選:C3.(2022·全國(guó)·高三專題練習(xí))已知SKIPIF1<0為等比數(shù)列,SKIPIF1<0為其前SKIPIF1<0項(xiàng)和,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,因?yàn)镾KIPIF1<0,即SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,因此,SKIPIF1<0.故選:C.4.(2022·河北石家莊·高三期末)等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則公比SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】依題意,等比數(shù)列SKIPIF1<0滿足,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,兩式相除得SKIPIF1<0,SKIPIF1<0.故選:D5(2022·四川·三模(理))已知SKIPIF1<0是各項(xiàng)均為正數(shù)的等比數(shù)列SKIPIF1<0的前n項(xiàng)和,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

).A.21 B.81 C.243 D.729【答案】C【解析】SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,設(shè)公比是SKIPIF1<0,則SKIPIF1<0,兩式相除得:SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0(舍去),故SKIPIF1<0.故選:C考點(diǎn)二等比中項(xiàng)【例2-1】(2022·江西·上饒市第一中學(xué)二模)等比數(shù)列SKIPIF1<0中,若SKIPIF1<0,則SKIPIF1<0(

)A.2 B.3 C.4 D.9【答案】C【解析】根據(jù)等比中項(xiàng)得SKIPIF1<0,所以SKIPIF1<0.故選:C.【例2-2】(2022·福建·模擬預(yù)測(cè))已知數(shù)列SKIPIF1<0為等比數(shù)列,則“SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的兩實(shí)根”是”SKIPIF1<0,或SKIPIF1<0”的(

)A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件【答案】A【解析】在等比數(shù)列中,若SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的兩實(shí)根,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,即充分性成立,當(dāng)SKIPIF1<0,或SKIPIF1<0時(shí),能推出SKIPIF1<0,但無法推出SKIPIF1<0,即必要性不成立,即“SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的兩實(shí)根”是“SKIPIF1<0,或SKIPIF1<0”的充分不必要條件,故選:A.【一隅三反】1.(2022·安徽黃山·一模)在等比數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的兩根,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.3 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因?yàn)镾KIPIF1<0?SKIPIF1<0是方程SKIPIF1<0的兩根,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0為等比數(shù)列,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0(舍去),所以SKIPIF1<0.故選:B.2.(2022·吉林吉林)已知各項(xiàng)均為正數(shù)的等比數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.6 B.9 C.27 D.81【答案】B【解析】SKIPIF1<0,SKIPIF1<0.故選:B3.(2022·全國(guó)·高三專題練習(xí))設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是非零實(shí)數(shù),則“SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列”是“SKIPIF1<0”的(

)A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【解析】由SKIPIF1<0成等比數(shù)列可得SKIPIF1<0,但當(dāng)SKIPIF1<0時(shí),SKIPIF1<0不是等比數(shù)列,所以“a,b,c,d成等比數(shù)列”是“ad=bc”的充分而不必要條件,故選:A.4.(2022·廣西柳州)在等比數(shù)列SKIPIF1<0中,已知SKIPIF1<0,SKIPIF1<0,則公比SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】D【解析】由等比數(shù)列SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選:D.考點(diǎn)三等比數(shù)列前n項(xiàng)和的性質(zhì)【例3-1】(2022·全國(guó)·高三專題練習(xí))已知等比數(shù)列{an}的前n項(xiàng)和為Sn,S10=1,S30=13,S40=()A.﹣51 B.﹣20 C.27 D.40【答案】D【解析】由{an}是等比數(shù)列,且S10=1>0,S30=13>0,得S20>0,S40>0,且1<S20<13,S40>13所以S10,S20﹣S10,S30﹣S20,S40﹣S30成等比數(shù)列,即1,S20﹣1,13﹣S20,S40﹣13構(gòu)成等比數(shù)列,∴(S20﹣1)2=1×(13﹣S20),解得S20=4或S20=﹣3(舍去),∴(13﹣S20)2=(S20﹣1)(S40﹣13),即92=3×(S40﹣13),解得S40=40.故選:D.【例3-2】(2022·全國(guó)·高三專題練習(xí))等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.2 B.-2 C.1 D.-1【答案】A【解析】設(shè)等比數(shù)列的公比為q,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,不合題意;當(dāng)SKIPIF1<0時(shí),等比數(shù)列前SKIPIF1<0項(xiàng)和公式SKIPIF1<0,依題意SKIPIF1<0.故選:A【例3-3】(2022·全國(guó)·高三專題練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,則數(shù)列SKIPIF1<0的前10項(xiàng)中所有奇數(shù)項(xiàng)之和與所有偶數(shù)項(xiàng)之和的比為(

)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,又SKIPIF1<0,即前10項(xiàng)分別為SKIPIF1<0,所以數(shù)列SKIPIF1<0的前10項(xiàng)中SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故選:C.【例3-4】(2022·全國(guó)·高三專題練習(xí))數(shù)列SKIPIF1<0中,SKIPIF1<0,對(duì)任意SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0()A.2 B.3 C.4 D.5【答案】C【解析】在等式SKIPIF1<0中,令SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,所以,數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),以SKIPIF1<0為公比的等比數(shù)列,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故選:C.【例3-5】(2022·全國(guó)·高三專題練習(xí))各項(xiàng)均為正數(shù)的等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.4 B.6 C.8 D.12【答案】C【解析】因?yàn)镾KIPIF1<0,且等比數(shù)列SKIPIF1<0各項(xiàng)均為正數(shù),所以SKIPIF1<0,公比SKIPIF1<0首項(xiàng)SKIPIF1<0,所以SKIPIF1<0,通項(xiàng)SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為8.故選:C.【一隅三反】1.(2022·湖南·長(zhǎng)沙一中)一個(gè)等比數(shù)列的前7項(xiàng)和為48,前14項(xiàng)和為60,則前21項(xiàng)和為(

)A.180 B.108C.75 D.63【答案】D【解析】由題意得S7,S14-S7,S21-S14組成等比數(shù)列48,12,3,即S21-S14=3,∴S21=63.故選:D2.(2022·全國(guó)·高三專題練習(xí))已知一個(gè)等比數(shù)列首項(xiàng)為SKIPIF1<0,項(xiàng)數(shù)是偶數(shù),其奇數(shù)項(xiàng)之和為SKIPIF1<0,偶數(shù)項(xiàng)之和為SKIPIF1<0,則這個(gè)數(shù)列的項(xiàng)數(shù)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】設(shè)這個(gè)等比數(shù)列SKIPIF1<0共有SKIPIF1<0項(xiàng),公比為SKIPIF1<0,則奇數(shù)項(xiàng)之和為SKIPIF1<0,偶數(shù)項(xiàng)之和為SKIPIF1<0,SKIPIF1<0,等比數(shù)列SKIPIF1<0的所有項(xiàng)之和為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,因此,這個(gè)等比數(shù)列的項(xiàng)數(shù)為SKIPIF1<0.故選:C.3.(2022·全國(guó)·高三專題練習(xí))等比數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,則r的值為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0所以SKIPIF1<0,故選B.4.(2021·全國(guó)·高三專題練習(xí))已知等比數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.2 B.3 C.4 D.5【答案】B【解析】設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故選:B.5.(2022·四川綿陽(yáng)·一模)已知正項(xiàng)等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因?yàn)镾KIPIF1<0是正項(xiàng)等比數(shù)列,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0仍然構(gòu)成等比數(shù)列,所以SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0是正項(xiàng)等比數(shù)列,所以SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào).故選:B.考點(diǎn)四等比數(shù)列定義及其運(yùn)用【例4】(2022·全國(guó)·高三專題練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則下列結(jié)論正確的是(

)A.?dāng)?shù)列SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列B.?dāng)?shù)列SKIPIF1<0是公差為2的等差數(shù)列C.?dāng)?shù)列SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列D.?dāng)?shù)列SKIPIF1<0是公比為2的等比數(shù)列【答案】C【解析】∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0既不是等比數(shù)列也不是等差數(shù)列;∴SKIPIF1<0,∴數(shù)列SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列.故選:C【一隅三反】1.(2021·江蘇鹽城)(多選)設(shè)等比數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,則下列數(shù)列一定是等比數(shù)列的有(

)A.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,… B.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…C.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,… D.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…【答案】BD【解析】設(shè)數(shù)列SKIPIF1<0的公比為SKIPIF1<0,SKIPIF1<0,對(duì)于A和C,都有首項(xiàng)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,不滿足等比數(shù)列,故AC錯(cuò)誤;對(duì)于B,SKIPIF1<0,且SKIPIF1<0,同理SKIPIF1<0,故數(shù)列SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…為等比數(shù)列,B正確;對(duì)于D,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,故數(shù)列SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…為等比數(shù)列,D正確;故選:BD2.(2022·廣東·佛山一中)已知數(shù)列{SKIPIF1<0}滿足:SKIPIF1<0(1)求證:數(shù)列{SKIPIF1<0}是等比數(shù)列;(2)SKIPIF1<0,求數(shù)列{SKIPIF1<0·SKIPIF1<0}的前n項(xiàng)和SKIPIF1<0.【答案】(1)證明見解析(2)SKIPIF1<0【解析】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.而SKIPIF1<0,所以數(shù)列{SKIPIF1<0}是以SKIPIF1<0為首項(xiàng),以3為公比的等比數(shù)列,所以SKIPIF1<0,即SKIPIF1<0.(2)由(1)可得SKIPIF1<0∴SKIPIF1<0記SKIPIF1<0……①所以SKIPIF1<0……②①-②得:SKIPIF1<0SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0.3.(2022·全國(guó)·高三專題練習(xí))已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.(1)證明數(shù)列SKIPIF1<0為等比數(shù)列,并求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)證明見解析;SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以數(shù)列SKIPIF1<0是以首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,從而SKIPIF1<0,故SKIPIF1<0.(2)由(1)中結(jié)論可知,SKIPIF1<0

①,所以SKIPIF1<0

②,由①SKIPIF1<0②得,SKIPIF1<0

SKIPIF1<0化簡(jiǎn)整理得,SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.考點(diǎn)五等比數(shù)列的實(shí)際應(yīng)用【例5-1】(2022·浙江省義烏中學(xué)模擬預(yù)測(cè))我國(guó)古代的數(shù)學(xué)名著《九章算術(shù)》中有“衰分問題”:今有女子善織,日自倍,五日織五尺,問日織幾何?其意為:一女子每天織布的尺數(shù)是前一天的2倍,5天共織布5尺,問第五天織布的尺數(shù)是多少?你的答案是(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】根據(jù)題意可知該女子每天織布的尺數(shù)成等比數(shù)列,設(shè)該等比數(shù)列為SKIPIF1<0,公比q=2,則第1天織布的尺數(shù)為SKIPIF1<0,第5天織布的尺數(shù)為SKIPIF1<0,前5天共織布為SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0.故選:D.【例5-2】(2022·江蘇·沭陽(yáng)如東中學(xué)模擬預(yù)測(cè))著名的“康托三分集”是數(shù)學(xué)理性思維的構(gòu)造產(chǎn)物,具有典型的分形特征,其操作過程如下:將閉區(qū)間[0,1]均分為三段,去掉中間的區(qū)間段SKIPIF1<0,記為第一次操作;再將剩下的兩個(gè)區(qū)SKIPIF1<0分別均分為三段,并各自去掉中間的區(qū)間段,記為第二次操作;…,如此這樣,每次在上一次操作的基礎(chǔ)上,將剩下的各個(gè)區(qū)間分別均分為三段,同樣各自去掉中間的區(qū)間段.操作過程不斷地進(jìn)行下去,以至無窮,剩下的區(qū)間集合即是“康托三分集”.若使去掉的各區(qū)間長(zhǎng)度之和不小于SKIPIF1<0,則需要操作的次數(shù)n的最小值為(

)參考數(shù)據(jù):lg2=0.3010,lg3=0.4771A.6 B.7 C.8 D.9【答案】B【解析】第一次操作去掉SKIPIF1<0,設(shè)為SKIPIF1<0;第二次操作去掉SKIPIF1<0,設(shè)為SKIPIF1<0;第三次操作去掉SKIPIF1<0,設(shè)為SKIPIF1<0,SKIPIF1<0依次類推,SKIPIF1<0.故SKIPIF1<0SKIPIF1<0,整理,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故n的最小值為7.故選:B.【一隅三反】1.(2022·全國(guó)·模擬預(yù)測(cè))在適宜的環(huán)境中,一種細(xì)菌的一部分不斷分裂產(chǎn)生新的細(xì)菌,另一部分則死亡.為研究這種細(xì)菌的分裂情況,在培養(yǎng)皿中放入m個(gè)細(xì)菌,在1小時(shí)內(nèi),有SKIPIF1<0的細(xì)菌分裂為原來的2倍,SKIPIF1<0的細(xì)菌死亡,此時(shí)記為第一小時(shí)的記錄數(shù)據(jù).若每隔一小時(shí)記錄一次細(xì)菌個(gè)數(shù),則細(xì)菌數(shù)超過原來的10倍的記錄時(shí)間為第(

)A.6小時(shí)末 B.7小時(shí)末 C.8小時(shí)末 D.9小時(shí)末【答案】A【解析】設(shè)SKIPIF1<0表示第n小時(shí)末的細(xì)菌數(shù),依題意有SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0是等比數(shù)列,首項(xiàng)為SKIPIF1<0,公比SKIPIF1<0,所以SKIPIF1<0.依題意,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,由于SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以第6小時(shí)末記錄的細(xì)菌數(shù)超過原來的10倍,故選:A.2.(2022·湖南湖南·二模)在流行病學(xué)中,基本傳染數(shù)SKIPIF1<0是指在沒有外力介入,同時(shí)所有人都沒有免疫力的情況下,一個(gè)感染者平均傳染的人數(shù).SKIPIF1<0一般由疾病的感染周期?感染者與其他人的接觸頻率?每次接觸過程中傳染的概率決定,假設(shè)某種傳染病的基本傳染數(shù)SKIPIF1<0,平均感染周期為7天,那么感染人數(shù)由1(初始感染者)增加到999大約需要的天數(shù)為(

)(初始感染者傳染SKIPIF1<0個(gè)人為第一輪傳染,這SKIPIF1<0個(gè)人每人再傳染SKIPIF1<0個(gè)人為第二輪傳染……參考數(shù)據(jù):SKIPIF1<0)A.42 B.56 C.63 D.70【答案】C【解析】設(shè)第n輪感染的人數(shù)為SKIPIF1<0,則數(shù)列SKIPIF1<0是SKIPIF1<0,公比SKIPIF1<0的等比數(shù)列,由SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,兩邊取對(duì)數(shù)得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故需要的天數(shù)約為SKIPIF1<0.故選:C3.(2022·云南·高三階段練習(xí)(理))為了更好地解決就業(yè)問題,國(guó)家在2020年提出了“地?cái)偨?jīng)濟(jì)”為響應(yīng)國(guó)家號(hào)召,有不少地區(qū)出臺(tái)了相關(guān)政策去鼓勵(lì)“地?cái)偨?jīng)濟(jì)”.老王2020年6月1日向銀行借了免息貸款10000元,用于進(jìn)貨.因質(zhì)優(yōu)價(jià)廉,供不應(yīng)求,據(jù)測(cè)算:每月獲得的利潤(rùn)是該月初投入資金的20%,每月底扣除生活費(fèi)1000元,余款作為資金全部用于下月再進(jìn)貨,如此繼續(xù),預(yù)計(jì)到2021年5月底該攤主的年所得收入為(

)(取SKIPIF1<0,SKIPIF1<0)A.32500元 B.40000元 C.42500元 D.50000元【答案】B【解析】設(shè)SKIPIF1<0,從6月份起每月底用于下月進(jìn)貨的資金依次記為SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,SKIPIF1<0,同理可得SKIPIF1<0,所以SKIPIF1<0,而SKIPIF1<0,所以數(shù)列SKIPIF1<0是等比數(shù)列,公比為1.2,所以SKIPIF1<0,SKIPIF1<0,∴總利潤(rùn)為SKIPIF1<0,故選:B.4.2等比數(shù)列(精練)(基礎(chǔ)版)題組一題組一等比數(shù)列基本量的計(jì)算1.(2022·江西)已知正項(xiàng)等比數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且滿足SKIPIF1<0,則公比SKIPIF1<0(

)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍).故選:B2.(2022·四川)已知等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因?yàn)镾KIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0.故選:D.3.(2022·四川攀枝花)正項(xiàng)等比數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

).A.8 B.16 C.27 D.81【答案】B【解析】設(shè)正項(xiàng)等比數(shù)列SKIPIF1<0的公比為qSKIPIF1<0.由SKIPIF1<0可得:SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0,解得:SKIPIF1<0(SKIPIF1<0舍去)所以SKIPIF1<0.故選:B4.(2022·河南)在等比數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.80 B.242 C.SKIPIF1<0 D.244【答案】B【解析】等比數(shù)列SKIPIF1<0的公比SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故選:B.5.(2022·廣西)設(shè)等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且有SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的公比為(

)A.SKIPIF1<0或5 B.2或SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】C【解析】設(shè)公比為SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故選:C.6.(2022·甘肅·二模)正項(xiàng)等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的前7項(xiàng)和SKIPIF1<0(

)A.256 B.254 C.252 D.126【答案】B【解析】設(shè)正項(xiàng)等比數(shù)列SKIPIF1<0公比為q,且q>0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,則q=2,∴SKIPIF1<0.故選:B.7.(2022·貴州·模擬預(yù)測(cè)(文))已知等比數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的公比為(

)A.2或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0或2 D.SKIPIF1<0或SKIPIF1<0【答案】A【解析】設(shè)等比數(shù)列SKIPIF1<0的公比為q,則SKIPIF1<0,SKIPIF1<0,兩式相除得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或2.故選:A8.(2022·湖南常德·一模)設(shè)SKIPIF1<0為等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由已知SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:A.9.(2022·北京四中高三開學(xué)考試)數(shù)列SKIPIF1<0滿足SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),且SKIPIF1<0與SKIPIF1<0的等差中項(xiàng)是5,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),則SKIPIF1<0為等比數(shù)列,公比為2,又SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0.故選:B10.(2022·全國(guó)·高三專題練習(xí))已知SKIPIF1<0是首項(xiàng)為2的等比數(shù)列,SKIPIF1<0是其前n項(xiàng)和,且SKIPIF1<0,則數(shù)列SKIPIF1<0前20項(xiàng)和為(

)A.﹣360 B.﹣380 C.360 D.380【答案】A【解析】根據(jù)題意SKIPIF1<0,所以SKIPIF1<0,從而有SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0的前20項(xiàng)和等于SKIPIF1<0故選:SKIPIF1<0.11.(2022·全國(guó)·高三專題練習(xí))已知SKIPIF1<0是等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,若存在SKIPIF1<0,滿足SKIPIF1<0,則數(shù)列SKIPIF1<0的公比為(

)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.3【答案】B【解析】設(shè)數(shù)列SKIPIF1<0的公比為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,與題中條件矛盾,故SKIPIF1<0SKIPIF1<0.故選:B12.(2022·全國(guó)·高三專題練習(xí)(文))設(shè)SKIPIF1<0是等比數(shù)列,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.12 B.24 C.30 D.32【答案】D【解析】設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,因此,SKIPIF1<0.故選:D.題組二題組二等比中項(xiàng)1.(2022·全國(guó)·高三專題練習(xí))在等比數(shù)列SKIPIF1<0中,若SKIPIF1<0,則SKIPIF1<0(

)A.6 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】根據(jù)題意及等比數(shù)列中項(xiàng)的性質(zhì)有,SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0或-6,選項(xiàng)C正確.故選:C.2.(2022·全國(guó)·高三專題練習(xí))已知數(shù)列SKIPIF1<0是等比數(shù)列,數(shù)列SKIPIF1<0是等差數(shù)列,若SKIPIF1<0SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】設(shè)數(shù)列SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列,數(shù)列SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列,若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即為SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.故選:A3.(2022·全國(guó)·高三專題練習(xí))已知等比數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由等比數(shù)列性質(zhì)可知SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,但SKIPIF1<0,可知SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,故選:B4.(2022·北京石景山·高三專題練習(xí))兩數(shù)1、9的等差中項(xiàng)是SKIPIF1<0,等比中項(xiàng)是SKIPIF1<0,則曲線SKIPIF1<0的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0與SKIPIF1<0【答案】C【解析】SKIPIF1<0兩數(shù)1、9的等差中項(xiàng)是SKIPIF1<0,等比中項(xiàng)是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,曲線SKIPIF1<0為橢圓,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故選:C5.(2022·江西宜春)在等比數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值為(

)A.48 B.72 C.144 D.192【答案】D【解析】由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:D6.(2022·全國(guó)·高三專題練習(xí))方程SKIPIF1<0的兩根的等比中項(xiàng)是(

)A.SKIPIF1<0和2 B.1和4 C.2和4 D.2和1【答案】A【解析】由一元二次方程根與系數(shù)的關(guān)系可知方程SKIPIF1<0的兩根之積為4,又因?yàn)镾KIPIF1<0,故方程SKIPIF1<0的兩根的等比中項(xiàng)是SKIPIF1<0.故選:A7.(2022·全國(guó)·高三專題練習(xí))已知等比數(shù)列SKIPIF1<0的各項(xiàng)均為正數(shù),且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.5 C.10 D.15【答案】B【解析】因?yàn)榈缺葦?shù)列SKIPIF1<0的各項(xiàng)均為正數(shù),且SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.故選:B.8.(2022·甘肅·高臺(tái)縣第一中學(xué)高三階段練習(xí)(文))已知數(shù)列SKIPIF1<0是等差數(shù)列,數(shù)列SKIPIF1<0是等比數(shù)列,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由等差中項(xiàng)的性質(zhì)可得SKIPIF1<0,SKIPIF1<0,由等比中項(xiàng)的性質(zhì)可得SKIPIF1<0,SKIPIF1<0,因此,SKIPIF1<0.故選:B.9.(2022·陜西漢中·二模(理))已知正項(xiàng)等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,若存在SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的最小值為(

).A.SKIPIF1<0 B.16 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】設(shè)等比數(shù)列的公比為SKIPIF1<0,根據(jù)題意,SKIPIF1<0,因?yàn)閿?shù)列SKIPIF1<0是正項(xiàng)等比數(shù)列,所以SKIPIF1<0,SKIPIF1<0,故由上式可解得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí)取等號(hào),因?yàn)镾KIPIF1<0,SKIPIF1<0為正整數(shù),所以當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),可得SKIPIF1<0的最小值為SKIPIF1<0.故選:C題組三題組三等比數(shù)列前n項(xiàng)和的性質(zhì)1.(2022·全國(guó)·高三專題練習(xí))已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,且S10=10,S30=130,則S40等于(

)A.-510 B.400C.400或-510 D.30或40【答案】B【解析】∵正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,∴S10,S20-S10,S30-S20,S40-S30也成等比數(shù)列,∴10×(130-S20)=(S20-10)2,解得S20=40或S20=-30(舍),故S40-S30=270,∴S40=400.選:B2.(2020·全國(guó)·高三專題練習(xí))已知等比數(shù)列SKIPIF1<0的公比SKIPIF1<0,前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則其偶數(shù)項(xiàng)SKIPIF1<0為(

)A.15 B.30C.45 D.60【答案】D【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:D3.(2022·浙江浙江·二模)已知等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的(

)A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件【答案】A【解析】設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0則當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,此時(shí)SKIPIF1<0即由“SKIPIF1<0”可得到“SKIPIF1<0”成立.由SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0SKIPIF1<0若SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0成立若SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0不成立所以若“SKIPIF1<0”則“SKIPIF1<0”不成立.所以“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件故選:A4.(2022·全國(guó)·高三專題練習(xí)(理))設(shè)等比數(shù)列SKIPIF1<0的公比為q,前n項(xiàng)和為SKIPIF1<0,前n項(xiàng)積為SKIPIF1<0,并滿足條件SKIPIF1<0,SKIPIF1<0,則下列結(jié)論中不正確的有(

)A.q>1B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0是數(shù)列SKIPIF1<0中的最大項(xiàng)【答案】A【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,而SKIPIF1<0為等比數(shù)列,SKIPIF1<0,于是SKIPIF1<0,SKIPIF1<0,則A錯(cuò)誤;SKIPIF1<0,則B正確;SKIPIF1<0,則C正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0是數(shù)列SKI

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論