版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
上海市長寧區(qū)重點名校2021-2022學年中考沖刺卷數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是一個空心圓柱體,其俯視圖是()A.B.C.D.2.如圖是一個幾何體的主視圖和俯視圖,則這個幾何體是()A.三棱柱 B.正方體 C.三棱錐 D.長方體3.3的倒數(shù)是()A. B. C. D.4.化簡的結果是()A.1 B. C. D.5.如圖所示是由相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置上小正方體的個數(shù),那么該幾何體的主視圖是()A. B. C. D.6.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值27.有15位同學參加歌詠比賽,所得的分數(shù)互不相同,取得分前8位同學進入決賽.某同學知道自己的分數(shù)后,要判斷自己能否進入決賽,他只需知道這15位同學的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差8.在剛過去的2017年,我國整體經(jīng)濟實力躍上了一個新臺階,城鎮(zhèn)新增就業(yè)1351萬人,數(shù)據(jù)“1351萬”用科學記數(shù)法表示為()A.13.51×106 B.1.351×107 C.1.351×106 D.0.1531×1089.如圖,這是由5個大小相同的整體搭成的幾何體,該幾何體的左視圖是()A. B. C. D.10.中國古代人民很早就在生產(chǎn)生活中發(fā)現(xiàn)了許多有趣的數(shù)學問題,其中《孫子算經(jīng)》中有個問題:今有三人共車,二車空;二人共車,九人步,問人與車各幾何?這道題的意思是:今有若干人乘車,每三人乘一車,最終剩余2輛車,若每2人共乘一車,最終剩余9個人無車可乘,問有多少人,多少輛車?如果我們設有輛車,則可列方程()A. B.C. D.11.下列說法正確的是()A.擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,6點朝上是必然事件B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定C.“明天降雨的概率為”,表示明天有半天都在降雨D.了解一批電視機的使用壽命,適合用普查的方式12.如圖,AB是⊙O的直徑,點C,D,E在⊙O上,若∠AED=20°,則∠BCD的度數(shù)為()A.100° B.110° C.115° D.120°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知,在同一平面內(nèi),∠ABC=50°,AD∥BC,∠BAD的平分線交直線BC于點E,那么∠AEB的度數(shù)為__________.14.如圖,△ABC中,CD⊥AB于D,E是AC的中點.若AD=6,DE=5,則CD的長等于.15.因式分解:____________.16.若函數(shù)y=m-2x17.如圖,在菱形ABCD中,AB=BD.點E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點G,連接CG與BD相交于點H.下列結論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF.其中正確的結論有_____.(填序號)18.如圖,已知,,則________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)雅安地震,某地駐軍對道路進行清理.該地駐軍在清理道路的工程中出色完成了任務.這是記者與駐軍工程指揮部的一段對話:記者:你們是用9天完成4800米長的道路清理任務的?指揮部:我們清理600米后,采用新的清理方式,這樣每天清理長度是原來的2倍.通過這段對話,請你求出該地駐軍原來每天清理道路的米數(shù).20.(6分)把0,1,2三個數(shù)字分別寫在三張完全相同的不透明卡片的正面上,把這三張卡片背面朝上,洗勻后放在桌面上,先從中隨機抽取一張卡片,記錄下數(shù)字.放回后洗勻,再從中抽取一張卡片,記錄下數(shù)字.請用列表法或樹狀圖法求兩次抽取的卡片上的數(shù)字都是偶數(shù)的概率.21.(6分)如圖所示,直線y=x+2與雙曲線y=相交于點A(2,n),與x軸交于點C.求雙曲線解析式;點P在x軸上,如果△ACP的面積為5,求點P的坐標.22.(8分)某市A,B兩個蔬菜基地得知四川C,D兩個災民安置點分別急需蔬菜240t和260t的消息后,決定調(diào)運蔬菜支援災區(qū),已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,現(xiàn)將這些蔬菜全部調(diào)運C,D兩個災區(qū)安置點.從A地運往C,D兩處的費用分別為每噸20元和25元,從B地運往C,D兩處的費用分別為每噸15元和18元.設從B地運往C處的蔬菜為x噸.請?zhí)顚懴卤恚⑶髢蓚€蔬菜基地調(diào)運蔬菜的運費相等時x的值;CD總計/tA200Bx300總計/t240260500(2)設A,B兩個蔬菜基地的總運費為w元,求出w與x之間的函數(shù)關系式,并求總運費最小的調(diào)運方案;經(jīng)過搶修,從B地到C處的路況得到進一步改善,縮短了運輸時間,運費每噸減少m元(m>0),其余線路的運費不變,試討論總運費最小的調(diào)動方案.23.(8分)如圖,在△ABC中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點E.求證:DE=CE.若∠CDE=35°,求∠A的度數(shù).24.(10分)如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.求y與x之間的函數(shù)關系式;直接寫出當x>0時,不等式x+b>的解集;若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標.25.(10分)(問題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60°,得到正方形AB'C'D',請直接寫出BD'平方的值.26.(12分)矩形ABCD中,DE平分∠ADC交BC邊于點E,P為DE上的一點(PE<PD),PM⊥PD,PM交AD邊于點M.(1)若點F是邊CD上一點,滿足PF⊥PN,且點N位于AD邊上,如圖1所示.求證:①PN=PF;②DF+DN=DP;(2)如圖2所示,當點F在CD邊的延長線上時,仍然滿足PF⊥PN,此時點N位于DA邊的延長線上,如圖2所示;試問DF,DN,DP有怎樣的數(shù)量關系,并加以證明.27.(12分)對x,y定義一種新運算T,規(guī)定T(x,y)=(其中a,b是非零常數(shù),且x+y≠0),這里等式右邊是通常的四則運算.如:T(3,1)=,T(m,﹣2)=.填空:T(4,﹣1)=(用含a,b的代數(shù)式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.①求a與b的值;②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據(jù)從上邊看得到的圖形是俯視圖,可得答案.【詳解】該空心圓柱體的俯視圖是圓環(huán),如圖所示:故選D.【點睛】本題考查了三視圖,明確俯視圖是從物體上方看得到的圖形是解題的關鍵.2、A【解析】【分析】根據(jù)三視圖的知識使用排除法即可求得答案.【詳解】如圖,由主視圖為三角形,排除了B、D,由俯視圖為長方形,可排除C,故選A.【點睛】本題考查了由三視圖判斷幾何體的知識,做此類題時可利用排除法解答.3、C【解析】根據(jù)倒數(shù)的定義可知.解:3的倒數(shù)是.主要考查倒數(shù)的定義,要求熟練掌握.需要注意的是:倒數(shù)的性質(zhì):負數(shù)的倒數(shù)還是負數(shù),正數(shù)的倒數(shù)是正數(shù),0沒有倒數(shù).倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).4、A【解析】原式=?(x–1)2+=+==1,故選A.5、C【解析】A、B、D不是該幾何體的視圖,C是主視圖,故選C.【點睛】主視圖是由前面看到的圖形,俯視圖是由上面看到的圖形,左視圖是由左面看到的圖形,能看到的線畫實線,看不到的線畫虛線.6、D【解析】設拋物線與x軸的兩交點間的橫坐標分別為:x1,x2,
由韋達定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.7、B【解析】
由中位數(shù)的概念,即最中間一個或兩個數(shù)據(jù)的平均數(shù);可知15人成績的中位數(shù)是第8名的成績.根據(jù)題意可得:參賽選手要想知道自己是否能進入前8名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】解:由于15個人中,第8名的成績是中位數(shù),故小方同學知道了自己的分數(shù)后,想知道自己能否進入決賽,還需知道這十五位同學的分數(shù)的中位數(shù).故選B.【點睛】此題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.8、B【解析】
根據(jù)科學記數(shù)法進行解答.【詳解】1315萬即13510000,用科學記數(shù)法表示為1.351×107.故選擇B.【點睛】本題主要考查科學記數(shù)法,科學記數(shù)法表示數(shù)的標準形式是a×10n(1≤│a│<10且n為整數(shù)).9、A【解析】
觀察所給的幾何體,根據(jù)三視圖的定義即可解答.【詳解】左視圖有2列,每列小正方形數(shù)目分別為2,1.故選A.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.10、A【解析】
根據(jù)每三人乘一車,最終剩余2輛車,每2人共乘一車,最終剩余1個人無車可乘,進而表示出總人數(shù)得出等式即可.【詳解】設有x輛車,則可列方程:
3(x-2)=2x+1.
故選:A.【點睛】此題主要考查了由實際問題抽象出一元一次方程,正確表示總人數(shù)是解題關鍵.11、B【解析】
利用事件的分類、普查和抽樣調(diào)查的特點、概率的意義以及方差的性質(zhì)即可作出判斷.【詳解】解:A、擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,6點朝上是可能事件,此選項錯誤;B、甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定,此選項正確;C、“明天降雨的概率為”,表示明天有可能降雨,此選項錯誤;D、解一批電視機的使用壽命,適合用抽查的方式,此選項錯誤;故選B.【點睛】本題考查方差;全面調(diào)查與抽樣調(diào)查;隨機事件;概率的意義,掌握基本概念是解題關鍵.12、B【解析】
連接AD,BD,由圓周角定理可得∠ABD=20°,∠ADB=90°,從而可求得∠BAD=70°,再由圓的內(nèi)接四邊形對角互補得到∠BCD=110°.【詳解】如下圖,連接AD,BD,∵同弧所對的圓周角相等,∴∠ABD=∠AED=20°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故選B【點睛】本題考查圓中的角度計算,熟練運用圓周角定理和內(nèi)接四邊形的性質(zhì)是關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、65°或25°【解析】
首先根據(jù)角平分線的定義得出∠EAD=∠EAB,再分情況討論計算即可.【詳解】解:分情況討論:(1)∵AE平分∠BAD,
∴∠EAD=∠EAB,
∵AD∥BC,
∴∠EAD=∠AEB,
∴∠BAD=∠AEB,
∵∠ABC=50°,
∴∠AEB=?(180°-50°)=65°.(2)∵AE平分∠BAD,
∴∠EAD=∠EAB=,
∵AD∥BC,
∴∠AEB=∠DAE=,∠DAB=∠ABC,
∵∠ABC=50°,
∴∠AEB=×50°=25°.
故答案為:65°或25°.【點睛】本題考查平行線的性質(zhì)、角平分線的定義等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.14、1.【解析】
由“直角三角形斜邊上的中線等于斜邊的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理來求線段CD的長度即可.【詳解】∵△ABC中,CD⊥AB于D,E是AC的中點,DE=5,∴DE=AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,則根據(jù)勾股定理,得.故答案是:1.15、3(x-2)(x+2)【解析】
先提取公因式3,再根據(jù)平方差公式進行分解即可求得答案.注意分解要徹底.【詳解】原式=3(x2﹣4)=3(x-2)(x+2).故答案為3(x-2)(x+2).【點睛】本題考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式進行二次分解,注意分解要徹底.16、m>2【解析】試題分析:有函數(shù)y=m考點:反比例函數(shù)的性質(zhì).17、①②③【解析】
(1)由已知條件易得∠A=∠BDF=60°,結合BD=AB=AD,AE=DF,即可證得△AED≌△DFB,從而說明結論①正確;(2)由已知條件可證點B、C、D、G四點共圓,從而可得∠CDN=∠CBM,如圖,過點C作CM⊥BF于點M,過點C作CN⊥ED于點N,結合CB=CD即可證得△CBM≌△CDN,由此可得S四邊形BCDG=S四邊形CMGN=2S△CGN,在Rt△CGN中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=CG,CN=CG,由此即可求得S△CGN=CG2,從而可得結論②是正確的;(3)過點F作FK∥AB交DE于點K,由此可得△DFK∽△DAE,△GFK∽△GBE,結合AF=2DF和相似三角形的性質(zhì)即可證得結論④成立.【詳解】(1)∵四邊形ABCD是菱形,BD=AB,∴AB=BD=BC=DC=DA,∴△ABD和△CBD都是等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,∴△AED≌△DFB,即結論①正確;(2)∵△AED≌△DFB,△ABD和△DBC是等邊三角形,∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,∴點B、C、D、G四點共圓,∴∠CDN=∠CBM,如下圖,過點C作CM⊥BF于點M,過點C作CN⊥ED于點N,∴∠CDN=∠CBM=90°,又∵CB=CD,∴△CBM≌△CDN,∴S四邊形BCDG=S四邊形CMGN=2S△CGN,∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°∴GN=CG,CN=CG,∴S△CGN=CG2,∴S四邊形BCDG=2S△CGN,=CG2,即結論②是正確的;(3)如下圖,過點F作FK∥AB交DE于點K,∴△DFK∽△DAE,△GFK∽△GBE,∴,,∵AF=2DF,∴,∵AB=AD,AE=DF,AF=2DF,∴BE=2AE,∴,∴BG=6FG,即結論③成立.綜上所述,本題中正確的結論是:故答案為①②③點睛:本題是一道涉及菱形、相似三角形、全等三角形和含30°角的直角三角形等多種幾何圖形的判定與性質(zhì)的題,題目難度較大,熟悉所涉及圖形的性質(zhì)和判定方法,作出如圖所示的輔助線是正確解答本題的關鍵.18、65°【解析】
根據(jù)兩直線平行,同旁內(nèi)角互補求出∠3,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式計算即可得解.【詳解】∵m∥n,∠1=105°,∴∠3=180°?∠1=180°?105°=75°∴∠α=∠2?∠3=140°?75°=65°故答案為:65°.【點睛】此題考查平行線的性質(zhì),解題關鍵在于利用同旁內(nèi)角互補求出∠3.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、1米.【解析】試題分析:根據(jù)題意可以列出相應的分式方程,然后解分式方程,即可得到結論.試題解析:解:設原來每天清理道路x米,根據(jù)題意得:解得,x=1.檢驗:當x=1時,2x≠0,∴x=1是原方程的解.答:該地駐軍原來每天清理道路1米.點睛:本題考查分式方程的應用,解題的關鍵是明確分式方程的解答方法,注意分式方程要驗根.20、見解析,.【解析】
畫樹狀圖展示所有9種等可能的結果數(shù),找出兩次抽取的卡片上的數(shù)字都是偶數(shù)的結果數(shù),然后根據(jù)概率公式求解.【詳解】解:畫樹狀圖為:共有9種等可能的結果數(shù),其中兩次抽取的卡片上的數(shù)字都是偶數(shù)的結果數(shù)為4,所以兩次抽取的卡片上的數(shù)字都是偶數(shù)的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.21、(1);(2)(,0)或【解析】
(1)把A點坐標代入直線解析式可求得n的值,則可求得A點坐標,再把A點坐標代入雙曲線解析式可求得k的值,可求得雙曲線解析式;(2)設P(x,0),則可表示出PC的長,進一步表示出△ACP的面積,可得到關于x的方程,解方程可求得P點的坐標.【詳解】解:(1)把A(2,n)代入直線解析式得:n=3,∴A(2,3),把A坐標代入y=,得k=6,則雙曲線解析式為y=.(2)對于直線y=x+2,令y=0,得到x=-4,即C(-4,0).設P(x,0),可得PC=|x+4|.∵△ACP面積為5,∴|x+4|?3=5,即|x+4|=2,解得:x=-或x=-,則P坐標為或.22、(1)見解析;(2)w=2x+9200,方案見解析;(3)0<m<2時,(2)中調(diào)運方案總運費最??;m=2時,在40?x?240的前提下調(diào)運方案的總運費不變;2<m<15時,x=240總運費最小.【解析】
(1)根據(jù)題意可得解.(2)w與x之間的函數(shù)關系式為:w=20(240?x)+25(x?40)+15x+18(300?x);列不等式組解出40≤x≤240,可由w隨x的增大而增大,得出總運費最小的調(diào)運方案.(3)根據(jù)題意得出w與x之間的函數(shù)關系式,然后根據(jù)m的取值范圍不同分別分析得出總運費最小的調(diào)運方案.【詳解】解:(1)填表:依題意得:20(240?x)+25(x?40)=15x+18(300?x).解得:x=200.(2)w與x之間的函數(shù)關系為:w=20(240?x)+25(x?40)+15x+18(300?x)=2x+9200.依題意得:∴40?x?240在w=2x+9200中,∵2>0,∴w隨x的增大而增大,故當x=40時,總運費最小,此時調(diào)運方案為如表.(3)由題意知w=20(240?x)+25(x?40)+(15-m)x+18(300?x)=(2?m)x+9200∴0<m<2時,(2)中調(diào)運方案總運費最小;m=2時,在40?x?240的前提下調(diào)運方案的總運費不變;2<m<15時,x=240總運費最小,其調(diào)運方案如表二.【點睛】此題考查一次函數(shù)的應用,解題關鍵在于根據(jù)題意列出w與x之間的函數(shù)關系式,并注意分類討論思想的應用.23、(1)見解析;(2)40°.【解析】
(1)根據(jù)角平分線的性質(zhì)可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,進而可得出∠EDC=∠ECD,再利用等角對等邊即可證出DE=CE;(2)由(1)可得出∠ECD=∠EDC=35°,進而可得出∠ACB=2∠ECD=70°,再根據(jù)等腰三角形的性質(zhì)結合三角形內(nèi)角和定理即可求出∠A的度數(shù).【詳解】(1)∵CD是∠ACB的平分線,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.【點睛】本題考查了等腰三角形的判定與性質(zhì)、平行線的性質(zhì)以及角平分線.解題的關鍵是:(1)根據(jù)平行線的性質(zhì)結合角平分線的性質(zhì)找出∠EDC=∠ECD;(2)利用角平分線的性質(zhì)結合等腰三角形的性質(zhì)求出∠ACB=∠ABC=70°.24、(1);(2)x>1;(3)P(﹣,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入雙曲線y=,可得y與x之間的函數(shù)關系式;(2)依據(jù)A(1,3),可得當x>0時,不等式x+b>的解集為x>1;(3)分兩種情況進行討論,AP把△ABC的面積分成1:3兩部分,則CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,進而得出點P的坐標.詳解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入雙曲線y=,可得k=1×3=3,∴y與x之間的函數(shù)關系式為:y=;(2)∵A(1,3),∴當x>0時,不等式x+b>的解集為:x>1;(3)y1=﹣x+4,令y=0,則x=4,∴點B的坐標為(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y2=0,則x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面積分成1:3兩部分,∴CP=BC=,或BP=BC=∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).點睛:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標,把兩個函數(shù)關系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.25、(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解析】
(1)依據(jù)點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據(jù)Rt△ABC中,點F為斜邊BC的中點,可得AF=CF=BF,再根據(jù)等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點A為旋轉(zhuǎn)中心將正方形ABCD逆時針旋轉(zhuǎn)60°,②以點A為旋轉(zhuǎn)中心將正方形ABCD順時針旋轉(zhuǎn)60°,分別依據(jù)旋轉(zhuǎn)的性質(zhì)以及勾股定理,即可得到結論.【詳解】(1)∵AB=AD,CB=CD,∴點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點F為斜邊BC的中點,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四邊形AMFN是矩形;(3)BD′的平方為16+8或16﹣8.分兩種情況:①以點A為旋轉(zhuǎn)中心將正方形ABCD逆時針旋轉(zhuǎn)60°,如圖所示:過D'作D'E⊥AB,交BA的延長線于E,由旋轉(zhuǎn)可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以點A為旋轉(zhuǎn)中心將正方形ABCD順時針旋轉(zhuǎn)60°,如圖所示:過B作BF⊥AD'于F,旋轉(zhuǎn)可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8綜上所述,BD′平方的長度為16+8或16﹣8.【點睛】本題屬于四邊形綜合題,主要考查了正方形的性質(zhì),矩形的判定,旋轉(zhuǎn)的性質(zhì),線段垂直平分線的性質(zhì)以及勾股定理的綜合運用,解決問題的關鍵是作輔助線構造直角三角形,依據(jù)勾股定理進行計算求解.解題時注意:有三個角是直角的四邊形是矩形.26、(1)①證明見解析;②證明見解析;(2),證明見解析.【解析】
(1)①利用矩形的性質(zhì),結合已知條件可證△PMN≌△PDF,則可證得結論;②由勾股定理可求得DM=DP,利用①可求得MN=DF,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 采油工道德考核試卷含答案
- 建筑幕墻設計師安全演練強化考核試卷含答案
- 2025四川雅安雨城區(qū)定向招聘社區(qū)工作者38人備考題庫附答案
- 塑料真空成型工8S考核試卷含答案
- 飛機任務系統(tǒng)裝調(diào)工創(chuàng)新思維競賽考核試卷含答案
- 電子電氣產(chǎn)品能效檢驗員成果考核試卷含答案
- 電鳴樂器接裝工操作技能考核試卷含答案
- 照相機及器材制造工創(chuàng)新意識考核試卷含答案
- 2024年湖南石油化工職業(yè)技術學院輔導員招聘考試真題匯編附答案
- 2024年滇西科技師范學院輔導員考試筆試題庫附答案
- 能源行業(yè)人力資源開發(fā)新策略
- 工作照片拍攝培訓課件
- 2025年海南三亞市吉陽區(qū)教育系統(tǒng)公開招聘編制教師122人(第1號)筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2026年孝昌縣供水有限公司公開招聘正式員工備考題庫參考答案詳解
- 托管學校合作合同協(xié)議
- 產(chǎn)品銷售團隊外包協(xié)議書
- 2025年醫(yī)保局支部書記述職報告
- 汽車充電站安全知識培訓課件
- 世說新語課件
- 全體教師大會上副校長講話:點醒了全校200多名教師!毀掉教學質(zhì)量的不是學生是這7個環(huán)節(jié)
- 民航招飛pat測試題目及答案
評論
0/150
提交評論