版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
數(shù)列的求和考綱要求掌握等差數(shù)列、等比數(shù)列的前n項和公式,能把某些不是等差和等比數(shù)列的求和問題轉(zhuǎn)化為等差、等比數(shù)列來解決;掌握裂項求和的思想方法,掌握錯位相減法求和的思想方法,并能靈活的運用這些方法解決相應(yīng)問題.一.公式法:①等差數(shù)列的前n項和公式:②等比數(shù)列的前n項和公式③④⑤⑥2+4+6+…+2n=
;⑦1+3+5+…+(2n-1)=
;n2+nn2
例2求和:1+(1/a)+(1/a2)+……+(1/an)2.分組求和法:
若數(shù)列的通項可轉(zhuǎn)化為
的形式,且數(shù)列可求出前n項和例3.求下列數(shù)列的前n項和(1)
解(1):該數(shù)列的通項公式為
錯位相減法:如果一個數(shù)列的各項是由一個等差數(shù)列與一個等比數(shù)列對應(yīng)項乘積組成,此時求和可采用錯位相減法.既{anbn}型等差等比例4、求和Sn=1+2x+3x2+……+nxn-1(x≠0,1)[分析]這是一個等差數(shù)列{n}與一個等比數(shù)列{xn-1}的對應(yīng)相乘構(gòu)成的新數(shù)列,這樣的數(shù)列求和該如何求呢?Sn=1+2x+3x2
+……+nxn-1①
xSn=x+2x2
+……+(n-1)xn-1+nxn②(1-x)Sn=1+x+x2+……+xn-1-
nxnn項這時等式的右邊是一個等比數(shù)列的前n項和與一個式子的和,這樣我們就可以化簡求值。錯位相減法例4、求和Sn=1+2x+3x2++nxn-1(x≠0,1)解:∵Sn=1+2x+3x2++nxn-1∴xSn=x+2x2++(n-1)xn-1+nxn∴①-②,得:(1-x)
Sn=1+x+x2++xn-1-
nxn1-(1+n)xn+nxn+11-x=∴Sn=1-(1+n)xn+nxn+1(1-x)21-xn1-x=-
nxn…………………練習(xí):求和Sn=1/2+3/4+5/8+……+(2n-1)/2n求和Sn=1/2+3/4+5/8+……+(2n-1)/2n2.設(shè)數(shù)列滿足a1+3a2+32a3+…+3n-1an=,a∈N*.(1)求數(shù)列的通項;(2)設(shè)bn=,求數(shù)列的前n項和Sn.變式探究2.設(shè)數(shù)列滿足a1+3a2+32a3+…+3n-1an=,a∈N*.(1)求數(shù)列的通項;(2)設(shè)bn=,求數(shù)列的前n項和Sn.解析:(1)a1+3a2+32a3+…+3n-1an=,①(2)bn=n·3n,Sn=1·3+2·32+3·33+…+n·3n,3Sn=1·32+2·33+3·34+…+(n-1)·3n+n·3n+1兩式相減,得-2Sn=3+32+33+…+3n-n·3n+1,列項求和法:把數(shù)列的通項拆成兩項之差,即數(shù)列的每一項都可按此法拆成兩項之差,在求和時一些正負(fù)項相互抵消,于是前n項的和變成首尾若干少數(shù)項之和,這一求和方法稱為分裂通項法.(見到分式型的要往這種方法聯(lián)想)常見的拆項公式有:常見的裂項公式有:7n·n!=(n+1)!-n??;89例5、Sn=++……+11×313×51(2n-1)×(2n+1)[分析]:觀察數(shù)列的前幾項:1(2n-1)×(2n+1)=(-)212n-112n+11這時我們就能把數(shù)列的每一項裂成兩項再求和,這種方法叫什么呢?拆項相消法11×3=(-213111)例5、Sn=++……+11×313×51(2n-1)×(2n+1)解:由通項an=1(2n-1)×(2n+1)=(-)212n-112n+11∴Sn=
(-+-+……+-)21311151312n-112n+11=(1-)212n+112n+1n=評:裂項相消法的關(guān)鍵就是將數(shù)列的每一項拆成二項或多項使數(shù)列中的項出現(xiàn)有規(guī)律的抵消項,進而達到求和的目的?!病场痉治觥克o數(shù)列為倒數(shù)構(gòu)成的數(shù)列,故應(yīng)研究通項,看能否拆為兩項之差的形式,以便使用裂項相消法.【解析】求數(shù)列,…的前n項和.變式探究:設(shè)數(shù)列{an}的前n項和為Sn,點(n,)(n∈N*)均在函數(shù)y=3x-2的圖象上.(1)求數(shù)列{an}的通項公式;(2),Tn是數(shù)列{bn}的前n項和,求使得Tn<對所有n∈N*都成立的最小正整數(shù)m.例4.
(1)依題意得=3n-2,即Sn=3n2-2n.
當(dāng)n≥2時,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5;當(dāng)n=1時,a1=S1=3×12-2×1=1=6×1-5,∴an=6n-5(n∈N*).
(2)由(1)得bn=
故Tn=b1+b2+…+bn
因此,使得(n∈N*)成立的m必須滿足,即m≥10.
故滿足要求的最小正整數(shù)m為10.〔〕
cn=an+bn({an}、{bn}為等差或等比數(shù)列。)項的特征反思與小結(jié):要善于從通項公式中看本質(zhì):一個等差{n}+一個等比{2n},另外要特別觀察通項公式,如果通項公式?jīng)]給出,則有時我們需求出通項公式,這樣才能找規(guī)律解題.分組求和法
,+n1練習(xí)1.求數(shù)列+23,+
的前n項和。,
222,
32
n2+
1
2
3
n
解:=(1+2+3+…+n)
Sn=(1+2)+(2+)+(3+)+…+(n+
)
2
2
3
2
n
2
+(2+2+2+…+2)n23=n(n+1)22(2-1)2-1n+=n(n+1)2+2-2n+1…分組求和法2求數(shù)列1,3+4,5+6+7,7+8+9+10,…,前n項和Sn.2∵ak=(2k-1)+2k+(2k+1)+…+[(2k-1)+(k-1)]∴Sn=a1+a2+…+an點評:運用分組求和法數(shù)列前n項和公式時,要注意先考慮通項公式.解析例6:1-22+32-42+…+(2n-1)2-(2n)2=?局部重組轉(zhuǎn)化為常見數(shù)列并項求和練習(xí):已知Sn=-1+3-5+7+…+(-1)n(2n-1),1)求S20,S212)求SnS20=-1+3+(-5)+7+……+(-37
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 陜西省安塞區(qū)高級中學(xué)2025-2026學(xué)年度第一學(xué)期期末高一地理考試(含答案)
- 2025-2026學(xué)年陜西省銅川二中九年級(上)期末數(shù)學(xué)試卷(含答案)
- 2026屆高三生物二輪復(fù)習(xí)課件:專題七 熱點聚焦 生態(tài)位
- 12月轉(zhuǎn)債策略展望:震蕩高低切或持續(xù)建議穩(wěn)健配置
- 飛機附件培訓(xùn)
- 2026臺州市水利水電勘測設(shè)計院有限公司招聘筆試備考試題及答案解析
- 2026年西北民族大學(xué)舞蹈學(xué)院專任教師招聘考試備考試題及答案解析
- 2026時代北汽(北京)新能源科技有限公司 (正式工)招聘備考考試試題及答案解析
- 2026廣東廣州市天河區(qū)培藝學(xué)校招聘初中英語老師1人備考考試題庫及答案解析
- 2026年度煙臺招遠市事業(yè)單位公開招聘工作人員(47人)備考考試試題及答案解析
- 大數(shù)據(jù)驅(qū)動下的塵肺病發(fā)病趨勢預(yù)測模型
- 炎德英才大聯(lián)考雅禮中學(xué)2026屆高三月考試卷英語(五)(含答案)
- 【道 法】期末綜合復(fù)習(xí) 課件-2025-2026學(xué)年統(tǒng)編版道德與法治七年級上冊
- 2025-2026學(xué)年仁愛科普版七年級英語上冊(全冊)知識點梳理歸納
- TNAHIEM 156-2025 口內(nèi)數(shù)字印模設(shè)備消毒滅菌管理規(guī)范
- 頂棚保溫施工組織方案
- ISO13485:2016醫(yī)療器械質(zhì)量管理手冊+全套程序文件+表單全套
- 學(xué)校6S管理培訓(xùn)
- DB15-T 4031-2025 建設(shè)項目水資源論證表編制導(dǎo)則
- 2025-2030國學(xué)啟蒙教育傳統(tǒng)文化復(fù)興與商業(yè)模式探索報告
- 2025年事業(yè)單位考試(醫(yī)療衛(wèi)生類E類)職業(yè)能力傾向測驗試卷及答案指導(dǎo)
評論
0/150
提交評論