山東省日照嵐山區(qū)市級名校2025屆初三5月份月考試卷數(shù)學(xué)試題試卷含解析_第1頁
山東省日照嵐山區(qū)市級名校2025屆初三5月份月考試卷數(shù)學(xué)試題試卷含解析_第2頁
山東省日照嵐山區(qū)市級名校2025屆初三5月份月考試卷數(shù)學(xué)試題試卷含解析_第3頁
山東省日照嵐山區(qū)市級名校2025屆初三5月份月考試卷數(shù)學(xué)試題試卷含解析_第4頁
山東省日照嵐山區(qū)市級名校2025屆初三5月份月考試卷數(shù)學(xué)試題試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

山東省日照嵐山區(qū)市級名校2025屆初三5月份月考試卷數(shù)學(xué)試題試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.某自行車廠準(zhǔn)備生產(chǎn)共享單車4000輛,在生產(chǎn)完1600輛后,采用了新技術(shù),使得工作效率比原來提高了20%,結(jié)果共用了18天完成任務(wù),若設(shè)原來每天生產(chǎn)自行車x輛,則根據(jù)題意可列方程為()A.+=18 B.=18C.+=18 D.=182.如圖給定的是紙盒的外表面,下面能由它折疊而成的是()A. B. C. D.3.已知x1,x2是關(guān)于x的方程x2+ax-2b=0的兩個實(shí)數(shù)根,且x1+x2=-2,x1·x2=1,則ba的值是()A.14 B.-14.若等式x2+ax+19=(x﹣5)2﹣b成立,則a+b的值為()A.16 B.﹣16 C.4 D.﹣45.如圖,已知二次函數(shù)y=ax2+bx的圖象與正比例函數(shù)y=kx的圖象相交于點(diǎn)A(1,2),有下面四個結(jié)論:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正確的是()A.①② B.②③ C.①④ D.③④6.如果向北走6km記作+6km,那么向南走8km記作()A.+8kmB.﹣8kmC.+14kmD.﹣2km7.將直徑為60cm的圓形鐵皮,做成三個相同的圓錐容器的側(cè)面(不浪費(fèi)材料,不計(jì)接縫處的材料損耗),那么每個圓錐容器的底面半徑為()A.10cm B.30cm C.45cm D.300cm8.的倒數(shù)的絕對值是()A. B. C. D.9.向某一容器中注水,注滿為止,表示注水量與水深的函數(shù)關(guān)系的圖象大致如圖所示,則該容器可能是()A. B.C. D.10.兩個同心圓中大圓的弦AB與小圓相切于點(diǎn)C,AB=8,則形成的圓環(huán)的面積是()A.無法求出 B.8 C.8 D.16二、填空題(本大題共6個小題,每小題3分,共18分)11.⊙O的半徑為10cm,AB,CD是⊙O的兩條弦,且AB∥CD,AB=16cm,CD=12cm.則AB與CD之間的距離是cm.12.閱讀材料:設(shè)=(x1,y1),=(x2,y2),如果∥,則x1?y2=x2?y1.根據(jù)該材料填空:已知=(2,3),=(4,m),且∥,則m=_____.13.如圖,正方形ABCD中,AB=3,以B為圓心,AB長為半徑畫圓B,點(diǎn)P在圓B上移動,連接AP,并將AP繞點(diǎn)A逆時針旋轉(zhuǎn)90°至Q,連接BQ,在點(diǎn)P移動過程中,BQ長度的最小值為_____.14.已知某二次函數(shù)圖像的最高點(diǎn)是坐標(biāo)原點(diǎn),請寫出一個符合要求的函數(shù)解析式:_______.15.已知關(guān)于x的不等式組只有四個整數(shù)解,則實(shí)數(shù)a的取值范是______.16.從﹣1,2,3,﹣6這四個數(shù)中任選兩數(shù),分別記作m,n,那么點(diǎn)(m,n)在函數(shù)圖象上的概率是.三、解答題(共8題,共72分)17.(8分)如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.(1)求證:ED為⊙O的切線;(2)若⊙O的半徑為3,ED=4,EO的延長線交⊙O于F,連DF、AF,求△ADF的面積.18.(8分)已知圓O的半徑長為2,點(diǎn)A、B、C為圓O上三點(diǎn),弦BC=AO,點(diǎn)D為BC的中點(diǎn),(1)如圖,連接AC、OD,設(shè)∠OAC=α,請用α表示∠AOD;(2)如圖,當(dāng)點(diǎn)B為的中點(diǎn)時,求點(diǎn)A、D之間的距離:(3)如果AD的延長線與圓O交于點(diǎn)E,以O(shè)為圓心,AD為半徑的圓與以BC為直徑的圓相切,求弦AE的長.19.(8分)計(jì)算:|﹣|﹣﹣(2﹣π)0+2cos45°.解方程:=1﹣20.(8分)某商品的進(jìn)價為每件50元.當(dāng)售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:(1)若設(shè)每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;(2)當(dāng)降價多少元時,每星期的利潤最大?最大利潤是多少?21.(8分)(問題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關(guān)系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點(diǎn)M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60°,得到正方形AB'C'D',請直接寫出BD'平方的值.22.(10分)如圖所示,內(nèi)接于圓O,于D;(1)如圖1,當(dāng)AB為直徑,求證:;(2)如圖2,當(dāng)AB為非直徑的弦,連接OB,則(1)的結(jié)論是否成立?若成立請證明,不成立說明由;(3)如圖3,在(2)的條件下,作于E,交CD于點(diǎn)F,連接ED,且,若,,求CF的長度.23.(12分)如圖①是一副創(chuàng)意卡通圓規(guī),圖②是其平面示意圖,OA是支撐臂,OB是旋轉(zhuǎn)臂.使用時,以點(diǎn)A為支撐點(diǎn),鉛筆芯端點(diǎn)B可繞點(diǎn)A旋轉(zhuǎn)作出圓.已知OA=OB=10cm.(1)當(dāng)∠AOB=18°時,求所作圓的半徑(結(jié)果精確到0.01cm);(2)保持∠AOB=18°不變,在旋轉(zhuǎn)臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,求鉛筆芯折斷部分的長度(結(jié)果精確到0.01cm,參考數(shù)據(jù):sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科學(xué)計(jì)算器).24.如圖,已知點(diǎn)A,B的坐標(biāo)分別為(0,0)、(2,0),將△ABC繞C點(diǎn)按順時針方向旋轉(zhuǎn)90°得到△A1B1C.(1)畫出△A1B1C;(2)A的對應(yīng)點(diǎn)為A1,寫出點(diǎn)A1的坐標(biāo);(3)求出B旋轉(zhuǎn)到B1的路線長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)前后的時間和是18天,可以列出方程.【詳解】若設(shè)原來每天生產(chǎn)自行車x輛,根據(jù)前后的時間和是18天,可以列出方程.故選B本題考核知識點(diǎn):分式方程的應(yīng)用.解題關(guān)鍵點(diǎn):根據(jù)時間關(guān)系,列出分式方程.2、B【解析】

將A、B、C、D分別展開,能和原圖相對應(yīng)的即為正確答案:【詳解】A、展開得到,不能和原圖相對應(yīng),故本選項(xiàng)錯誤;B、展開得到,能和原圖相對,故本選項(xiàng)正確;C、展開得到,不能和原圖相對應(yīng),故本選項(xiàng)錯誤;D、展開得到,不能和原圖相對應(yīng),故本選項(xiàng)錯誤.故選B.3、A【解析】

根據(jù)根與系數(shù)的關(guān)系和已知x1+x2和x1?x2的值,可求a、b的值,再代入求值即可.【詳解】解:∵x1,x2是關(guān)于x的方程x2+ax﹣2b=0的兩實(shí)數(shù)根,∴x1+x2=﹣a=﹣2,x1?x2=﹣2b=1,解得a=2,b=-1∴ba=(-12)2=故選A.4、D【解析】分析:已知等式利用完全平方公式整理后,利用多項(xiàng)式相等的條件求出a與b的值,即可求出a+b的值.詳解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,則a+b=-10+6=-4,故選D.點(diǎn)睛:此題考查了完全平方公式,熟練掌握完全平方公式是解本題的關(guān)鍵.5、B【解析】

根據(jù)拋物線圖象性質(zhì)確定a、b符號,把點(diǎn)A代入y=ax2+bx得到a與b數(shù)量關(guān)系,代入②,不等式kx≤ax2+bx的解集可以轉(zhuǎn)化為函數(shù)圖象的高低關(guān)系.【詳解】解:根據(jù)圖象拋物線開口向上,對稱軸在y軸右側(cè),則a>0,b<0,則①錯誤將A(1,2)代入y=ax2+bx,則2=9a+1b∴b=,∴a﹣b=a﹣()=4a﹣>-,故②正確;由正弦定義sinα=,則③正確;不等式kx≤ax2+bx從函數(shù)圖象上可視為拋物線圖象不低于直線y=kx的圖象則滿足條件x范圍為x≥1或x≤0,則④錯誤.故答案為:B.二次函數(shù)的圖像,sinα公式,不等式的解集.6、B【解析】

正負(fù)數(shù)的應(yīng)用,先判斷向北、向南是不是具有相反意義的量,再用正負(fù)數(shù)表示出來【詳解】解:向北和向南互為相反意義的量.若向北走6km記作+6km,那么向南走8km記作﹣8km.故選:B.本題考查正負(fù)數(shù)在生活中的應(yīng)用.注意用正負(fù)數(shù)表示的量必須是具有相反意義的量.7、A【解析】

根據(jù)已知得出直徑是的圓形鐵皮,被分成三個圓心角為半徑是30cm的扇形,再根據(jù)扇形弧長等于圓錐底面圓的周長即可得出答案?!驹斀狻恐睆绞堑膱A形鐵皮,被分成三個圓心角為半徑是30cm的扇形假設(shè)每個圓錐容器的地面半徑為解得故答案選A.本題考查扇形弧長的計(jì)算方法和扇形圍成的圓錐底面圓的半徑的計(jì)算方法。8、D【解析】

直接利用倒數(shù)的定義結(jié)合絕對值的性質(zhì)分析得出答案.【詳解】解:?的倒數(shù)為?,則?的絕對值是:.故答案選:D.本題考查了倒數(shù)的定義與絕對值的性質(zhì),解題的關(guān)鍵是熟練的掌握倒數(shù)的定義與絕對值的性質(zhì).9、D【解析】

根據(jù)函數(shù)的圖象和所給出的圖形分別對每一項(xiàng)進(jìn)行判斷即可.【詳解】由函數(shù)圖象知:隨高度h的增加,y也增加,但隨h變大,每單位高度的增加,注水量h的增加量變小,圖象上升趨勢變緩,其原因只能是水瓶平行于底面的截面的半徑由底到頂逐漸變小,故D項(xiàng)正確.故選:D.本題主要考查函數(shù)模型及其應(yīng)用.10、D【解析】試題分析:設(shè)AB于小圓切于點(diǎn)C,連接OC,OB.∵AB于小圓切于點(diǎn)C,∴OC⊥AB,∴BC=AC=AB=×8=4cm.∵圓環(huán)(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圓環(huán)(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)=π?BC2=16π.故選D.考點(diǎn):1.垂徑定理的應(yīng)用;2.切線的性質(zhì).二、填空題(本大題共6個小題,每小題3分,共18分)11、2或14【解析】

分兩種情況進(jìn)行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理求解即可.【詳解】①當(dāng)弦AB和CD在圓心同側(cè)時,如圖,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF?OE=2cm;②當(dāng)弦AB和CD在圓心異側(cè)時,如圖,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB與CD之間的距離為14cm或2cm.故答案為:2或14.12、6【解析】根據(jù)題意得,2m=3×4,解得m=6,故答案為6.13、3﹣1【解析】

通過畫圖發(fā)現(xiàn),點(diǎn)Q的運(yùn)動路線為以D為圓心,以1為半徑的圓,可知:當(dāng)Q在對角線BD上時,BQ最小,先證明△PAB≌△QAD,則QD=PB=1,再利用勾股定理求對角線BD的長,則得出BQ的長.【詳解】如圖,當(dāng)Q在對角線BD上時,BQ最?。B接BP,由旋轉(zhuǎn)得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.∵四邊形ABCD為正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ長度的最小值為(3﹣1).故答案為3﹣1.本題是圓的綜合題.考查了正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)和最小值問題,尋找點(diǎn)Q的運(yùn)動軌跡是本題的關(guān)鍵,通過證明兩三角形全等求出BQ長度的最小值最小值.14、等【解析】

根據(jù)二次函數(shù)的圖象最高點(diǎn)是坐標(biāo)原點(diǎn),可以得到a<0,b=0,c=0,所以解析式滿足a<0,b=0,c=0即可.【詳解】解:根據(jù)二次函數(shù)的圖象最高點(diǎn)是坐標(biāo)原點(diǎn),可以得到a<0,b=0,c=0,例如:.此題是開放性試題,考查函數(shù)圖象及性質(zhì)的綜合運(yùn)用,對考查學(xué)生所學(xué)函數(shù)的深入理解、掌握程度具有積極的意義.15、-3<a≤-2【解析】分析:求出不等式組中兩不等式的解集,根據(jù)不等式取解集的方法:同大取大;同小取小;大大小小無解;大小小大取中間的法則表示出不等式組的解集,由不等式組只有四個整數(shù)解,根據(jù)解集取出四個整數(shù)解,即可得出a的范圍.詳解:由不等式①解得:由不等式②移項(xiàng)合并得:?2x>?4,解得:x<2,∴原不等式組的解集為由不等式組只有四個整數(shù)解,即為1,0,?1,?2,可得出實(shí)數(shù)a的范圍為故答案為點(diǎn)睛:考查一元一次不等式組的整數(shù)解,求不等式的解集,根據(jù)不等式組有4個整數(shù)解覺得實(shí)數(shù)的取值范圍.16、.【解析】試題分析:畫樹狀圖得:∵共有12種等可能的結(jié)果,點(diǎn)(m,n)恰好在反比例函數(shù)圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(diǎn)(m,n)在函數(shù)圖象上的概率是:=.故答案為.考點(diǎn):反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征;列表法與樹狀圖法.三、解答題(共8題,共72分)17、(1)見解析;(2)△ADF的面積是.【解析】試題分析:(1)連接OD,CD,求出∠BDC=90°,根據(jù)OE∥AB和OA=OC求出BE=CE,推出DE=CE,根據(jù)SSS證△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;

(2)過O作OM⊥AB于M,過F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根據(jù)sin∠BAC=,求出OM,根據(jù)cos∠BAC=,求出AM,根據(jù)垂徑定理求出AD,代入三角形的面積公式求出即可.試題解析:(1)證明:連接OD,CD,∵AC是⊙O的直徑,∴∠CDA=90°=∠BDC,∵OE∥AB,CO=AO,∴BE=CE,∴DE=CE,∵在△ECO和△EDO中,∴△ECO≌△EDO,∴∠EDO=∠ACB=90°,即OD⊥DE,OD過圓心O,∴ED為⊙O的切線.(2)過O作OM⊥AB于M,過F作FN⊥AB于N,則OM∥FN,∠OMN=90°,∵OE∥AB,∴四邊形OMFN是矩形,∴FN=OM,∵DE=4,OC=3,由勾股定理得:OE=5,∴AC=2OC=6,∵OE∥AB,∴△OEC∽△ABC,∴,∴,∴AB=10,在Rt△BCA中,由勾股定理得:BC==8,sin∠BAC=,即,OM==FN,∵cos∠BAC=,∴AM=由垂徑定理得:AD=2AM=,即△ADF的面積是AD×FN=××=.答:△ADF的面積是.【點(diǎn)睛】考查了切線的性質(zhì)和判定,勾股定理,三角形的面積,垂徑定理,直角三角形的斜邊上中線性質(zhì),全等三角形的性質(zhì)和判定等知識點(diǎn)的運(yùn)用,通過做此題培養(yǎng)了學(xué)生的分析問題和解決問題的能力.18、(1);(2);(3)【解析】

(1)連接OB、OC,可證△OBC是等邊三角形,根據(jù)垂徑定理可得∠DOC等于30°,OA=OC可得∠ACO=∠CAO=α,利用三角形的內(nèi)角和定理即可表示出∠AOD的值.(2)連接OB、OC,可證△OBC是等邊三角形,根據(jù)垂徑定理可得∠DOB等于30°,因?yàn)辄c(diǎn)D為BC的中點(diǎn),則∠AOB=∠BOC=60°,所以∠AOD等于90°,根據(jù)OA=OB=2,在直角三角形中用三角函數(shù)及勾股定理即可求得OD、AD的長.(3)分兩種情況討論:兩圓外切,兩圓內(nèi)切.先根據(jù)兩圓相切時圓心距與兩圓半徑的關(guān)系,求出AD的長,再過O點(diǎn)作AE的垂線,利用勾股定理列出方程即可求解.【詳解】(1)如圖1:連接OB、OC.∵BC=AO∴OB=OC=BC∴△OBC是等邊三角形∴∠BOC=60°∵點(diǎn)D是BC的中點(diǎn)∴∠BOD=∵OA=OC∴=α∴∠AOD=180°-α-α-=150°-2α(2)如圖2:連接OB、OC、OD.由(1)可得:△OBC是等邊三角形,∠BOD=∵OB=2,∴OD=OB?cos=∵B為的中點(diǎn),∴∠AOB=∠BOC=60°∴∠AOD=90°根據(jù)勾股定理得:AD=(3)①如圖3.圓O與圓D相內(nèi)切時:連接OB、OC,過O點(diǎn)作OF⊥AE∵BC是直徑,D是BC的中點(diǎn)∴以BC為直徑的圓的圓心為D點(diǎn)由(2)可得:OD=,圓D的半徑為1∴AD=設(shè)AF=x在Rt△AFO和Rt△DOF中,即解得:∴AE=②如圖4.圓O與圓D相外切時:連接OB、OC,過O點(diǎn)作OF⊥AE∵BC是直徑,D是BC的中點(diǎn)∴以BC為直徑的圓的圓心為D點(diǎn)由(2)可得:OD=,圓D的半徑為1∴AD=在Rt△AFO和Rt△DOF中,即解得:∴AE=本題主要考查圓的相關(guān)知識:垂徑定理,圓與圓相切的條件,關(guān)鍵是能靈活運(yùn)用垂徑定理和勾股定理相結(jié)合思考問題,另外需注意圓相切要分內(nèi)切與外切兩種情況.19、(1)﹣1;(2)x=﹣1是原方程的根.【解析】

(1)直接化簡二次根式進(jìn)而利用零指數(shù)冪的性質(zhì)以及特殊角三角函數(shù)值進(jìn)而得出答案;(2)直接去分母再解方程得出答案.【詳解】(1)原式=﹣2﹣1+2×=﹣﹣1+=﹣1;(2)去分母得:3x=x﹣3+1,解得:x=﹣1,檢驗(yàn):當(dāng)x=﹣1時,x﹣3≠0,故x=﹣1是原方程的根.此題主要考查了實(shí)數(shù)運(yùn)算和解分式方程,正確掌握解分式方程的方法是解題關(guān)鍵.20、(1)0≤x<20;(2)降價2.5元時,最大利潤是6125元【解析】

(1)根據(jù)“總利潤=單件利潤×銷售量”列出函數(shù)解析式,由“確保盈利”可得x的取值范圍.

(2)將所得函數(shù)解析式配方成頂點(diǎn)式可得最大值.【詳解】(1)根據(jù)題意得y=(70?x?50)(300+20x)=?20x2+100x+6000,∵70?x?50>0,且x≥0,∴0≤x<20.(2)∵y=?20x2+100x+6000=?20(x?)2+6125,∴當(dāng)x=時,y取得最大值,最大值為6125,答:當(dāng)降價2.5元時,每星期的利潤最大,最大利潤是6125元.本題考查的知識點(diǎn)是二次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練的掌握二次函數(shù)的應(yīng)用.21、(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解析】

(1)依據(jù)點(diǎn)A在線段BD的垂直平分線上,點(diǎn)C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據(jù)Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),可得AF=CF=BF,再根據(jù)等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進(jìn)而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD逆時針旋轉(zhuǎn)60°,②以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD順時針旋轉(zhuǎn)60°,分別依據(jù)旋轉(zhuǎn)的性質(zhì)以及勾股定理,即可得到結(jié)論.【詳解】(1)∵AB=AD,CB=CD,∴點(diǎn)A在線段BD的垂直平分線上,點(diǎn)C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四邊形AMFN是矩形;(3)BD′的平方為16+8或16﹣8.分兩種情況:①以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD逆時針旋轉(zhuǎn)60°,如圖所示:過D'作D'E⊥AB,交BA的延長線于E,由旋轉(zhuǎn)可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD順時針旋轉(zhuǎn)60°,如圖所示:過B作BF⊥AD'于F,旋轉(zhuǎn)可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8綜上所述,BD′平方的長度為16+8或16﹣8.本題屬于四邊形綜合題,主要考查了正方形的性質(zhì),矩形的判定,旋轉(zhuǎn)的性質(zhì),線段垂直平分線的性質(zhì)以及勾股定理的綜合運(yùn)用,解決問題的關(guān)鍵是作輔助線構(gòu)造直角三角形,依據(jù)勾股定理進(jìn)行計(jì)算求解.解題時注意:有三個角是直角的四邊形是矩形.22、(1)見解析;(2)成立;(3)【解析】

(1)根據(jù)圓周角定理求出∠ACB=90°,求出∠ADC=90°,再根據(jù)三角形內(nèi)角和定理求出即可;(2)根據(jù)圓周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,在AD上取DG=BD,延長CG交AK于M,延長KO交⊙O于N,連接CN、AN,求出關(guān)于a的方程,再求出a即可.【詳解】(1)證明:∵AB為直徑,∴,∵于D,∴,∴,,∴;(2)成立,證明:連接OC,由圓周角定理得:,∵,∴,∵,∴,∴;(3)分別延長AE、C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論