版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省宜昌第二中學2025屆數(shù)學高二上期末教學質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.知點分別為圓上的動.點,為軸上一點,則的最小值()A. B.C. D.2.已知m是2與8的等比中項,則圓錐曲線x2﹣=1的離心率是()A.或 B.C. D.或3.如圖,在三棱錐中,,二面角的正弦值是,則三棱錐外接球的表面積是()A. B.C. D.4.命題“存在,使得”的否定為()A.存在, B.對任意,C對任意, D.對任意,5.命題“對任意,都有”的否定是()A.對任意,都有 B.存在,使得C.對任意,都有 D.存在,使得6.已知正方體的棱長為1,且滿足,則的最小值是()A. B.C. D.7.已知是虛數(shù)單位,則復數(shù)在復平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限8.已知雙曲線的虛軸長是實軸長的2倍,則實數(shù)的值是A. B.C. D.9.已知分別是等差數(shù)列的前項和,且,則()A. B.C. D.10.直線y=x+1與圓x2+y2=1的位置關(guān)系為A.相切B.相交但直線不過圓心C.直線過圓心D.相離11.如果一個矩形長與寬的比值為,那么稱該矩形為黃金矩形.如圖,已知是黃金矩形,,分別在邊,上,且也是黃金矩形.若在矩形內(nèi)任取一點,則該點取自黃金矩形內(nèi)的概率為()A. B.C. D.12.若函數(shù)在上有且僅有一個極值點,則實數(shù)的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.與圓外切于原點,且被y軸截得的弦長為8的圓的標準方程為__________14.等差數(shù)列的前項和為,已知,則__.15.在一村莊正西方向處有一臺風中心,它正向東北方向移動,移動速度的大小為,距臺風中心以內(nèi)的地區(qū)將受到影響,若臺風中心的這種移動趨勢不變,則村莊所在地大約有_______小時會受到臺風的影響.(參考數(shù)據(jù):)16.根據(jù)某市有關(guān)統(tǒng)計公報顯示,隨著“一帶一路”經(jīng)貿(mào)合作持續(xù)深化,該市對外貿(mào)易近幾年持續(xù)繁榮,2017年至2020年每年進口總額x(單位:千億元)和出口總額y(單位:千億元)之間一組數(shù)據(jù)如下:2017年2018年2019年2020年x1.82.22.63.0y2.02.83.24.0若每年的進出口總額x,y滿足線性相關(guān)關(guān)系,則______;若計劃2022年出口總額達到5千億元,預計該年進口總額為______千億元三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右頂點坐標分別是,,短軸長等于焦距.(1)求橢圓的方程;(2)若直線與橢圓相交于兩點,線段的中點為,求.18.(12分)在①,②,③,,成等比數(shù)列這三個條件中選擇符合題意的兩個條件,補充在下面的問題中,并求解.已知數(shù)列中,公差不等于的等差數(shù)列滿足_________,求數(shù)列的前項和.19.(12分)已知橢圓的離心率為,且過點.(1)求橢圓的方程;(2)四邊形的頂點在橢圓上,且對角線,均過坐標原點,若,求的取值范圍.20.(12分)已知橢圓的長軸長是6,離心率是.(1)求橢圓E的標準方程;(2)設(shè)O為坐標原點,過點的直線l與橢圓E交于A,B兩點,判斷是否存在常數(shù),使得為定值?若存在,求出的值;若不存在,請說明理由.21.(12分)為弘揚中華優(yōu)秀傳統(tǒng)文化,鼓勵全民閱讀經(jīng)典書籍,某市舉行閱讀月活動,現(xiàn)統(tǒng)計某街道約10000人在該活動月每人每日平均閱讀時間(分鐘)的頻率分布直方圖如圖:(1)求x的值;(2)從該街道任選1人,則估計這個人的每日平均閱讀時間超過60分鐘的概率.22.(10分)如圖1是一張長方形鐵片,,,,分別是,中點,,分別在邊,上,且,將它卷成一個圓柱的側(cè)面圖2,使與重合,與重合.(1)求證:平面;(2)求幾何體的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出圓關(guān)于軸的對稱圓的圓心坐標,以及半徑,然后求解圓與圓的圓心距減去兩個圓的半徑和,即可求出的最小值.【詳解】圓關(guān)于軸的對稱圓的圓心坐標,半徑為1,圓的圓心坐標為,半徑為1,∴若與關(guān)于x軸對稱,則,即,當三點不共線時,當三點共線時,所以同理(當且僅當時取得等號)所以當三點共線時,當三點不共線時,所以∴的最小值為圓與圓的圓心距減去兩個圓的半徑和,∴.故選:B.2、A【解析】利用等比數(shù)列求出m,然后求解圓錐曲線的離心率即可【詳解】解:m是2與8的等比中項,可得m=±4,當m=4時,圓錐曲線為雙曲線x2﹣=1,它的離心率為:,當m=-4時,圓錐曲線x2﹣=1為橢圓,離心率:,故選:A3、A【解析】利用二面角S﹣AC﹣B的余弦值求得,由此判斷出,且兩兩垂直,由此將三棱錐補形成正方體,利用正方體的外接球半徑,求得外接球的表面積.【詳解】設(shè)是的中點,連接,由于,所以,所以是二面角的平面角,所以.在三角形中,,在三角形中,,在三角形中,由余弦定理得:,所以,由于,所以兩兩垂直.由此將三棱錐補形成正方體如下圖所示,正方體的邊長為2,則體對角線長為.設(shè)正方體外接球的半徑為,則,所以外接球的表面積為,故選:.4、D【解析】根據(jù)特稱命題否定的方法求解,改變量詞,否定結(jié)論.【詳解】由題意可知命題“存在,使得”的否定為“對任意,”.故選:D.5、B【解析】根據(jù)全稱命題的否定是特稱命題形式,可判斷正確答案.【詳解】因為全稱命題的否定是特稱命題,所以命題“對任意,都有”的否定是“存在,使得”故選:B.6、C【解析】由空間向量共面定理可得點四點共面,從而將求的最小值轉(zhuǎn)化為求點到平面的距離,再根據(jù)等體積法計算.【詳解】因為,由空間向量的共面定理可知,點四點共面,即點在平面上,所以的最小值為點到平面的距離,由正方體棱長為,可得是邊長為的等邊三角形,則,,由等體積法得,,所以,所以的最小值為.故選:C【點睛】共面定理的應(yīng)用:設(shè)是不共面的四點,則對空間任意一點,都存在唯一的有序?qū)崝?shù)組使得,說明:若,則四點共面.7、D【解析】根據(jù)復數(shù)的幾何意義即可確定復數(shù)所在象限【詳解】復數(shù)在復平面內(nèi)對應(yīng)的點為則復數(shù)在復平面內(nèi)對應(yīng)的點位于第四象限故選:D8、C【解析】由方程表示雙曲線知,又雙曲線的虛軸長是實軸長的2倍,所以,即,所以故選C.考點:雙曲線的標準方程與簡單幾何性質(zhì).9、D【解析】利用及等差數(shù)列的性質(zhì)進行求解.【詳解】分別是等差數(shù)列的前項和,故,且,故,故選:D10、B【解析】求出圓心到直線的距離d,與圓的半徑r比較大小即可判斷出直線與圓的位置關(guān)系,同時判斷圓心是否在直線上,即可得到正確答案解:由圓的方程得到圓心坐標(0,0),半徑r=1則圓心(0,0)到直線y=x+1的距離d==<r=1,把(0,0)代入直線方程左右兩邊不相等,得到直線不過圓心所以直線與圓的位置關(guān)系是相交但直線不過圓心故選B考點:直線與圓的位置關(guān)系11、B【解析】由幾何概型的面積型,只需求小矩形的面積和大矩形面積之比.【詳解】由題意,不妨設(shè),則,又也是黃金矩形,則,又,解得,于是大矩形面積為:,小矩形的面積為,由幾何概型的面積型,概率為若在矩形內(nèi)任取一點,則該點取自黃金矩形內(nèi)的概率為:.故選:B.12、C【解析】根據(jù)極值點的意義,可知函數(shù)的導函數(shù)在上有且僅有一個零點.結(jié)合零點存在定理,即可求得的取值范圍.【詳解】函數(shù)則因為函數(shù)在上有且僅有一個極值點即在上有且僅有一個零點根據(jù)函數(shù)零點存在定理可知滿足即可代入可得解得故選:C【點睛】本題考查了函數(shù)極值點的意義,函數(shù)零點存在定理的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、;【解析】設(shè)所求圓的圓心為,根據(jù)兩圓外切于原點可知兩圓心與原點共線,再根據(jù)弦長列出方程組求出即可.【詳解】設(shè)所求圓的圓心為,因為圓的圓心為,與原點連線的斜率為,又所求圓與已知圓外切于原點,,①所以所求圓的半徑滿足,又被y軸截得的弦長為8,②由①②解得,所以圓的方程為.故答案為:14、【解析】根據(jù)等差數(shù)列的求和公式和等差數(shù)列的性質(zhì)即可求出.【詳解】因為等差數(shù)列的前項和為,,則,故答案為:33.【點睛】本題考查了等差數(shù)列的求和公式和等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.15、4【解析】結(jié)合勾股定理求得正確答案.【詳解】如圖,設(shè)村莊為A,開始臺風中心的位置為B,臺風路徑為直線,因為點A到直線的距離為,∴村莊所在地受到臺風影響的時間約為:(小時).故答案為:本卷包括必考題和選考題兩部分.第17題~第21題為必考題,每個試題考生都必須作答第22題~第23題為選考題,考生根據(jù)要求作答16、①.1.6;②.3.65.【解析】根據(jù)給定數(shù)表求出樣本中心點,代入即可求得,取可求出該年進口總額.詳解】由數(shù)表得:,,因此,回歸直線過點,由,解得,此時,,當時,即,解得,所以,預計該年進口總額為千億元.故答案為:1.6;3.65三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由橢圓頂點可知,又短軸長等于焦距可知,求出,即可寫出橢圓方程(2)根據(jù)“點差法”可求直線的斜率,寫出直線方程,聯(lián)立橢圓方程可得,,代入弦長公式即可求解.【詳解】(1)依題意,解得.故橢圓方程為.(2)設(shè)的坐標分別為,,直線的斜率顯然存在,設(shè)斜率為,則,兩式相減得,整理得.因為線段的中點為,所以,所以直線的方程為,聯(lián)立,得,則,,故.【點睛】本題主要考查了橢圓的標準方程及簡單幾何性質(zhì),“點差法”,弦長公式,屬于中檔題.18、詳見解析【解析】根據(jù)已知求出的通項公式.當①②時,設(shè)數(shù)列公差為,利用賦值法得到與的關(guān)系式,列方程求出與,求出,寫出的通項公式,可得數(shù)列的通項公式,利用錯位相減法求和即可;選②③時,設(shè)數(shù)列公差為,根據(jù)題意得到與的關(guān)系式,解出與,寫出的通項公式,可得數(shù)列的通項公式,利用錯位相減法求和即可;選①③時,設(shè)數(shù)列公差為,根據(jù)題意得到與的關(guān)系式,發(fā)現(xiàn)無解,則等差數(shù)列不存在,故不合題意.【詳解】解:因為,,所以是以為首項,為公比的等比數(shù)列,所以,選①②時,設(shè)數(shù)列公差為,因為,所以,因為,所以時,,解得,,所以,所以.所以.(i)所以(ii)(i)(ii),得:所以.選②③時,設(shè)數(shù)列公差為,因為,所以,即,因為,,成等比數(shù)列,所以,即,化簡得,因為,所以,從而,所以,所以,(i)所以(ii)(i)(ii),得:,所以.選①③時,設(shè)數(shù)列公差為,因為,所以時,,所以.又因為,,成等比數(shù)列,所以,即,化簡得,因為,所以,從而無解,所以等差數(shù)列不存在,故不合題意.【點睛】本題考查了等差(比)數(shù)列的通項公式,考查了錯位相減法在數(shù)列求和中的應(yīng)用,考查了轉(zhuǎn)化能力與方程思想,屬于中檔題.19、(1)(2)【解析】(1)根據(jù)橢圓的離心率為,且過點,由求解;(2)設(shè)直線AC方程為,則直線BD的方程為,分時,與橢圓方程聯(lián)立求得A,B的坐標,再利用數(shù)量積求解.【小問1詳解】解:因為橢圓的離心率為,且過點,所以,所以,所以橢圓的方程為;【小問2詳解】設(shè)直線AC的方程為,則直線BD的方程為.當時,聯(lián)立,得,不妨設(shè)A,聯(lián)立,得,當B時,,,當B時,,,當時,同理可得上述結(jié)論.綜上,20、(1);(2)存在,.【解析】(1)根據(jù)給定條件求出橢圓長短半軸長即可代入計算作答.(2)當直線l的斜率存在時,設(shè)出直線l的方程,與橢圓E的方程聯(lián)立,利用韋達定理、向量數(shù)量積運算,推理計算作答.【小問1詳解】依題意,,半焦距為c,則離心率,即,有,所以橢圓E的標準方程為:.【小問2詳解】當直線l的斜率存在時,設(shè)直線l的方程為,由消去y并整理得:,設(shè),則,,,,,,要使為定值,必有,解得,此時,當直線l的斜率不存在時,由對稱性不妨令,,,當時,,即當時,過點的任意直線l與橢圓E交于A,B兩點,恒有,所以存在滿足條件.【點睛】方法點睛:求定值問題常見的方法:(1)從特殊入手,求出定值,再證明這個值與變量無關(guān)(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值21、(1)(2)0.7【解析】(1)利用概率和為1計算可得的值;(2)求頻率分布直方圖中每人每日平均閱讀時間超過60分鐘的概率即為這個人閱讀時間超過60分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工現(xiàn)場防水工程管理
- 中國跨境數(shù)據(jù)流動安全管理與國際合作機制分析
- 石家莊醫(yī)學高等專科學?!禛IS設(shè)計與開發(fā)》2023-2024學年第二學期期末試卷
- 遼寧民族師范高等專科學?!秶H廣告》2023-2024學年第二學期期末試卷
- 運城護理職業(yè)學院《EDA技術(shù)》2023-2024學年第二學期期末試卷
- 中南民族大學《酒店餐飲管理》2023-2024學年第二學期期末試卷
- 四川體育職業(yè)學院《教學案例設(shè)計與研析》2023-2024學年第二學期期末試卷
- 廣東石油化工學院《國際貿(mào)易函電》2023-2024學年第二學期期末試卷
- 山西經(jīng)貿(mào)職業(yè)學院《化工機械強度與振動》2023-2024學年第二學期期末試卷
- 哈爾濱石油學院《生物醫(yī)學光子學導論》2023-2024學年第二學期期末試卷
- 融資管理辦法國資委
- GB/T 45870.1-2025彈簧測量和試驗參數(shù)第1部分:冷成形圓柱螺旋壓縮彈簧
- 倉庫物料儲存知識培訓課件
- 數(shù)字化轉(zhuǎn)型下的人力資源管理創(chuàng)新-洞察及研究
- 門診部醫(yī)保內(nèi)部管理制度
- (高清版)DB62∕T 2637-2025 道路運輸液體危險貨物罐式車輛 金屬常壓罐體定期檢驗規(guī)范
- 化糞池清掏疏通合同范本5篇
- 物理學(祝之光) 靜電場1學習資料
- 個人項目投資協(xié)議合同范例
- 全球科普活動現(xiàn)狀及發(fā)展趨勢
- 2024年重慶市中考語文考試說明
評論
0/150
提交評論