版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆云南省景東縣二中高一數(shù)學第一學期期末調(diào)研模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,則下列不等式成立的是().A. B.C. D.2.已知命題p:?n∈N,2n>2021.那么A.?n∈N,2n≤2021 B.?n∈NC.?n∈N,2n≤2021 D.?n∈N3.已知定義在上的奇函數(shù),滿足,當時,,則函數(shù)在區(qū)間上的所有零點之和為()A. B.C. D.4.已知函數(shù)則函數(shù)值域是()A. B.C. D.5.表示不超過x的最大整數(shù),例如,,,.若是函數(shù)的零點,則()A.1 B.2C.3 D.46.已知三棱錐的三條棱,,長分別是3、4、5,三條棱,,兩兩垂直,且該棱錐4個頂點都在同一球面上,則這個球的表面積是A B.C. D.都不對7.已知扇形OAB的周長為12,圓心角大小為,則該扇形的面積是()cm.A.2 B.3C.6 D.98.某人圍一個面積為32m2的矩形院子,一面靠舊墻,其它三面墻要新建(其平面示意圖如下),墻高3m,新墻的造價為1000元/m2,則當A.9 B.8C.16 D.649.設和兩個集合,定義集合,且,如果,,那么A. B.C. D.10.若集合中的元素是△ABC的三邊長,則△ABC一定不是()A.銳角三角形 B.直角三角形C.鈍角三角形 D.等腰三角形二、填空題:本大題共6小題,每小題5分,共30分。11.給出下列命題:①存在實數(shù),使;②函數(shù)是偶函數(shù);③若是第一象限角,且,則;④是函數(shù)的一條對稱軸方程以上命題是真命題的是_______(填寫序號)12.設,則________.13.若函數(shù)的定義域為[-2,2],則函數(shù)的定義域為______14.已知函數(shù)的圖象恒過點P,若點P在角的終邊上,則_________15.等腰直角△ABC中,AB=BC=1,M為AC的中點,沿BM把△ABC折成二面角,折后A與C的距離為1,則二面角C—BM—A的大小為_____________.16.函數(shù)的定義域為________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知a,b為正實數(shù),且.(1)求a2+b2的最小值;(2)若,求ab的值18.已知函數(shù)求函數(shù)的最小正周期與對稱中心;求函數(shù)的單調(diào)遞增區(qū)間19.已知集合,(1)當時,求以及;(2)若,求實數(shù)m的取值范圍20.對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱函數(shù)為“局部中心函數(shù)”.(1)已知二次函數(shù),試判斷是否為“局部中心函數(shù)”.并說明理由;(2)若是定義域為R上的“局部中心函數(shù)”,求實數(shù)m的取值范圍.21.已知直線及點.(1)證明直線過某定點,并求該定點的坐標;(2)當點到直線的距離最大時,求直線的方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】∵a>b>c,∴a﹣c>b﹣c>0,∴故選B2、A【解析】根據(jù)含有一個量詞命題否定的定義,即可得答案.【詳解】命題p:?n∈N,2n>2021的否定?p為:?n∈N,故選:A3、D【解析】推導出函數(shù)是周期為的周期函數(shù),且該函數(shù)的圖象關于直線對稱,令,可得出,轉化為函數(shù)與函數(shù)圖象交點橫坐標之和,數(shù)形結合可得出結果.【詳解】由于函數(shù)為上的奇函數(shù),則,,所以,函數(shù)是周期為的周期函數(shù),且該函數(shù)的圖象關于直線對稱,令,可得,則函數(shù)在區(qū)間上的零點之和為函數(shù)與函數(shù)在區(qū)間上圖象交點橫坐標之和,如下圖所示:由圖象可知,兩個函數(shù)的四個交點有兩對關于點對稱,因此,函數(shù)在區(qū)間上的所有零點之和為.故選:D.【點睛】本題考查函數(shù)零點之和,將問題轉化為兩個函數(shù)的交點,結合函數(shù)圖象的對稱性來求解是解答的關鍵,考查數(shù)形結合思想的應用,屬于中等題.4、B【解析】結合分段函數(shù)的單調(diào)性來求得的值域.【詳解】當吋,單調(diào)遞增,值域為;當時,單調(diào)遞增,值域為,故函數(shù)值域為.故選:B5、B【解析】利用零點存在性定理判斷的范圍,從而求得.【詳解】在上遞增,,所以,所以.故選:B6、B【解析】長方體的一個頂點上的三條棱分別為,且它的八個頂點都在同一個球面上,則長方體的對角線就是球的直徑,長方體的對角線為球的半徑為則這個球的表面積為故選點睛:本題考查的是球的體積和表面積以及球內(nèi)接多面體的知識點.由題意長方體的外接球的直徑就是長方體的對角線,求出長方體的對角線,就是求出球的直徑,然后求出球的表面積即可7、D【解析】設扇形的半徑和弧長,根據(jù)周長和圓心角解方程得到,再利用扇形面積公式計算即得結果.【詳解】設扇形OAB的半徑r,弧長l,則周長,圓心角為,解得,故扇形面積為.故選:D8、B【解析】由題設總造價為y=3000(x+64x),應用基本不等式求最小值,并求出等號成立時的【詳解】由題設,總造價y=1000×3×(x+2×32當且僅當x=8時等號成立,即x=8時總造價最低.故選:B.9、D【解析】根據(jù)的定義,可求出,,然后即可求出【詳解】解:,;∴.故選D.【點睛】考查描述法的定義,指數(shù)函數(shù)的單調(diào)性,正弦函數(shù)的值域,屬于基礎題10、D【解析】根據(jù)集合元素的互異性即可判斷.【詳解】由題可知,集合中的元素是的三邊長,則,所以一定不是等腰三角形故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、②④【解析】根據(jù)三角函數(shù)的性質(zhì),依次分析各選項即可得答案.【詳解】解:①因為,故不存在實數(shù),使得成立,錯誤;②函數(shù),由于是偶函數(shù),故是偶函數(shù),正確;③若,均為第一象限角,顯然,故錯誤;④當時,,由于是函數(shù)的一條對稱軸,故是函數(shù)的一條對稱軸方程,正確.故正確的命題是:②④故答案為:②④12、2【解析】先求出,再求的值即可【詳解】解:由題意得,,所以,故答案為:213、【解析】∵函數(shù)的定義域為[-2,2]∴,∴∴函數(shù)的定義域為14、【解析】由對數(shù)函數(shù)的性質(zhì)可得點的坐標,由三角函數(shù)的定義求得與的值,再由正弦的二倍角公式即可求解.【詳解】易知恒過點,即,因為點在角的終邊上,所以,所以,,所以,故答案為:.15、【解析】分別計算出的長度,然后結合二面角的求法,找出二面角,即可.【詳解】結合題意可知,所以,而發(fā)現(xiàn)所以,結合二面角找法:如果兩平面內(nèi)兩直線分別垂直兩平面交線,則該兩直線的夾角即為所求二面角,故為所求的二面角,為【點睛】本道題目考查了二面角的求法,尋求二面角方法:兩直線分別垂直兩平面交線,則該兩直線的夾角即為所求二面角16、【解析】根據(jù)偶次方根被開方數(shù)為非負數(shù)、對數(shù)真數(shù)大于零列不等式組,解不等式組求得函數(shù)的定義域.【詳解】依題意,解得,故函數(shù)的定義域為.故答案為.【點睛】本小題主要考查具體函數(shù)定義域的求法,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)1;(2)1.【解析】(1)根據(jù)和可得結果;(2)由得,將化為解得結果即可.【詳解】(1)因為a,b為正實數(shù),且,所以,即ab≥(當且僅當a=b時等號成立)因為(當且僅當a=b時等號成立),所以a2+b2的最小值為1.(2)因為,所以,因為,所以,即,所以(ab)2-2ab+1≤0,(ab-1)2≤0,因為,所以ab=1.【點睛】本題考查了利用基本不等式求最值,屬于基礎題.18、(1)最小正周期,對稱中心為;(2)【解析】直接利用三角函數(shù)關系式的恒等變變換,把函數(shù)的關系式變形成正弦型函數(shù),進一步求出函數(shù)的最小正周期和對稱中心;直接利用整體思想求出函數(shù)的單調(diào)遞增區(qū)間【詳解】函數(shù),,,所以函數(shù)的最小正周期為,令:,解得:,所以函數(shù)的對稱中心為由于,令:,解得:,所以函數(shù)的單調(diào)遞增區(qū)間為【點睛】本題主要考查了三角函數(shù)的化簡,以及函數(shù)的性質(zhì),屬于基礎題,強調(diào)基礎的重要性,是高考中的常考知識點;對于三角函數(shù)解答題19、(1),(2)【解析】(1)解不等式求出集合,根據(jù)集合的交并補運算可得答案;(2)由集合的包含關系可得答案.【小問1詳解】,當時,,∴,,,∴.【小問2詳解】由題可知,所以,解得,所以實數(shù)m的取值范圍為.20、(1)函數(shù)為“局部中心函數(shù)”,理由見解析;(2).【解析】(1)判斷是否為“局部中心函數(shù)”,即判斷方程是否有解,若有解,則說明是“局部中心函數(shù)”,否則說明不是“局部中心函數(shù)”;(2)條件是定義域為上的“局部中心函數(shù)”可轉化為方程有解,再利用整體思路得出結果.【詳解】解:(1)由題意,(),所以,,當時,解得:,由于,所以,所以為“局部中心函數(shù)”.(2)因為是定義域為上的“局部中心函數(shù)”,所以方程有解,即在上有解,整理得:,令,,故題意轉化為在上有解,設函數(shù),當時,在上有解,即,解得:;當時,則需要滿足才能使在上有解,解得:,綜上:,即實數(shù)m的取值范圍.21、(1)證明見解析,定點坐標為;(2)15x+24y+2=0.【解析】(1)直線l的方程可化為a(2x+y+1)+b(-x+y-1)=0,由,即可解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職農(nóng)業(yè)機械維修(農(nóng)機維修技術)試題及答案
- 2026年巧克力機維修(巧克力機調(diào)試技術)試題及答案
- 2025年大學道路運輸(道路運輸法規(guī))試題及答案
- 2025年高職城鄉(xiāng)規(guī)劃管理(規(guī)劃管理)試題及答案
- 2025年大學大二(會展設計)會展空間設計布置創(chuàng)意綜合測試題及答案
- 2026年辦公設備銷售(客戶接待)試題及答案
- 2025年高職園藝(園藝應用能力)試題及答案
- 2026年集成電路制造設備項目可行性研究報告
- 2025年高職造型藝術(繪畫基礎技法)試題及答案
- 2025年高職尺寸公差控制(零件精度保障)試題及答案
- 北京市西城區(qū)2024-2025學年六年級上學期期末英語試題
- 福建農(nóng)林大學研究生學位論文格式的統(tǒng)一要求(2025年修訂)
- 基坑回填安全措施方案
- 地下管線保護拆除方案
- 廣西萬昌宏畜牧養(yǎng)殖場環(huán)境影響報告書
- 2025小學三年級英語上冊期末測試卷(人教版)
- 機電工程項目驗收標準及流程
- 2025年液壓傳動試題及 答案
- 【《家庭文化資本與幼兒學習品質(zhì)的關系實證分析》24000字】
- 外貿(mào)公司年終總結報告
- (2025年)三基三嚴理論試題+參考答案
評論
0/150
提交評論