版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆四川省樂(lè)山四校數(shù)學(xué)高三上期末調(diào)研模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.2.如圖,在圓錐SO中,AB,CD為底面圓的兩條直徑,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,異面直線(xiàn)SC與OE所成角的正切值為()A. B. C. D.3.展開(kāi)式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.12804.已知斜率為k的直線(xiàn)l與拋物線(xiàn)交于A,B兩點(diǎn),線(xiàn)段AB的中點(diǎn)為,則斜率k的取值范圍是()A. B. C. D.5.空氣質(zhì)量指數(shù)是反映空氣狀況的指數(shù),指數(shù)值趨小,表明空氣質(zhì)量越好,下圖是某市10月1日-20日指數(shù)變化趨勢(shì),下列敘述錯(cuò)誤的是()A.這20天中指數(shù)值的中位數(shù)略高于100B.這20天中的中度污染及以上(指數(shù))的天數(shù)占C.該市10月的前半個(gè)月的空氣質(zhì)量越來(lái)越好D.總體來(lái)說(shuō),該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好6.已知在中,角的對(duì)邊分別為,若函數(shù)存在極值,則角的取值范圍是()A. B. C. D.7.《九章算術(shù)》中將底面是直角三角形的直三棱柱稱(chēng)為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為()A.4π B.8π C. D.8.已知等差數(shù)列的前項(xiàng)和為,且,則()A.45 B.42 C.25 D.369.若集合,則()A. B.C. D.10.若為純虛數(shù),則z=()A. B.6i C. D.2011.已知雙曲線(xiàn)的一個(gè)焦點(diǎn)為,點(diǎn)是的一條漸近線(xiàn)上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),以為直徑的圓過(guò)且交的左支于兩點(diǎn),若,的面積為8,則的漸近線(xiàn)方程為()A. B.C. D.12.設(shè)拋物線(xiàn)上一點(diǎn)到軸的距離為,到直線(xiàn)的距離為,則的最小值為()A.2 B. C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.給出下列等式:,,,…請(qǐng)從中歸納出第個(gè)等式:______.14.已知正四棱柱的底面邊長(zhǎng)為,側(cè)面的對(duì)角線(xiàn)長(zhǎng)是,則這個(gè)正四棱柱的體積是____.15.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗實(shí)線(xiàn)畫(huà)出的是某幾何體的三視圖,則該幾何體的體積為_(kāi)_______.16.已知實(shí)數(shù),滿(mǎn)足約束條件,則的最大值是__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)數(shù)列的前n項(xiàng)和滿(mǎn)足,,,(1)證明:數(shù)列是等差數(shù)列,并求其通項(xiàng)公式﹔(2)設(shè),求證:.18.(12分)已知函數(shù).(Ⅰ)解不等式;(Ⅱ)設(shè)其中為常數(shù).若方程在上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.19.(12分)已知函數(shù).(1)討論的零點(diǎn)個(gè)數(shù);(2)證明:當(dāng)時(shí),.20.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點(diǎn),.(1)求線(xiàn)段的長(zhǎng).(2)若為線(xiàn)段上一點(diǎn),且,求二面角的余弦值.21.(12分)已知數(shù)列和滿(mǎn)足:.(1)求證:數(shù)列為等比數(shù)列;(2)求數(shù)列的前項(xiàng)和.22.(10分)如圖,在三棱柱中,是邊長(zhǎng)為2的菱形,且,是矩形,,且平面平面,點(diǎn)在線(xiàn)段上移動(dòng)(不與重合),是的中點(diǎn).(1)當(dāng)四面體的外接球的表面積為時(shí),證明:.平面(2)當(dāng)四面體的體積最大時(shí),求平面與平面所成銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
由余弦定理求出角,再由三角形面積公式計(jì)算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點(diǎn)睛】本題主要考查了余弦定理的應(yīng)用,三角形的面積公式,考查了學(xué)生的運(yùn)算求解能力.2、D【解析】
可過(guò)點(diǎn)S作SF∥OE,交AB于點(diǎn)F,并連接CF,從而可得出∠CSF(或補(bǔ)角)為異面直線(xiàn)SC與OE所成的角,根據(jù)條件即可求出,這樣即可得出tan∠CSF的值.【詳解】如圖,過(guò)點(diǎn)S作SF∥OE,交AB于點(diǎn)F,連接CF,則∠CSF(或補(bǔ)角)即為異面直線(xiàn)SC與OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故選:D.【點(diǎn)睛】本題考查了異面直線(xiàn)所成角的定義及求法,直角三角形的邊角的關(guān)系,平行線(xiàn)分線(xiàn)段成比例的定理,考查了計(jì)算能力,屬于基礎(chǔ)題.3、A【解析】
根據(jù)二項(xiàng)式展開(kāi)式的公式得到具體為:化簡(jiǎn)求值即可.【詳解】根據(jù)二項(xiàng)式的展開(kāi)式得到可以第一個(gè)括號(hào)里出項(xiàng),第二個(gè)括號(hào)里出項(xiàng),或者第一個(gè)括號(hào)里出,第二個(gè)括號(hào)里出,具體為:化簡(jiǎn)得到-1280x2故得到答案為:A.【點(diǎn)睛】求二項(xiàng)展開(kāi)式有關(guān)問(wèn)題的常見(jiàn)類(lèi)型及解題策略:(1)求展開(kāi)式中的特定項(xiàng).可依據(jù)條件寫(xiě)出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開(kāi)式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫(xiě)出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).4、C【解析】
設(shè),,,,設(shè)直線(xiàn)的方程為:,與拋物線(xiàn)方程聯(lián)立,由△得,利用韋達(dá)定理結(jié)合已知條件得,,代入上式即可求出的取值范圍.【詳解】設(shè)直線(xiàn)的方程為:,,,,,聯(lián)立方程,消去得:,△,,且,,,線(xiàn)段的中點(diǎn)為,,,,,,,,把代入,得,,,故選:【點(diǎn)睛】本題主要考查了直線(xiàn)與拋物線(xiàn)的位置關(guān)系,考查了韋達(dá)定理的應(yīng)用,屬于中檔題.5、C【解析】
結(jié)合題意,根據(jù)題目中的天的指數(shù)值,判斷選項(xiàng)中的命題是否正確.【詳解】對(duì)于,由圖可知天的指數(shù)值中有個(gè)低于,個(gè)高于,其中第個(gè)接近,第個(gè)高于,所以中位數(shù)略高于,故正確.對(duì)于,由圖可知天的指數(shù)值中高于的天數(shù)為,即占總天數(shù)的,故正確.對(duì)于,由圖可知該市月的前天的空氣質(zhì)量越來(lái)越好,從第天到第天空氣質(zhì)量越來(lái)越差,故錯(cuò)誤.對(duì)于,由圖可知該市月上旬大部分指數(shù)在以下,中旬大部分指數(shù)在以上,所以該市月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好,故正確.故選:【點(diǎn)睛】本題考查了對(duì)折線(xiàn)圖數(shù)據(jù)的分析,讀懂題意是解題關(guān)鍵,并能運(yùn)用所學(xué)知識(shí)對(duì)命題進(jìn)行判斷,本題較為基礎(chǔ).6、C【解析】
求出導(dǎo)函數(shù),由有不等的兩實(shí)根,即可得不等關(guān)系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論.【詳解】,.若存在極值,則,又.又.故選:C.【點(diǎn)睛】本題考查導(dǎo)數(shù)與極值,考查余弦定理.掌握極值存在的條件是解題關(guān)鍵.7、B【解析】
由三視圖判斷出原圖,將幾何體補(bǔ)形為長(zhǎng)方體,由此計(jì)算出幾何體外接球的直徑,進(jìn)而求得球的表面積.【詳解】根據(jù)題意和三視圖知幾何體是一個(gè)底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側(cè)棱長(zhǎng)為2且與底面垂直,因?yàn)橹比庵梢詮?fù)原成一個(gè)長(zhǎng)方體,該長(zhǎng)方體外接球就是該三棱柱的外接球,長(zhǎng)方體對(duì)角線(xiàn)就是外接球直徑,則,那么.故選:B【點(diǎn)睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關(guān)計(jì)算,屬于基礎(chǔ)題.8、D【解析】
由等差數(shù)列的性質(zhì)可知,進(jìn)而代入等差數(shù)列的前項(xiàng)和的公式即可.【詳解】由題,.故選:D【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),考查等差數(shù)列的前項(xiàng)和.9、A【解析】
先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點(diǎn)睛】本題考查求集合的交集運(yùn)算,掌握交集定義是解題關(guān)鍵.10、C【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算以及純虛數(shù)的概念,可得結(jié)果.【詳解】∵為純虛數(shù),∴且得,此時(shí)故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的概念與運(yùn)算,屬基礎(chǔ)題.11、B【解析】
由雙曲線(xiàn)的對(duì)稱(chēng)性可得即,又,從而可得的漸近線(xiàn)方程.【詳解】設(shè)雙曲線(xiàn)的另一個(gè)焦點(diǎn)為,由雙曲線(xiàn)的對(duì)稱(chēng)性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的漸近線(xiàn)方程為.故選B【點(diǎn)睛】本題考查雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì),考查直線(xiàn)與圓的位置關(guān)系,考查數(shù)形結(jié)合思想與計(jì)算能力,屬于中檔題.12、A【解析】
分析:題設(shè)的直線(xiàn)與拋物線(xiàn)是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線(xiàn)的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無(wú)解,所以直線(xiàn)與拋物線(xiàn)是相離的.由,而為到準(zhǔn)線(xiàn)的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線(xiàn)的距離,故的最小值為,故選A.點(diǎn)睛:拋物線(xiàn)中與線(xiàn)段的長(zhǎng)度相關(guān)的最值問(wèn)題,可利用拋物線(xiàn)的幾何性質(zhì)把動(dòng)線(xiàn)段的長(zhǎng)度轉(zhuǎn)化為到準(zhǔn)線(xiàn)或焦點(diǎn)的距離來(lái)求解.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
通過(guò)已知的三個(gè)等式,找出規(guī)律,歸納出第個(gè)等式即可.【詳解】解:因?yàn)椋?,,,等式的右邊系?shù)是2,且角是等比數(shù)列,公比為,則角滿(mǎn)足:第個(gè)等式中的角,所以;故答案為:.【點(diǎn)睛】本題主要考查歸納推理,注意已知表達(dá)式的特征是解題的關(guān)鍵,屬于中檔題.14、【解析】Aa設(shè)正四棱柱的高為h得到故得到正四棱柱的體積為故答案為54.15、【解析】
根據(jù)三視圖知該幾何體是三棱柱與半圓錐的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積.【詳解】根據(jù)三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結(jié)合圖中數(shù)據(jù),計(jì)算它的體積為.故答案為:.【點(diǎn)睛】本題考查了根據(jù)三視圖求簡(jiǎn)單組合體的體積應(yīng)用問(wèn)題,是基礎(chǔ)題.16、【解析】
令,所求問(wèn)題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【詳解】作出可行域,如圖令,則,顯然當(dāng)直線(xiàn)經(jīng)過(guò)時(shí),最大,且,故的最大值為.故答案為:.【點(diǎn)睛】本題考查線(xiàn)性規(guī)劃中非線(xiàn)性目標(biāo)函數(shù)的最值問(wèn)題,要做好此類(lèi)題,前提是正確畫(huà)出可行域,本題是一道基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析,;(2)證明見(jiàn)解析【解析】
(1)由,作差得到,進(jìn)一步得到,再作差即可得到,從而使問(wèn)題得到解決;(2),求和即可.【詳解】(1),,兩式相減:①用換,得②②—①,得,即,所以數(shù)列是等差數(shù)列,又,∴,,公差,所以.(II).【點(diǎn)睛】本題考查由與的關(guān)系求通項(xiàng)以及裂項(xiàng)相消法求數(shù)列的和,考查學(xué)生的計(jì)算能力,是一道容易題.18、(Ⅰ);(Ⅱ).【解析】
(I)零點(diǎn)分段法,分,,討論即可;(II),分,,三種情況討論.【詳解】原不等式即.當(dāng)時(shí),化簡(jiǎn)得.解得;當(dāng)時(shí),化簡(jiǎn)得.此時(shí)無(wú)解;當(dāng)時(shí),化簡(jiǎn)得.解得.綜上,原不等式的解集為由題意,設(shè)方程兩根為.當(dāng)時(shí),方程等價(jià)于方程.易知當(dāng),方程在上有兩個(gè)不相等的實(shí)數(shù)根.此時(shí)方程在上無(wú)解.滿(mǎn)足條件.當(dāng)時(shí),方程等價(jià)于方程,此時(shí)方程在上顯然沒(méi)有兩個(gè)不相等的實(shí)數(shù)根.當(dāng)時(shí),易知當(dāng),方程在上有且只有一個(gè)實(shí)數(shù)根.此時(shí)方程在上也有一個(gè)實(shí)數(shù)根.滿(mǎn)足條件.綜上,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查解絕對(duì)值不等式以及方程根的個(gè)數(shù)求參數(shù)范圍,考查學(xué)生的運(yùn)算能力,是一道中檔題.19、(1)見(jiàn)解析(2)見(jiàn)解析【解析】
(1)求出,分別以當(dāng),,時(shí),結(jié)合函數(shù)的單調(diào)性和最值判斷零點(diǎn)的個(gè)數(shù).(2)令,結(jié)合導(dǎo)數(shù)求出;同理可求出滿(mǎn)足,從而可得,進(jìn)而證明.【詳解】解析:(1),,當(dāng)時(shí),,單調(diào)遞減,,,此時(shí)有1個(gè)零點(diǎn);當(dāng)時(shí),無(wú)零點(diǎn);當(dāng)時(shí),由得,由得,∴在單調(diào)遞減,在單調(diào)遞增,∴在處取得最小值,若,則,此時(shí)沒(méi)有零點(diǎn);若,則,此時(shí)有1個(gè)零點(diǎn);若,則,,求導(dǎo)易得,此時(shí)在,上各有1個(gè)零點(diǎn).綜上可得時(shí),沒(méi)有零點(diǎn),或時(shí),有1個(gè)零點(diǎn),時(shí),有2個(gè)零點(diǎn).(2)令,則,當(dāng)時(shí),;當(dāng)時(shí),,∴.令,則,當(dāng)時(shí),,當(dāng)時(shí),,∴,∴,,∴,即.【點(diǎn)睛】本題考查了導(dǎo)數(shù)判斷函數(shù)零點(diǎn)問(wèn)題,考查了運(yùn)用導(dǎo)數(shù)證明不等式問(wèn)題,考查了分類(lèi)的數(shù)學(xué)思想.本題的難點(diǎn)在于第二問(wèn)不等式的證明中,合理設(shè)出函數(shù),通過(guò)比較最值證明.20、(1)的長(zhǎng)為4(2)【解析】
(1)分別以所在直線(xiàn)為軸,建立如圖所示的空間直角坐標(biāo)系,設(shè),根據(jù)向量垂直關(guān)系計(jì)算得到答案.(2)計(jì)算平面的法向量為,為平面的一個(gè)法向量,再計(jì)算向量夾角得到答案.【詳解】(1)分別以所在直線(xiàn)為軸,建立如圖所示的空間直角坐標(biāo)系.設(shè),則,所以.,因?yàn)?,所以,即,解得,所以的長(zhǎng)為4.(2)因?yàn)?,所以,又,?設(shè)為平面的法向量,則即取,解得,所以為平面的一個(gè)法向量.顯然,為平面的一個(gè)法向量,則,據(jù)圖可知,二面角的余弦值為.【點(diǎn)睛】本題考查了立體幾何中的線(xiàn)段長(zhǎng)度,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.21、(1)見(jiàn)解析(2)【解析】
(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列.(2)由(1)求得數(shù)列的通項(xiàng)公式,判斷出,由此利用裂項(xiàng)求和法求得數(shù)列的前項(xiàng)和.【詳解】(1)所以數(shù)列是以3為首項(xiàng),以3為公比的等比數(shù)列.(2)由(1)知,∴為常數(shù)列,且,∴,∴∴【點(diǎn)睛】本小題主要考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查裂項(xiàng)求和法,屬于中檔題.22、(1)證明見(jiàn)解析(2)【解析】
(1)由題意,先求得為的中點(diǎn),再證明平面平面,進(jìn)而可得結(jié)論;(2)由題意,當(dāng)點(diǎn)位于點(diǎn)時(shí),四面體的體積最大,再建立空間直角坐標(biāo)系,利用空間向量運(yùn)算即可.【詳解】(1)證明:當(dāng)四面體的外接球的表面積為時(shí).則其外接球的半徑為.因?yàn)闀r(shí)邊長(zhǎng)為2的菱形,是矩形.,且平面平面.則,.則為四面體外接球的直徑.所以,即.由題意,,,所以
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 聯(lián)盟與工會(huì)協(xié)議書(shū)
- 聯(lián)通寬帶合同范本
- 聘用試用合同范本
- 自愿購(gòu)買(mǎi)書(shū)協(xié)議書(shū)
- 金融轉(zhuǎn)讓協(xié)議書(shū)
- 個(gè)人裝卸協(xié)議書(shū)
- 2025年民宿設(shè)計(jì)裝修合同(海邊別墅裝修)
- 保密合同2025年科研數(shù)據(jù)
- 辦公室租賃合同協(xié)議2025年服務(wù)承諾
- 2026 年中職旅游基礎(chǔ)(旅游基礎(chǔ))試題及答案
- 2026年采購(gòu)部年度工作計(jì)劃及管理方案
- 餐飲原材料合同范本
- 2025年沈陽(yáng)華晨專(zhuān)用車(chē)有限公司公開(kāi)招聘考試筆試參考題庫(kù)及答案解析
- 足浴店加盟店合同范本2025年版合同
- 哈爾濱鐵路局2012年515火災(zāi)死亡事故86課件
- 特種設(shè)備安全管理培訓(xùn)(培訓(xùn)材料)課件
- 流程設(shè)計(jì)與優(yōu)化培訓(xùn)課件
- 《鄉(xiāng)土中國(guó)》讀書(shū)分享讀書(shū)感悟讀后感圖文課件
- 高位截癱患者的麻醉演示文稿
- ICU抗生素使用課件
- 【語(yǔ)文】高考60篇古詩(shī)文全項(xiàng)訓(xùn)練寶典
評(píng)論
0/150
提交評(píng)論