新高考數(shù)學一輪復習考點精講練+易錯題型第26講 Y=sin(wx+b)的圖像與性質(解析版)_第1頁
新高考數(shù)學一輪復習考點精講練+易錯題型第26講 Y=sin(wx+b)的圖像與性質(解析版)_第2頁
新高考數(shù)學一輪復習考點精講練+易錯題型第26講 Y=sin(wx+b)的圖像與性質(解析版)_第3頁
新高考數(shù)學一輪復習考點精講練+易錯題型第26講 Y=sin(wx+b)的圖像與性質(解析版)_第4頁
新高考數(shù)學一輪復習考點精講練+易錯題型第26講 Y=sin(wx+b)的圖像與性質(解析版)_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

第26講Y=sin(wx+b)的圖像與性質【基礎知識全通關】1.用五點法作函數(shù)SKIPIF1<0的圖象用“五點法”作SKIPIF1<0的簡圖,主要是通過變量代換,設SKIPIF1<0,由z取SKIPIF1<0來求出相應的x,通過列表,計算得出五點坐標,描點后得出圖象.【微點撥】用“五點法”作圖象的關鍵是點的選取,其中橫坐標成等差數(shù)列,公差為SKIPIF1<0.2.函數(shù)SKIPIF1<0中有關概念SKIPIF1<0表示一個振動量時,A叫做振幅,SKIPIF1<0叫做周期,SKIPIF1<0叫做頻率,SKIPIF1<0叫做相位,x=0時的相位SKIPIF1<0稱為初相.3.由SKIPIF1<0得圖象通過變換得到SKIPIF1<0的圖象(1)振幅變換:SKIPIF1<0(A>0且A≠1)的圖象可以看作把正弦曲線上的所有點的縱坐標伸長(A>1)或縮短(0<A<1)到原來的A倍得到的(橫坐標不變),它的值域[-A,A],最大值是A,最小值是-A.若A<0可先作y=-Asinx的圖象,再以x軸為對稱軸翻折.A稱為振幅.(2)周期變換:函數(shù)SKIPIF1<0的圖象,可看作把正弦曲線上所有點的橫坐標縮短SKIPIF1<0或伸長SKIPIF1<0到原來的SKIPIF1<0倍(縱坐標不變).若SKIPIF1<0則可用誘導公式將符號“提出”再作圖.SKIPIF1<0決定了函數(shù)的周期.(3)相位變換:函數(shù)SKIPIF1<0(其中SKIPIF1<0)的圖象,可以看作把正弦曲線上所有點向左(當SKIPIF1<0>0時)或向右(當SKIPIF1<0<0時)平行移動SKIPIF1<0個單位長度而得到.(用平移法注意講清方向:“左加右減”).【微點撥】一般地,函數(shù)SKIPIF1<0的圖象可以看作是用下面的方法得到的:(1)先把y=sinx的圖象上所有的點向左(SKIPIF1<0>0)或右(SKIPIF1<0<0)平行移動SKIPIF1<0個單位;(2)再把所得各點的橫坐標縮短SKIPIF1<0或伸長SKIPIF1<0到原來的SKIPIF1<0倍(縱坐標不變);(3)再把所得各點的縱坐標伸長(A>1)或縮短(0<A<1)到原來的A倍(橫坐標不變).【考點研習一點通】考點一:三角函數(shù)SKIPIF1<0的圖象例1.畫出函數(shù)y=sin(x+SKIPIF1<0),x∈R的簡圖.【解析】法一:(五點法):列表xSKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0x+SKIPIF1<00SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0sin(x+SKIPIF1<0)010-10描點畫圖:法二:(圖象變換)函數(shù)y=sin(x+SKIPIF1<0),x∈R的圖象可看作把正弦曲線上所有的點向左平行移動SKIPIF1<0個單位長度而得到.【變式1-1】已知函數(shù)SKIPIF1<0.(1)作出函數(shù)的簡圖;(2)指出其振幅、周期、初相、值域.【解析】(1)SKIPIF1<0列表:xSKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<00SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0y020-20描點畫圖,如下圖所示:把SKIPIF1<0之間的圖象向左、右擴展,即可得到它的簡圖.(2)振幅為2,周期為4π,初相是SKIPIF1<0,最大值為2,最小值為―2,故值域是[―2,2].【變式1-2】如何由函數(shù)y=sinx的圖象得到函數(shù)SKIPIF1<0的圖象?【解析】解法一:SKIPIF1<0SKIPIF1<0SKIPIF1<0.解法二:SKIPIF1<0SKIPIF1<0.【總結】本題用了由函數(shù)y=sinx(x∈R)的圖象變換到函數(shù)SKIPIF1<0(x∈R)的兩種方法,要注意這兩種方法的區(qū)別與聯(lián)系.考點二:三角函數(shù)SKIPIF1<0的解析式例2.如圖,它是函數(shù)SKIPIF1<0,SKIPIF1<0的圖象,由圖中條件,寫出該函數(shù)解析式.【點撥】由圖可以確定圖象的振幅、周期,由此求出SKIPIF1<0,再由題意知,點(SKIPIF1<0,5)在此函數(shù)的圖象上,由此求出SKIPIF1<0.【解析】A=5,SKIPIF1<0由點(SKIPIF1<0,5)在此函數(shù)的圖象上,則法一:(單調(diào)性法)∵點SKIPIF1<0在遞減的那段曲線上∴SKIPIF1<0由SKIPIF1<0得SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0.法二:(最值點法)將最高點坐標(SKIPIF1<0,5)代入SKIPIF1<0得SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0取SKIPIF1<0.法三:(起始點法)函數(shù)的圖象一般由“五點法”作出,而起始點的橫坐標x正是由SKIPIF1<0解得的,故只要找出起始點橫坐標x0,就可以迅速求得角SKIPIF1<0.由圖象求得SKIPIF1<0,∴SKIPIF1<0法四:(平移法)由圖象知,將SKIPIF1<0的圖象沿x軸向左平移SKIPIF1<0個單位,就得到本題圖象,故所求函數(shù)為SKIPIF1<0,即SKIPIF1<0.【總結】錯解:將SKIPIF1<0代入該式得:SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0SKIPIF1<0∵SKIPIF1<0或SKIPIF1<0∴SKIPIF1<0或SKIPIF1<0.代入點坐標時,通常利用一些已知點(最高點、最低點或零點)坐標帶入解析式,再結合圖形的上升、下降趨勢變化求出SKIPIF1<0.【變式2-1】函數(shù)SKIPIF1<0的圖象如下圖,確定A、ω、SKIPIF1<0的值,確定其一個函數(shù)解析?!军c撥】本題主要考查正弦型函數(shù)SKIPIF1<0解析式的求法及識圖能力,由圖知A=3,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0可由點SKIPIF1<0或SKIPIF1<0或SKIPIF1<0確定?!窘馕觥糠椒ㄒ唬海ㄖ鹨欢▍⒎ǎ┯蓤D象知,振幅A=3,又SKIPIF1<0,∴SKIPIF1<0。由點SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0?!郤KIPIF1<0。方法二:(待定系數(shù)法)由圖象知A=3,又圖過點SKIPIF1<0和SKIPIF1<0,根據(jù)五點作圖法原來(以上兩點可判為“五點法”中的第三點和第五點),有SKIPIF1<0,解得ω=2,SKIPIF1<0?!郤KIPIF1<0?!究偨Y】如果從圖象可確定振幅和周期,則可直接確定函數(shù)式SKIPIF1<0中的參數(shù)A和ω,再選取“第一零點”(即五點作圖法中的第一個點)的數(shù)據(jù)代入“SKIPIF1<0”(要注意正確判斷哪一點是“第一零點”)求得SKIPIF1<0?!咀兪?=2】(1)已知函數(shù)SKIPIF1<0的圖象如下圖①所示,求解析式:(2)函數(shù)SKIPIF1<0的圖象如下圖②所示,確定A、ω、SKIPIF1<0的值,確定其一個函數(shù)解析式?!窘馕觥浚?)∵T=(2+1)×4=12,∴SKIPIF1<0?!逤點為第四點,∴SKIPIF1<0,∴SKIPIF1<0?!逽KIPIF1<0,∴SKIPIF1<0。又∵點SKIPIF1<0在圖象上,∴SKIPIF1<0?!郃=2,∴SKIPIF1<0。(2)由題圖知,振幅A=3,又SKIPIF1<0,∴SKIPIF1<0。由點SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0?!郤KIPIF1<0?!究偨Y】(1)若已知“五點”之外的某點坐標,可將其代入方程SKIPIF1<0中求出SKIPIF1<0,但必須判斷出該點坐標是在“五點”當中的哪兩點之間。若在第一、二兩點之間,則SKIPIF1<0;若在第二、三兩點之間,則SKIPIF1<0;若在第三、四兩點之間,則SKIPIF1<0或SKIPIF1<0;若第四、五兩點之間,則SKIPIF1<0或SKIPIF1<0。(2)如果從圖象可確定振幅和周期,則可直接確定函數(shù)式SKIPIF1<0中的參數(shù)A和ω,再選取“第一零點”(即五點作圖法中的第一個點)的數(shù)據(jù)代入“SKIPIF1<0”(要注意正確判斷哪一點是“第一零點”)求得SKIPIF1<0。【變式2-3】已知函數(shù)SKIPIF1<0(A>0,ω>0,SKIPIF1<0)的圖象的一個最高點為SKIPIF1<0,由這個最高點到相鄰最低點,圖象與x軸交于點(6,0),試求函數(shù)的解析式.【解析】由已知條件知SKIPIF1<0,又SKIPIF1<0,∴T=16,SKIPIF1<0,∴SKIPIF1<0.∵圖象過點(6,0),∴SKIPIF1<0,∴SKIPIF1<0(k∈Z),又SKIPIF1<0,∴令k=1可得SKIPIF1<0,∴SKIPIF1<0.考點三:函數(shù)SKIPIF1<0的性質的綜合運用例3.函數(shù)SKIPIF1<0的圖象如圖所示,試依圖推出:(1)SKIPIF1<0的最小正周期;(2)SKIPIF1<0時x的取值集合;(3)使SKIPIF1<0的x的取值集合;(4)SKIPIF1<0的單調(diào)遞增區(qū)間和遞減區(qū)間;(5)使SKIPIF1<0取最小值時的x的取值集合;(6)圖象的對稱軸方程;(7)圖象的對稱中心;(8)要使SKIPIF1<0成為偶函數(shù),應對SKIPIF1<0的圖象作怎樣的平移變換?【點撥】先由圖象得到函數(shù)的最小正周期,后面的問題可迎刃而解?!窘馕觥浚?)SKIPIF1<0。(2)在一個周期SKIPIF1<0中,使SKIPIF1<0的x是SKIPIF1<0,π,SKIPIF1<0。故所求的x的取值集合是SKIPIF1<0。(3)使SKIPIF1<0的x的取值集合是SKIPIF1<0。(4)SKIPIF1<0的單調(diào)遞增區(qū)間是SKIPIF1<0;單調(diào)遞減區(qū)間是SKIPIF1<0。(5)SKIPIF1<0取最小值時x的取值集合是SKIPIF1<0。(6)對稱軸方程是SKIPIF1<0。(7)對稱中心是SKIPIF1<0。(8)要使SKIPIF1<0成為偶函數(shù),可以把其圖象向左平移SKIPIF1<0個單位長度?!究偨Y】較強的作圖、識圖能力是一項重要的數(shù)學能力,為數(shù)形結合解題提供了可能,在利用SKIPIF1<0的性質解題時,一定要與y=sinx的性質結合,更離不開對定義的理解和掌握?!咀兪?-1】已知函數(shù)SKIPIF1<0的圖象過點SKIPIF1<0,圖象上與點SKIPIF1<0最近的一個最高點是SKIPIF1<0.(1)求函數(shù)的解析式;(2)求函數(shù)SKIPIF1<0的遞增區(qū)間.【解析】(1)依題意得:SKIPIF1<0,周期SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,又圖象過點SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,即SKIPIF1<0SKIPIF1<0.(2)由SKIPIF1<0得:SKIPIF1<0故函數(shù)SKIPIF1<0的遞增區(qū)間為:SKIPIF1<0.【變式3-2】已知函數(shù)SKIPIF1<0的圖象過點SKIPIF1<0,圖象上與點SKIPIF1<0最近的一個最高點是SKIPIF1<0。(1)求函數(shù)的解析式;(2)求函數(shù)SKIPIF1<0的遞增區(qū)間?!窘馕觥浚?)依題意得:SKIPIF1<0,周期SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,又圖象過點SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,即SKIPIF1<0SKIPIF1<0。(2)由SKIPIF1<0得:SKIPIF1<0故函數(shù)SKIPIF1<0的遞增區(qū)間為:SKIPIF1<0?!究键c易錯】1.已知函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,為了得到函數(shù)SKIPIF1<0的圖象,只要將SKIPIF1<0的圖象()A.向左平移SKIPIF1<0個單位長度B.向右平移SKIPIF1<0個單位長度C.向左平移SKIPIF1<0個單位長度D.向右平移SKIPIF1<0個單位長度【點撥】對于不同三角函數(shù)圖象之間的平移變換,一定要根據(jù)誘導公式將二者之間變換清楚.【答案】A【解析】由題知SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0=SKIPIF1<0=SKIPIF1<0顯然將SKIPIF1<0SKIPIF1<0的圖象向左平移SKIPIF1<0個單位長度便可得到SKIPIF1<0的圖象.故選A.2.函數(shù)SKIPIF1<0(A>0,ω>0,SKIPIF1<0)的圖象如圖所示,為了得到y(tǒng)=cos2x的圖象,則只要將f(x)的圖象()A.向左平移SKIPIF1<0個單位長度B.向右平移SKIPIF1<0個單位長度C.向左平移SKIPIF1<0個單位長度D.向右平移SKIPIF1<0個單位長度【答案】C【解析】由圖象可知A=1,T=π,∴SKIPIF1<0∴SKIPIF1<0,又因為SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0∴將函數(shù)f(x)向左平移SKIPIF1<0可得到SKIPIF1<0故選C.3.已知函數(shù)SKIPIF1<0(其中SKIPIF1<0)的周期為SKIPIF1<0,且圖象上一個最低點為SKIPIF1<0.(Ⅰ)求SKIPIF1<0的解析式;(Ⅱ)當SKIPIF1<0,求SKIPIF1<0的最值.【答案】(Ⅰ)SKIPIF1<0(Ⅱ)最小值為1,最大值為SKIPIF1<0.【解析】(1)由最低點為SKIPIF1<0由SKIPIF1<0由點SKIPIF1<0在圖像上得SKIPIF1<0即SKIPIF1<0SKIPIF1<0又SKIPIF1<0,SKIPIF1<0SKIPIF1<0(Ⅱ)SKIPIF1<0SKIPIF1<0SKIPIF1<0.4.已知函數(shù)SKIPIF1<0其中SKIPIF1<0,SKIPIF1<0(I)若SKIPIF1<0求SKIPIF1<0的值;(Ⅱ)在(I)的條件下,若函數(shù)SKIPIF1<0的圖像的相鄰兩條對稱軸之間的距離等于SKIPIF1<0,求函數(shù)SKIPIF1<0的解析式;并求最小正實數(shù)SKIPIF1<0,使得函數(shù)SKIPIF1<0的圖像象左平移SKIPIF1<0個單位所對應的函數(shù)是偶函數(shù).【點撥】(1)把所給的式子化簡,然后結合平方關系式得出SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,求出SKIPIF1<0的值.(Ⅱ)由題意求得,SKIPIF1<0,故SKIPIF1<0,進一步求出SKIPIF1<0的解析式.【答案】(I)SKIPIF1<0(Ⅱ)SKIPIF1<0SKIPIF1<0【解析】(I)由SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0又SKIPIF1<0.(Ⅱ)由(I)得,SKIPIF1<0依題意,SKIPIF1<0又SKIPIF1<0故SKIPIF1<0函數(shù)SKIPIF1<0的圖像向左平移SKIPIF1<0個單位后所對應的函數(shù)為SKIPIF1<0SKIPIF1<0是偶函數(shù)當且僅當SKIPIF1<0即SKIPIF1<0從而,最小正實數(shù)SKIPIF1<0【總結升華】本題考查了同角三角函數(shù)的基本關系式及函數(shù)SKIPIF1<0的性質,屬中等難度題.5.已知f(x)的定義域為[-π,π],且f(x)為偶函數(shù),且當x∈[0,π]時,SKIPIF1<0.(1)求f(x)的解析式及f(x)的單調(diào)遞增區(qū)間;(2)若SKIPIF1<0,求x的所有可能取值.【答案】(1)SKIPIF1<0和SKIPIF1<0;(2)0,SKIPIF1<0,SKIPIF1<0【解析】(1)當x∈[―π,0]時,―x∈[0,π],SKIPIF1<0由于f(x)為偶函數(shù),則f(-x)=f(x),故SKIPIF1<0,x∈(-π,0]即SKIPIF1<0.畫出f(x)的圖象由圖象易得f(x)的單調(diào)增區(qū)間為SKIPIF1<0和SKIPIF1<0.(2)方程等價于f(x)=0或SKIPIF1<0,當SKIPIF1<0時f(x)=0;當0或SKIPIF1<0時SKIPIF1<0綜上可知x的所有可能取值為0,SKIPIF1<0,SKIPIF1<0.【鞏固提升】1.已知函數(shù)SKIPIF1<0在一個周期內(nèi),當SKIPIF1<0時,取得最大值2,當SKIPIF1<0時取得最小值-2,那么()SKIPIF1<0【答案】B【解析】A=2,SKIPIF1<0,代入點(SKIPIF1<0,2)得到SKIPIF1<02.函數(shù)y=2sin2x的圖象可看成是由y=sinx的圖象按下列哪種變換得到的?()A.橫坐標不變,縱坐標變?yōu)樵瓉淼腟KIPIF1<0倍B.縱坐標變?yōu)樵瓉淼?倍,橫坐標變?yōu)樵瓉淼腟KIPIF1<0倍C.橫坐標不變,縱坐標變?yōu)樵瓉淼?倍D.縱坐標變?yōu)樵瓉淼腟KIPIF1<0倍,橫坐標變?yōu)樵瓉淼?倍【答案】B【解析】SKIPIF1<0.3.已知函數(shù)SKIPIF1<0的最小正周期為π,將SKIPIF1<0的圖象向左平移|SKIPIF1<0|個單位長度,所得圖象關于y軸對稱,則SKIPIF1<0的一個值是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】由T=πSKIPIF1<0ω=2,SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0,當k=0時,SKIPIF1<0.4.要得到函數(shù)y=sinx的圖象,只需將函數(shù)y=SKIPIF1<0的圖象()A.向右平移SKIPIF1<0個單位B.向右平移SKIPIF1<0個單位C.向左平移SKIPIF1<0個單位D.向左平移SKIPIF1<0個單位【答案】A【解析】y=sinx=cosSKIPIF1<0=cosSKIPIF1<0=SKIPIF1<0,∴須將y=cosSKIPIF1<0的圖象向右平移SKIPIF1<0個單位.5.要得到y(tǒng)=SKIPIF1<0的圖象,只需將y=SKIPIF1<0的圖象()A.向左平移SKIPIF1<0個單位B.向右平移SKIPIF1<0個單位C.向左平移SKIPIF1<0個單位D.向右平移SKIPIF1<0個單位【答案】B【解析】y=sinSKIPIF1<0=sinSKIPIF1<06.為得到函數(shù)SKIPIF1<0的圖象,只需將函數(shù)y=sinx的圖象()A.向左平移SKIPIF1<0個單位長度B.向右平移SKIPIF1<0個單位長度C.向左平移SKIPIF1<0個單位長度D.向右平移SKIPIF1<0個單位長度【答案】C【解析】SKIPIF1<0.7.函數(shù)SKIPIF1<0的圖象為C,①圖象C關于直線SKIPIF1<0對稱;②函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)是增函數(shù);③由y=3sin2x的圖象向右平移SKIPIF1<0個單位長度可以得到圖象C.以上三個結論中,正確結論的個數(shù)是()A.0B.1C.2D.3【答案】C【解析】對于①,當SKIPIF1<0時,SKIPIF1<0,因此圖象C關于直線SKIPIF1<0對稱;對于②,由SKIPIF1<0得SKIPIF1<0,k∈Z,令k=0,得函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)是增函數(shù);對于③,由y=3sin2x的圖象向右平移SKIPIF1<0個單位長度可以得到SKIPIF1<0,故①②正確;③不正確.8.函數(shù)SKIPIF1<0的圖象經(jīng)平移后所得的圖象關于點SKIPIF1<0中心對稱.A.向左平移SKIPIF1<0個單位B.向左平移SKIPIF1<0個單位C.向右平移SKIPIF1<0個單位D.向右平移SKIPIF1<0個單位【答案】D【解析】設平移后得SKIPIF1<0.當SKIPIF1<0時,y=0,∴SKIPIF1<0,∴SKIPIF1<0,k=0,SKIPIF1<0,故向右平移SKIPIF1<0個單位.9.函數(shù)SKIPIF1<0SKIPIF1<0的最小值為―2,其圖象上相鄰的最高點與最低點的橫坐標之差是3π,又圖象過點(0,1),則這個函數(shù)的解析式是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】由已知得A=2,T=2×π=6π,又SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,又圖象過點(0,1),所以SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,選B.10.函數(shù)f(x)=2sinSKIPIF1<0,當f(x)取得最小值時,x的取值集合為()A.{x|x=4kπ-SKIPIF1<0π,k∈Z}B.{x|x=4kπ+SKIPIF1<0π,k∈Z}C.{x|x=4kπ-SKIPIF1<0,k∈Z}D.{x|x=4kπ+SKIPIF1<0,k∈Z}11.已知a是實數(shù),則函數(shù)SKIPIF1<0的圖象不可能是()【答案】D【解析】當a=0,圖象如C;當0<a<1,圖象如A;當1<a<2,圖象如B;在D中,就振幅看a>1,就周期看0<a<1.12.若函數(shù)SKIPIF1<0對于任意的SKIPIF1<0都有SKIPIF1<0成立,則SKIPIF1<0的最小值為()A.1B.2C.SKIPIF1<0D.4【答案】B【解析】“對于任意的SKIPIF1<0都有SKIPIF1<0成立”的含義是SKIPIF1<0是函數(shù)的最小值,SKIPIF1<0是函數(shù)的最大值,SKIPIF1<0是使得函數(shù)取得最小值的一個自變量,SKIPIF1<0是使得函數(shù)取得最大值的一個自變量,那么,SKIPIF1<0的最小值應為半個周期.因為函數(shù)SKIPIF1<0的最小正周期為4,所以SKIPIF1<0的最小值為2.13.有下列四種變換方式:①向左平移SKIPIF1<0,再將橫坐標變?yōu)樵瓉淼腟KIPIF1<0;②橫坐標變?yōu)樵瓉淼腟KIPIF1<0,再向左平移SKIPIF1<0;③橫坐標變?yōu)樵瓉淼腟KIPIF1<0,再向左平移SKIPIF1<0;④向左平移SKIPIF1<0,再將橫坐標變?yōu)樵瓉淼腟KIPIF1<0.其中能將正弦曲線y=sinx的圖象變?yōu)镾KIPIF1<0的圖象的是________.【答案】①②【解析】對于①,SKIPIF1<0,故①正確;對于②,SKIPIF1<0,故②正確.12.如圖是函數(shù)SKIPIF1<0的圖象的一部分,則A=________,SKIPIF1<0=________,SKIPIF1<0=________.【答案】22SKIPIF1<0【解析】由圖象最高點及最低點的縱坐標可知A=2.由圖象可得半周期SKIPIF1<0,所以SKIPIF1<0,ω=2,所以SKIPIF1<0,當SKIPIF1<0時,y=0,即SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0.14.函數(shù)SKIPIF1<0(A,ω,SKIPIF1<0為常數(shù),A>0,ω>0)在區(qū)間[-π,0]上的圖象如下圖所示,則ω=________.【答案】3【解析】SKIPIF1<0,∴SKIPIF1<0.15.函數(shù)SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論