版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023屆浙江省瑞安八校高中畢業(yè)班第一次調(diào)研測試數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足,則()A. B. C. D.2.已知,則的值等于()A. B. C. D.3.在中,角所對的邊分別為,已知,.當變化時,若存在最大值,則正數(shù)的取值范圍為A. B. C. D.4.已知不等式組表示的平面區(qū)域的面積為9,若點,則的最大值為()A.3 B.6 C.9 D.125.一袋中裝有個紅球和個黑球(除顏色外無區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.6.設,集合,則()A. B. C. D.7.已知x,y滿足不等式組,則點所在區(qū)域的面積是()A.1 B.2 C. D.8.集合的子集的個數(shù)是()A.2 B.3 C.4 D.89.設a,b,c為正數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不修要條件10.設,點,,,,設對一切都有不等式成立,則正整數(shù)的最小值為()A. B. C. D.11.已知,,,則,,的大小關系為()A. B. C. D.12.若函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,且,則__________.14.若函數(shù)在區(qū)間上有且僅有一個零點,則實數(shù)的取值范圍有___________.15.設命題:,,則:__________.16.已知直線與圓心為的圓相交于兩點,且,則實數(shù)的值為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,且過點.(Ⅰ)求橢圓的方程;(Ⅱ)設是橢圓上且不在軸上的一個動點,為坐標原點,過右焦點作的平行線交橢圓于、兩個不同的點,求的值.18.(12分)已知在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(2)求曲線上的點到直線距離的最小值和最大值.19.(12分)已知橢圓的左、右焦點分別為直線垂直于軸,垂足為,與拋物線交于不同的兩點,且過的直線與橢圓交于兩點,設且.(1)求點的坐標;(2)求的取值范圍.20.(12分)已知函數(shù),曲線在點處的切線在y軸上的截距為.(1)求a;(2)討論函數(shù)和的單調(diào)性;(3)設,求證:.21.(12分)已知函數(shù).(1)若函數(shù),試討論的單調(diào)性;(2)若,,求的取值范圍.22.(10分)如圖,在四棱錐中,底面,,,,,點為棱的中點.(1)證明::(2)求直線與平面所成角的正弦值;(3)若為棱上一點,滿足,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
利用的前項和求出數(shù)列的通項公式,可計算出,然后利用裂項法可求出的值.【詳解】.當時,;當時,由,可得,兩式相減,可得,故,因為也適合上式,所以.依題意,,故.故選:C.【點睛】本題考查利用求,同時也考查了裂項求和法,考查計算能力,屬于中等題.2.A【解析】
由余弦公式的二倍角可得,,再由誘導公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A【點睛】本題考查了學生對二倍角公式的應用,要求學生熟練掌握三角函數(shù)中的誘導公式,屬于簡單題3.C【解析】
因為,,所以根據(jù)正弦定理可得,所以,,所以,其中,,因為存在最大值,所以由,可得,所以,所以,解得,所以正數(shù)的取值范圍為,故選C.4.C【解析】
分析:先畫出滿足約束條件對應的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個頂點,即求出邊界線的交點坐標,代入目標函數(shù)求得最大值.詳解:作出不等式組對應的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時,由圖可得當過點時,取得最大值9,故選C.點睛:該題考查的是有關線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對應的可行域,之后根據(jù)目標函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個點是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標,代入求值,要明確目標函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應用相應的方法求解.5.A【解析】
由題意可知,隨機變量的可能取值有、、、,計算出隨機變量在不同取值下的概率,進而可求得隨機變量的數(shù)學期望值.【詳解】由題意可知,隨機變量的可能取值有、、、,則,,,.因此,隨機變量的數(shù)學期望為.故選:A.【點睛】本題考查隨機變量數(shù)學期望的計算,考查計算能力,屬于基礎題.6.B【解析】
先化簡集合A,再求.【詳解】由得:,所以,因此,故答案為B【點睛】本題主要考查集合的化簡和運算,意在考查學生對這些知識的掌握水平和計算推理能力.7.C【解析】
畫出不等式表示的平面區(qū)域,計算面積即可.【詳解】不等式表示的平面區(qū)域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.【點睛】本題考查不等式組表示的平面區(qū)域面積的求法,考查數(shù)形結(jié)合思想和運算能力,屬于常考題.8.D【解析】
先確定集合中元素的個數(shù),再得子集個數(shù).【詳解】由題意,有三個元素,其子集有8個.故選:D.【點睛】本題考查子集的個數(shù)問題,含有個元素的集合其子集有個,其中真子集有個.9.B【解析】
根據(jù)不等式的性質(zhì),結(jié)合充分條件和必要條件的定義進行判斷即可.【詳解】解:,,為正數(shù),當,,時,滿足,但不成立,即充分性不成立,若,則,即,即,即,成立,即必要性成立,則“”是“”的必要不充分條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合不等式的性質(zhì)是解決本題的關鍵.10.A【解析】
先求得,再求得左邊的范圍,只需,利用單調(diào)性解得t的范圍.【詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數(shù)的最小值為3.【點睛】本題考查了數(shù)列的通項及求和問題,考查了數(shù)列的單調(diào)性及不等式的解法,考查了轉(zhuǎn)化思想,屬于中檔題.11.D【解析】
構造函數(shù),利用導數(shù)求得的單調(diào)區(qū)間,由此判斷出的大小關系.【詳解】依題意,得,,.令,所以.所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.所以,且,即,所以.故選:D.【點睛】本小題主要考查利用導數(shù)求函數(shù)的單調(diào)區(qū)間,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,考查對數(shù)式比較大小,屬于中檔題.12.C【解析】
由題意利用函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,求出的最大值.【詳解】解:把函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間,上,,,則當最大時,,求得,故選:C.【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】試題分析:因,故,所以,,應填.考點:三角變換及運用.14.或【解析】
函數(shù)的零點方程的根,求出方程的兩根為,,從而可得或,即或.【詳解】函數(shù)在區(qū)間的零點方程在區(qū)間的根,所以,解得:,,因為函數(shù)在區(qū)間上有且僅有一個零點,所以或,即或.【點睛】本題考查函數(shù)的零點與方程根的關系,在求含絕對值方程時,要注意對絕對值內(nèi)數(shù)的正負進行討論.15.,【解析】
存在符號改任意符號,結(jié)論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【點睛】本題考查全(特)稱命題.對全(特)稱命題進行否定的方法:(1)改寫量詞:全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;(2)否定結(jié)論:對于一般命題的否定只需直接否定結(jié)論即可.16.0或6【解析】
計算得到圓心,半徑,根據(jù)得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.【點睛】本題考查了根據(jù)直線和圓的位置關系求參數(shù),意在考查學生的計算能力和轉(zhuǎn)化能力。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)1【解析】
(Ⅰ)由題,得,,解方程組,即可得到本題答案;(Ⅱ)設直線,則直線,聯(lián)立,得,聯(lián)立,得,由此即可得到本題答案.【詳解】(Ⅰ)由題可得,即,,將點代入方程得,即,解得,所以橢圓的方程為:;(Ⅱ)由(Ⅰ)知,設直線,則直線,聯(lián)立,整理得,所以,聯(lián)立,整理得,設,則,所以,所以.【點睛】本題主要考查橢圓標準方程的求法以及直線與橢圓的綜合問題,考查學生的運算求解能力.18.(1)(2)最大值;最小值.【解析】
(1)結(jié)合極坐標和直角坐標的互化公式可得;(2)利用參數(shù)方程,求解點到直線的距離公式,結(jié)合三角函數(shù)知識求解最值.【詳解】解:(1)因為,代入,可得直線的直角坐標方程為.(2)曲線上的點到直線的距離,其中,.故曲線上的點到直線距離的最大值,曲線上的點到直線的距離的最小值.【點睛】本題主要考查極坐標和直角坐標的轉(zhuǎn)化及最值問題,橢圓上的點到直線的距離的最值求解優(yōu)先考慮參數(shù)方法,側(cè)重考查數(shù)學運算的核心素養(yǎng).19.(1);(2).【解析】
(1)設出的坐標,代入,結(jié)合在拋物線上,求得兩點的橫坐標,進而求得點的坐標.(2)設出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出韋達定理,結(jié)合,求得的表達式,結(jié)合二次函數(shù)的性質(zhì)求得的取值范圍.【詳解】(1)可知,設則,又,所以解得所以.(2)據(jù)題意,直線的斜率必不為所以設將直線方程代入橢圓的方程中,整理得,設則①②因為所以且將①式平方除以②式得所以又解得又,所以令,則所以【點睛】本小題主要考查直線和拋物線的位置關系,考查直線和橢圓的位置關系,考查向量數(shù)量積的坐標運算,考查向量模的坐標運算,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,考查運算求解能力,屬于難題.20.(1)(2)為減函數(shù),為增函數(shù).(3)證明見解析【解析】
(1)求出導函數(shù),求出切線方程,令得切線的縱截距,可得(必須利用函數(shù)的單調(diào)性求解);(2)求函數(shù)的導數(shù),由導數(shù)的正負確定單調(diào)性;(3)不等式變形為,由遞減,得(),即,即,依次放縮,.不等式,遞增得(),,,,先證,然后同樣放縮得出結(jié)論.【詳解】解:(1)對求導,得.因此.又因為,所以曲線在點處的切線方程為,即.由題意,.顯然,適合上式.令,求導得,因此為增函數(shù):故是唯一解.(2)由(1)可知,,因為,所以為減函數(shù).因為,所以為增函數(shù).(3)證明:由,易得.由(2)可知,在上為減函數(shù).因此,當時,,即.令,得,即.因此,當時,.所以成立.下面證明:.由(2)可知,在上為增函數(shù).因此,當時,,即.因此,即.令,得,即.當時,.因為,所以,所以.所以,當時,.所以,當時,成立.綜上所述,當時,成立.【點睛】本題考查導數(shù)的幾何意義,考查用導數(shù)研究函數(shù)的單調(diào)性,考查用導數(shù)證明不等式.本題中不等式的證明,考查了轉(zhuǎn)化與化歸的能力,把不等式變形后利用第(2)小題函數(shù)的單調(diào)性得出數(shù)列的不等關系:,.這是最關鍵的一步.然后一步一步放縮即可證明.本題屬于困難題.21.(1)答案不唯一,具體見解析(2)【解析】
(1)由于函數(shù),得出,分類討論當和時,的正負,進而得出的單調(diào)性;(2)求出,令,得,設,通過導函數(shù),可得出在上的單調(diào)性和值域,再分類討論和時,的單調(diào)性,再結(jié)合,恒成立,即可求出的取值范圍.【詳解】解:(1)因為,所以,①當時,,在上單調(diào)遞減.②當時,令,則;令,則,所以在單調(diào)遞增,在上單調(diào)遞減.綜上所述,當時,在上單調(diào)遞減;當時,在上單調(diào)遞增,在上單調(diào)遞減.(2)因為,可知,,令,得.設,則.當時,,在上單調(diào)遞增,所以在上的值域是,即.當時,沒有實根,且,在上單調(diào)遞減,,符合題意.當時,,所以有唯一實根,當時,,在上單調(diào)遞增,,不符合題意.綜上,,即的取值范圍為.【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性和根據(jù)恒成立問題求參數(shù)范圍,還運用了構造函數(shù)法,還考查分類討論思想和計算能力,屬于難題.22.(1)證明見解析(2)(3)【解析】
(1)根據(jù)題意以為坐標原點,建立空間直角坐標系,寫出各個點的坐標,并表示出,由空間向量數(shù)量積運算即可證明.(2)先求得平面的法向量,即可求得直線與平面法向量夾角的余弦值,即為直線與平面所成角的正弦值;(3)由點在棱上,設,再由,結(jié)合,由空間向量垂直的坐標關系求得的值.即可表示出.求得平面和平面的法向量,由空間向量數(shù)量積的運算求得兩個平面夾角的余弦值,再根據(jù)二面角的平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 返鄉(xiāng)大學生申請書范文
- 民事訴訟撤銷申請書范本
- 想買保障房申請書
- 2026年財務亮點與年度回顧黑金風
- 安順公司變更法人申請書
- 2025年物流倉儲管理優(yōu)化與實施指南
- 執(zhí)行矯正申請書
- 2026年新媒體在房地產(chǎn)交易中的影響力分析
- 2025年企業(yè)內(nèi)部培訓與競爭力提升手冊
- 繪畫合作社資金申請書
- 托管學校合作合同協(xié)議
- 2025年醫(yī)保局支部書記述職報告
- 世說新語課件
- 全體教師大會上副校長講話:點醒了全校200多名教師!毀掉教學質(zhì)量的不是學生是這7個環(huán)節(jié)
- T-CDLDSA 09-2025 健身龍舞彩帶龍 龍舞華夏推廣套路技術規(guī)范
- GB/T 46561-2025能源管理體系能源管理體系審核及認證機構要求
- GB/T 19566-2025旱地糖料甘蔗高產(chǎn)栽培技術規(guī)程
- 去極端化條例解讀課件
- 水上拋石應急預案
- 蘇州大學介紹
- 酒店消防安全應急預案范本
評論
0/150
提交評論