第38課 數(shù)列的概念與簡(jiǎn)單表示法_第1頁(yè)
第38課 數(shù)列的概念與簡(jiǎn)單表示法_第2頁(yè)
第38課 數(shù)列的概念與簡(jiǎn)單表示法_第3頁(yè)
第38課 數(shù)列的概念與簡(jiǎn)單表示法_第4頁(yè)
第38課 數(shù)列的概念與簡(jiǎn)單表示法_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第38課數(shù)列的概念與簡(jiǎn)單表示法普查與練習(xí)38數(shù)列的概念與簡(jiǎn)單表示法1.由數(shù)列的前幾項(xiàng)寫(xiě)出數(shù)列的通項(xiàng)公式(1)(2023匯編,15分)根據(jù)給出的數(shù)列的前幾項(xiàng),寫(xiě)出下列數(shù)列的一個(gè)通項(xiàng)公式.(Ⅰ)-2,1,-eq\f(2,3),eq\f(1,2),…;答案:an=(-1)n×eq\f(2,n)解析:解:根據(jù)題意,數(shù)列-2,1,-eq\f(2,3),eq\f(1,2),…可以寫(xiě)成(-1)1×eq\f(2,1),(-1)2×eq\f(2,2),(-1)3×eq\f(2,3),(-1)4×eq\f(2,4),…,則該數(shù)列的一個(gè)通項(xiàng)公式為an=(-1)n×eq\f(2,n).(3分)(Ⅱ)eq\r(3),eq\r(8),eq\r(13),eq\r(18),…;答案:an=eq\r(5n-2)解析:解:根據(jù)題意,數(shù)列eq\r(3),eq\r(8),eq\r(13),eq\r(18),…可以寫(xiě)成eq\r(5×1-2),eq\r(5×2-2),eq\r(5×3-2),eq\r(5×4-2),…,則該數(shù)列的一個(gè)通項(xiàng)公式為an=eq\r(5n-2).(6分)(Ⅲ)eq\f(1,2),eq\f(1,6),eq\f(1,12),eq\f(1,20),…;答案:an=eq\f(1,n(n+1))解析:解:根據(jù)題意,數(shù)列eq\f(1,2),eq\f(1,6),eq\f(1,12),eq\f(1,20),…可以寫(xiě)成eq\f(1,1×2),eq\f(1,2×3),eq\f(1,3×4),eq\f(1,4×5),…,所以該數(shù)列的一個(gè)通項(xiàng)公式為an=eq\f(1,n(n+1)).(9分)(Ⅳ)0,eq\f(1,4),eq\f(1,3),eq\f(3,8),…;答案:an=eq\f(n-1,2n)解析:解:根據(jù)題意,數(shù)列0,eq\f(1,4),eq\f(1,3),eq\f(3,8),…可以寫(xiě)成eq\f(0,2),eq\f(1,4),eq\f(2,6),eq\f(3,8),…,所以該數(shù)列的一個(gè)通項(xiàng)公式為an=eq\f(n-1,2n).(12分)(Ⅴ)0,1,0,1,….答案:an=eq\f(1+(-1)n,2)或an=eq\f(1+cosnπ,2)解析:解:觀察所給數(shù)列,發(fā)現(xiàn)奇數(shù)項(xiàng)為0,偶數(shù)項(xiàng)為1,所以該數(shù)列的通項(xiàng)可以用an=eq\f(1+(-1)n,2)或an=eq\f(1+cosnπ,2)來(lái)表示.(15分)2.由an與Sn的關(guān)系求通項(xiàng)an(2)(2023匯編,25分)已知Sn是數(shù)列{an}的前n項(xiàng)和.①若a1=a2=2,且Sn+1+Sn-1=2(Sn+1)(n>1,n∈N*),則an=__eq\b\lc\{(\a\vs4\al\co1(\a\vs4\al\co1(2,n=1,,2n-2,n≥2)))__;(2020江西上饒三模改編)②若an>0,Sn=eq\f(an(an+1),2),n∈N*,則an=__n__;(2020山東濟(jì)寧三模節(jié)選)③若a1=2,Sn=2an+1,n∈N*,則an=__eq\b\lc\{(\a\vs4\al\co1(2,n=1,,\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))\s\up12(n-2),n≥2))__;④若an>0,aeq\o\al(2,n)+1=2anSn,n∈N*,則an=__eq\r(n)-eq\r(n-1)__;(2020福建二模改編)⑤若Sn=3an+2n-3,n∈N*,則an=__an=2-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))eq\s\up12(n)__.解析:①由Sn+1+Sn-1=2(Sn+1),得(Sn+1-Sn)-(Sn-Sn-1)=2,即an+1-an=2(n>1,n∈N*).又∵a2=2,∴{an}從第2項(xiàng)起是一個(gè)以2為首項(xiàng),2為公差的等差數(shù)列,∴an=2+2(n-2)=2n-2(n>1,n∈N*).當(dāng)n=1時(shí),a1=2不滿足上式,故an=eq\b\lc\{(\a\vs4\al\co1(\a\vs4\al\co1(2,n=1,,2n-2,n≥2.)))②令n=1,則S1=eq\f(a1(a1+1),2)=a1,∴a1(a1-1)=0.∵a1>0,∴a1=1.當(dāng)n≥2時(shí),an=Sn-Sn-1=eq\f(an(an+1),2)-eq\f(an-1(an-1+1),2),整理得(an+an-1)(an-an-1-1)=0.∵an+an-1>0,∴an-an-1=1,∴數(shù)列{an}是以1為首項(xiàng),1為公差的等差數(shù)列,∴an=1+(n-1)×1=n.③(法一)∵Sn=2an+1,∴當(dāng)n≥2時(shí),Sn-1=2an,兩式相減得an=2an+1-2an(n≥2),即2an+1=3an(n≥2).由題易知an≠0,∴eq\f(an+1,an)=eq\f(3,2)(n≥2).∵S1=2a2=a1,∴a2=eq\f(a1,2)=1,∴數(shù)列{an}從第2項(xiàng)起是以1為首項(xiàng),eq\f(3,2)為公比的等比數(shù)列,∴an=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))eq\s\up12(n-2),n≥2.當(dāng)n=1時(shí),a1=2不滿足上式,∴數(shù)列{an}的通項(xiàng)公式為an=eq\b\lc\{(\a\vs4\al\co1(2,n=1,,\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))\s\up12(n-2),n≥2.))(法二)由Sn=2an+1,得Sn=2(Sn+1-Sn),即2Sn+1=3Sn.由題知Sn≠0,∴eq\f(Sn+1,Sn)=eq\f(3,2).又S1=a1=2,∴數(shù)列{Sn}是以2為首項(xiàng),eq\f(3,2)為公比的等比數(shù)列,∴Sn=2·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))eq\s\up12(n-1).當(dāng)n≥2時(shí),an=Sn-Sn-1=2·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))eq\s\up12(n-1)-2·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))eq\s\up12(n-2)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))eq\s\up12(n-2).當(dāng)n=1時(shí),a1=2不滿足上式,∴數(shù)列{an}的通項(xiàng)公式為an=eq\b\lc\{(\a\vs4\al\co1(2,n=1,,\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))\s\up12(n-2),n≥2.))④令n=1,則aeq\o\al(2,1)+1=2a1S1=2aeq\o\al(2,1),整理得aeq\o\al(2,1)=1.∵an>0,∴a1=1.∵an=Sn-Sn-1(n≥2),∴(Sn-Sn-1)2+1=2(Sn-Sn-1)Sn(n≥2),整理得Seq\o\al(2,n)-Seq\o\al(2,n-1)=1(n≥2),∴數(shù)列{Seq\o\al(2,n)}是以1為首項(xiàng),1為公差的等差數(shù)列,∴Seq\o\al(2,n)=1+(n-1)=n,Sn=eq\r(n).當(dāng)n≥2時(shí),an=Sn-Sn-1=eq\r(n)-eq\r(n-1);當(dāng)n=1時(shí),a1=1滿足上式,∴an=eq\r(n)-eq\r(n-1).⑤當(dāng)n=1時(shí),S1=a1=3a1-1,解得a1=eq\f(1,2).當(dāng)n≥2時(shí),Sn=3an+2n-3,Sn-1=3an-1+2n-5,兩式相減,可得an=3an-3an-1+2,故an=eq\f(3,2)an-1-1.設(shè)an+λ=eq\f(3,2)(an-1+λ),整理得an=eq\f(3,2)an-1+eq\f(λ,2),∴λ=-2,∴eq\f(an-2,an-1-2)=eq\f(3,2),∴數(shù)列{an-2}是以a1-2=-eq\f(3,2)為首項(xiàng),eq\f(3,2)為公比的等比數(shù)列,∴an-2=-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))eq\s\up12(n),即an=2-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))eq\s\up12(n).經(jīng)檢驗(yàn),n=1也滿足an=2-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))eq\s\up12(n),故數(shù)列{an}的通項(xiàng)公式為an=2-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))eq\s\up12(n).(3)(2018全國(guó)Ⅰ,5分)記Sn為數(shù)列{an}的前n項(xiàng)和,若Sn=2an+1,則S6=__-63__.解析:(法一)由an=Sn-Sn-1(n≥2),得Sn=2an+1=2(Sn-Sn-1)+1(n≥2),整理,得Sn=2Sn-1-1,即Sn-1=2(Sn-1-1).又由Sn=2an+1,得a1=2a1+1,a1=-1,S1-1=-2,所以數(shù)列{Sn-1}是首項(xiàng)為-2,公比為2的等比數(shù)列,所以S6-1=(S1-1)·25=-64,所以S6=-63.(法二)由Sn=2an+1,得Sn+1=2an+1+1,兩式相減,得an+1=2an.又由Sn=2an+1,得a1=2a1+1,a1=-1,所以數(shù)列{an}是首項(xiàng)為-1,公比為2的等比數(shù)列,所以S6=eq\f(a1(1-q6),1-q)=eq\f(-(1-64),1-2)=-63.3.由遞推關(guān)系式求數(shù)列的通項(xiàng)公式a.形如an+1=anf(n),求an時(shí),用疊乘法(4)(2023匯編,15分)已知數(shù)列{an}的首項(xiàng)a1=1,求滿足下列遞推關(guān)系的數(shù)列{an}的通項(xiàng)公式.(Ⅰ)eq\f(an,an+1-an)=n;答案:an=n解析:解:由eq\f(an,an+1-an)=n,可得nan+1=(n+1)an,即eq\f(an+1,an)=eq\f(n+1,n),(3分)所以當(dāng)n≥2時(shí),an=a1·eq\f(a2,a1)·…·eq\f(an,an-1)=1×2×eq\f(3,2)×…×eq\f(n,n-1)=n.當(dāng)n=1時(shí),a1=1滿足上式,所以數(shù)列{an}的通項(xiàng)公式為an=n.(5分)(Ⅱ)eq\f(an+1+(n+2),an+(n+1))=eq\f(n+3,n+1);答案:an=eq\f(n(n+1),2)解析:解:設(shè)bn=an+(n+1),則eq\f(bn+1,bn)=eq\f(n+3,n+1),b1=a1+2=3,所以當(dāng)n≥2時(shí),bn=b1·eq\f(b2,b1)·eq\f(b3,b2)·…·eq\f(bn,bn-1)=3×eq\f(4,2)×eq\f(5,3)×…×eq\f(n+2,n)=eq\f((n+2)(n+1),2),即an+(n+1)=eq\f((n+2)(n+1),2),n≥2,所以an=eq\f((n+2)(n+1),2)-(n+1)=eq\f(n(n+1),2),n≥2.(9分)當(dāng)n=1時(shí),a1=1滿足上式,所以an=eq\f(n(n+1),2).(10分)(Ⅲ)an=2nan-1(n≥2).答案:an=解析:解:因?yàn)閍n=2nan-1(n≥2),且a1=1,所以數(shù)列{an}的各項(xiàng)均不為0,所以eq\f(an,an-1)=2n(n≥2),所以an=a1·eq\f(a2,a1)·…·eq\f(an,an-1)=1×22×23×…×2n==(n≥2).(14分)經(jīng)驗(yàn)證,當(dāng)n=1時(shí),a1=1也符合上式,所以數(shù)列{an}的通項(xiàng)公式為an=.(15分)b.形如an+1=an+f(n),求an時(shí),用疊加法(5)(2020浙江節(jié)選,7分)已知數(shù)列{an},{bn},{cn}滿足a1=b1=c1=1,cn=an+1-an,cn+1=eq\f(bn,bn+2)·cn(n∈N*).若{bn}為等比數(shù)列,公比q>0,且b1+b2=6b3,求q的值及數(shù)列{an}的通項(xiàng)公式.答案:q=eq\f(1,2),an=eq\f(4n-1+2,3)解析:解:由b1+b2=6b3,可得1+q=6q2,即6q2-q-1=0,解得q=-eq\f(1,3)(舍去)或q=eq\f(1,2),∴cn+1=eq\f(bn,bn+2)·cn=eq\f(1,\f(bn+2,bn))·cn=eq\f(1,q2)·cn=4cn,∴數(shù)列{cn}是以1為首項(xiàng),4為公比的等比數(shù)列,∴cn=4n-1.(3分)∵cn=an+1-an,∴an+1-an=4n-1,∴a2-a1=1,a3-a2=41,…,an-an-1=4n-2,各式相加,可得an-1=1+41+42+…+4n-2=eq\f(1-4n-1,1-4)=eq\f(4n-1-1,3),n≥2,∴an=eq\f(4n-1-1,3)+1=eq\f(4n-1+2,3),n≥2.當(dāng)n=1時(shí),a1=1滿足上式,∴an=eq\f(4n-1+2,3).(7分)c.形如an+1=Aan+B(A≠0,1,B≠0),求an時(shí),用待定系數(shù)法(6)(2023原創(chuàng),5分)已知數(shù)列{an}滿足:a1=1,且2an+1=3an+5,求數(shù)列{an}的通項(xiàng)公式.答案:an=6·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))n-1-5解析:解:∵2an+1=3an+5,∴2(an+1+5)=3(an+5).由a1=1,且2an+1=3an+5,知an>0,∴an+5≠0,∴eq\f(an+1+5,an+5)=eq\f(3,2).∴數(shù)列{an+5}是首項(xiàng)為6,公比為eq\f(3,2)的等比數(shù)列,(4分)∴an+5=6·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))n-1,∴數(shù)列{an}的通項(xiàng)公式為an=6·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))n-1-5.(5分)(2023改編,5分)已知數(shù)列{an}滿足:a1=2,且an+1=4an-3n+1,求數(shù)列{an}的通項(xiàng)公式.答案:an=4n-1+n解析:解:∵an+1=4an-3n+1,∴an+1-(n+1)=4(an-n).(3分)又a1-1=1,∴{an-n}是以1為首項(xiàng),4為公比的等比數(shù)列,∴an-n=4n-1,即an=4n-1+n.(5分)d.形如an+1=eq\f(Aan,Ban+C)(A,B,C是不為0的常數(shù)),求an時(shí),用兩邊取倒數(shù)法(7)(2023改編,5分)在數(shù)列{an}中,已知a1=3,an+1=eq\f(3an,an+3),求數(shù)列{an}的通項(xiàng)公式.答案:an=eq\f(3,n)解析:解:由a1=3,an+1=eq\f(3an,an+3)知an>0.依題意得eq\f(1,an+1)=eq\f(an+3,3an)=eq\f(1,an)+eq\f(1,3),即eq\f(1,an+1)-eq\f(1,an)=eq\f(1,3),(2分)所以數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an)))是以eq\f(1,a1)=eq\f(1,3)為首項(xiàng),eq\f(1,3)為公差的等差數(shù)列,所以eq\f(1,an)=eq\f(1,3)+eq\f(n-1,3)=eq\f(n,3),所以an=eq\f(3,n),所以數(shù)列{an}的通項(xiàng)公式為an=eq\f(3,n).(5分)(2023改編,5分)在數(shù)列{an}中,已知a1=3,an+1=eq\f(3an,an+6),求數(shù)列{an}的通項(xiàng)公式.答案:an=eq\f(3,2n-1)解析:解:由a1=3,且an+1=eq\f(3an,an+6)知an>0.依題意得eq\f(1,an+1)=eq\f(an+6,3an)=eq\f(2,an)+eq\f(1,3).(1分)令bn=eq\f(1,an),則bn+1=2bn+eq\f(1,3),且bn>0,所以bn+1+eq\f(1,3)=2eq\b\lc\(\rc\)(\a\vs4\al\co1(bn+\f(1,3))),所以eq\f(bn+1+\f(1,3),bn+\f(1,3))=2,所以數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(bn+\f(1,3)))是首項(xiàng)為b1+eq\f(1,3)=eq\f(1,a1)+eq\f(1,3)=eq\f(2,3),公比為2的等比數(shù)列,(3分)所以bn+eq\f(1,3)=eq\f(2,3)·2n-1=eq\f(2n,3),所以bn=eq\f(2n-1,3),所以an=eq\f(3,2n-1),所以數(shù)列{an}的通項(xiàng)公式為an=eq\f(3,2n-1).(5分)e.關(guān)于an,an+1的二次三項(xiàng)式,通過(guò)因式分解轉(zhuǎn)化為常見(jiàn)數(shù)列求解(8)(2020江西模擬,5分)正項(xiàng)數(shù)列{an}滿足a2=1,eq\f(aeq\o\al(2,n+1),an)=2an+an+1,求使an>100的最小的n值.答案:9解析:解:由eq\f(aeq\o\al(2,n+1),an)=2an+an+1,得aeq\o\al(2,n+1)-anan+1-2aeq\o\al(2,n)=0,即(an+1+an)(an+1-2an)=0.因?yàn)閍n>0,所以an+1-2an=0,即eq\f(an+1,an)=2,所以{an}是公比為2的等比數(shù)列,所以an=a2·2n-2=2n-2.(3分)因?yàn)檎?xiàng)數(shù)列{an}單調(diào)遞增,a8=64,a9=128,所以使an>100的最小的n值為9.(5分)(9)(2020浙江模擬改編,5分)已知正項(xiàng)數(shù)列{an}滿足a1=9,an+1-an=4(eq\r(an)+1),求數(shù)列{an}的通項(xiàng)公式.答案:an=(2n+1)2解析:解:由an+1-an=4(eq\r(an)+1)得an+1-(an+4eq\r(an)+4)=0,即(eq\r(an+1))2-(eq\r(an)+2)2=[eq\r(an+1)+(eq\r(an)+2)]·[eq\r(an+1)-(eq\r(an)+2)]=0.因?yàn)閧an}為正項(xiàng)數(shù)列,所以eq\r(an+1)+eq\r(an)+2>0,所以eq\r(an+1)-(eq\r(an)+2)=0,即eq\r(an+1)-eq\r(an)=2,所以數(shù)列{eq\r(an)}是首項(xiàng)為eq\r(a1)=3,公差為2的等差數(shù)列,(4分)所以eq\r(an)=3+2(n-1)=2n+1,所以an=(2n+1)2.(5分)f.形如an+2=pan+1+qan+t(pq≠0),求an時(shí),用待定系數(shù)法(10)(2023原創(chuàng),5分)已知數(shù)列{an}滿足a1=1,a2=3,an+2=6an+1-8an,求數(shù)列{an}的通項(xiàng)公式.答案:an=2·4n-2+2n-2解析:解:由an+2=6an+1-8an,得an+2-2an+1=4an+1-8an=4(an+1-2an),所以數(shù)列{an+1-2an}是以a2-2a1=1為首項(xiàng),4為公比的等比數(shù)列,所以an+1-2an=4n-1.①(2分)又由an+2=6an+1-8an,得an+2-4an+1=2an+1-8an=2(an+1-4an),所以數(shù)列{an+1-4an}是以a2-4a1=-1為首項(xiàng),2為公比的等比數(shù)列,所以an+1-4an=-2n-1.②(4分)①-②,得2an=4n-1+2n-1,所以an=2·4n-2+2n-2.(5分)(11)(2020天津和平區(qū)模擬,5分)數(shù)列{an}滿足a1=1,a2=2,an+2=2an+1-an+2,求數(shù)列{an}的通項(xiàng)公式.答案:an=(n-1)2+1解析:解:∵an+2=2an+1-an+2,∴an+2-an+1=an+1-an+2,即數(shù)列{an+1-an}為等差數(shù)列,首項(xiàng)為a2-a1=1,公差為2,∴an+1-an=1+2(n-1)=2n-1.(3分)∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=1+(2×1-1)+(2×2-1)+…+[2×(n-1)-1]=1+1+3+…+(2n-3)=1+eq\f((1+2n-3)(n-1),2)=(n-1)2+1.(5分)g.利用數(shù)列的周期性解決問(wèn)題(12)(2023匯編,30分)解答下列關(guān)于周期數(shù)列的問(wèn)題.①數(shù)列{an}的首項(xiàng)a1=3,且an=2-eq\f(2,an-1)(n≥2,且n∈N*),則a2021=(A)(2021四川綿陽(yáng)期中)A.3B.eq\f(4,3)C.eq\f(1,2)D.-2②在數(shù)列{an}中,a3=5,anan+3=1,n∈N*,則log5a1+log5a2+…+log5a2021=(B)A.-1B.1C.log53D.4③已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,a2=2,an+2=an+1-an,n∈N*,則S2023=__1____.④已知數(shù)列{an}滿足an=eq\b\lc\{(\a\vs4\al\co1(\a\vs4\al\co1(\f(an-1,2),an-1是偶數(shù),,3an-1-1,an-1是奇數(shù),)))n≥2且n∈N*,若a1=26,則數(shù)列{an}的前17項(xiàng)的和是__306__.⑤已知數(shù)列{an}各項(xiàng)均不等于-1,且滿足an=anan+1+an+1+1(n∈N*),a1=eq\f(1,2),則9a9+10a10+11a11+…+18a18+19a19=(A)A.-eq\f(1,2)B.eq\f(1,2)C.35D.-eq\f(19,2)⑥已知數(shù)列{an}滿足an+1=eq\f(1,2)+eq\r(an-aeq\o\al(2,n)),n∈N*,則a2+a2021的最大值為_(kāi)_1+eq\f(\r(2),2)__.解析:①因?yàn)閍1=3,且an=2-eq\f(2,an-1)(n≥2,且n∈N*),所以a2=2-eq\f(2,3)=eq\f(4,3),a3=2-eq\f(2,\f(4,3))=eq\f(1,2),a4=2-eq\f(2,\f(1,2))=-2,a5=2-eq\f(2,-2)=3,a6=2-eq\f(2,3)=eq\f(4,3),…,所以數(shù)列{an}是以4為周期的周期數(shù)列,所以a2021=a505×4+1=a1=3.故選A.②因?yàn)閍nan+3=1,所以an+3an+6=1,所以an+6=an,所以{an}是周期為6的周期數(shù)列,所以log5a1+log5a2+…+log5a2021=log5(a1a2…a2021)=log5[(a1a2…a6)336·(a1a2…a5)].又因?yàn)閍1a4=a2a5=a3a6=1,所以a1a2…a6=1,a1a2…a5=eq\f(1,a6)=a3=5,所以原式=log5(1336×5)=log55=1.故選B.③由a1=1,a2=2,an+2=an+1-an,可得a3=a2-a1=1,a4=a3-a2=-1,a5=a4-a3=-2,a6=a5-a4=-1,a7=a6-a5=1,a8=a7-a6=2……故數(shù)列{an}的周期為6,且a1+a2+a3+a4+a5+a6=0,故S2023=S6×337+1=a1=1.④因?yàn)閿?shù)列{an}滿足an=eq\b\lc\{(\a\vs4\al\co1(\f(an-1,2),an-1是偶數(shù),,3an-1-1,an-1是奇數(shù),))所以當(dāng)a1=26時(shí),a2=eq\f(1,2)a1=13,所以a3=3a2-1=3×13-1=38,a4=eq\f(1,2)a3=19,a5=3a4-1=56,a6=eq\f(1,2)a5=28,a7=eq\f(1,2)a6=14,a8=eq\f(1,2)a7=7,a9=3a8-1=20,a10=eq\f(1,2)a9=10,a11=eq\f(1,2)a10=5,a12=3a11-1=14……可得此數(shù)列從第7項(xiàng)開(kāi)始為周期數(shù)列,周期為5,則數(shù)列{an}的前17項(xiàng)的和為(a1+a2+…+a6)+2(a7+a8+…+a11)+a17=(26+13+38+19+56+28)+2×(14+7+20+10+5)+14=180+2×56+14=306.⑤因?yàn)閍n=anan+1+an+1+1,所以an-1=(an+1)an+1,由an+1≠0,得an+1=eq\f(an-1,an+1),因此a2=eq\f(a1-1,a1+1)=eq\f(\f(1,2)-1,\f(1,2)+1)=-eq\f(1,3),同理a3=-2,a4=3,a5=eq\f(1,2),所以數(shù)列{an}是以4為周期的周期數(shù)列,因此a4k-3=eq\f(1,2),a4k-2=-eq\f(1,3),a4k-1=-2,a4k=3,其中k∈N*.設(shè)Tk=(4k-3)a4k-3+(4k-2)a4k-2+(4k-1)a4k-1+4ka4k=eq\f(7,6)(4k+1),則9a9+10a10+11a11+…+18a18+19a19=T3+T4+T5-20a20=eq\f(7,6)×(13+17+21)-60=-eq\f(1,2).故選A.⑥由題意得eq\f(1,2)≤an≤1,由an+1=eq\f(1,2)+eq\r(an-aeq\o\al(2,n)),得eq\b\lc\(\rc\)(\a\vs4\al\co1(an+1-\f(1,2)))eq\s\up12(2)=an-aeq\o\al(2,n).所以aeq\o\al(2,n+1)-an+1+aeq\o\al(2,n)-an=-eq\f(1,4),所以aeq\o\al(2,n+2)-an+2+aeq\o\al(2,n+1)-an+1=-eq\f(1,4),兩式相減得(an+2-an)(an+2+an-1)=0.因?yàn)閑q\f(1,2)≤an≤1,所以當(dāng)an=eq\f(1,2)時(shí),an+1=1,an+2=eq\f(1,2),此時(shí)a2+a2021=eq\f(3,2).當(dāng)an>eq\f(1,2)時(shí),an+2≥eq\f(1,2),an+2+an>1,所以an+2+an-1≠0,所以an+2=an,所以數(shù)列{an}是以2為周期的周期數(shù)列,所以a2+a2021=a1+a2.由aeq\o\al(2,n+1)-an+1+aeq\o\al(2,n)-an=-eq\f(1,4),得aeq\o\al(2,2)+aeq\o\al(2,1)-a2-a1=-eq\f(1,4),所以(a2+a1)2-(a2+a1)-2a1a2=-eq\f(1,4).令a1+a2=t,則t2-t+eq\f(1,4)=2a1a2≤2×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a1+a2,2)))eq\s\up12(2)=2×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(t,2)))eq\s\up12(2),即2t2-4t+1≤0,解得1-eq\f(\r(2),2)≤t≤1+eq\f(\r(2),2),當(dāng)且僅當(dāng)a1=a2=eq\f(2+\r(2),4)時(shí)取得右邊的等號(hào),所以a1+a2的最大值為1+eq\f(\r(2),2),即a2+a2021的最大值為1+eq\f(\r(2),2).4.?dāng)?shù)列的函數(shù)特性a.研究數(shù)列的最大(小)項(xiàng)(13)(2023匯編,25分)解答下列關(guān)于數(shù)列的最大(小)項(xiàng)問(wèn)題.①已知數(shù)列{an}的通項(xiàng)公式為an=eq\f(n,4n2+81),則數(shù)列{an}的最大項(xiàng)為_(kāi)_eq\f(5,181)__.(用數(shù)字作答)②已知數(shù)列{an}的通項(xiàng)公式為an=eq\f(3n2+n,2),若an≤λ·4n對(duì)于任意n∈N*恒成立,則實(shí)數(shù)λ的取值范圍是__eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(1,2),+∞))__.③已知數(shù)列{an}的通項(xiàng)公式為an=2n-1-n2,n∈N*,則數(shù)列{an}中的最小項(xiàng)為_(kāi)_-9__.(用數(shù)字作答)④已知數(shù)列{an}的通項(xiàng)公式為an=eq\f(1,n+1)-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))n,且正整數(shù)k使得對(duì)任意n∈N*,都有ak≥an,則k=__4__.⑤設(shè)函數(shù)g(x)=2x-alnx,數(shù)列{an}滿足an=g(n),n=1,2,…,且?n∈N*,an≥a4,則實(shí)數(shù)a的取值范圍是(D)A.(6,8)B.eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(2,2ln2-ln3),8))C.eq\b\lc\(\rc\](\a\vs4\al\co1(8,\f(2,ln5-2ln2)))D.eq\b\lc\[\rc\](\a\vs4\al\co1(\f(2,2ln2-ln3),\f(2,ln5-2ln2)))解析:①設(shè)f(x)=eq\f(x,4x2+81).當(dāng)x>0時(shí),f(x)=eq\f(1,4x+\f(81,x))≤eq\f(1,2\r(4x·\f(81,x)))=eq\f(1,36),當(dāng)且僅當(dāng)4x=eq\f(81,x),即x=eq\f(9,2)時(shí)取等號(hào),所以數(shù)列{an}的最大項(xiàng)為a4或a5,且a4=eq\f(4,145),a5=eq\f(5,181),所以a4<a5,所以數(shù)列{an}的最大項(xiàng)為a5=eq\f(5,181).②由題意,得eq\f(3n2+n,2)≤λ·4n對(duì)于任意n∈N*恒成立,即2λ≥eq\f(3n2+n,4n)對(duì)于任意n∈N*恒成立.設(shè)bn=eq\f(3n2+n,4n),則當(dāng)n≥2時(shí),bn-1=eq\f(3(n-1)2+n-1,4n-1)=eq\f(3n2-5n+2,4n-1),所以當(dāng)n≥2時(shí),bn-bn-1=eq\f(3n2+n,4n)-eq\f(4×(3n2-5n+2),4n)=eq\f(-9n2+21n-8,4n)<0恒成立,所以數(shù)列{bn}單調(diào)遞減,所以2λ≥b1=eq\f(3+1,4)=1,所以λ≥eq\f(1,2),即實(shí)數(shù)λ的取值范圍是eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(1,2),+∞)).③an+1-an=2n-(n+1)2-2n-1+n2=2n-1-2n-1,則a2-a1,a3-a2,a4-a3,a5-a4<0,且當(dāng)n≥5時(shí),2n-1-2n-1=4×(1+1)n-3-2n-1=4×(Ceq\o\al(0,n-3)+Ceq\o\al(1,n-3)+Ceq\o\al(2,n-3)+…+Ceq\o\al(n-3,n-3))-2n-1>4×(Ceq\o\al(0,n-3)+Ceq\o\al(1,n-3))-2n-1=4×(1+n-3)-2n-1=2n-9>0.故當(dāng)n=1,2,3,4時(shí),an+1<an;當(dāng)n≥5時(shí),an+1>an.因此,數(shù)列{an}中的最小項(xiàng)是a5=-9.④an+1-an=eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,n+2)-\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))n+1))-eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,n+1)-\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))n))=eq\f(1,2n+1)-eq\f(1,(n+1)(n+2)).記f(n)=eq\f(2n+1,(n+1)(n+2)),則eq\f(f(n+1),f(n))=eq\f(2n+2,(n+2)(n+3))×eq\f((n+1)(n+2),2n+1)=eq\f(2n+2,n+3).因?yàn)?n+2-(n+3)=n-1≥0,所以當(dāng)n≥2,n∈N*時(shí),eq\f(f(n+1),f(n))>1.又f(n)>0,所以當(dāng)n≥2,n∈N*時(shí),f(n)單調(diào)遞增.又f(1)=f(2)=eq\f(2,3)<1,f(3)=eq\f(16,20)=eq\f(4,5)<1,f(4)=eq\f(25,30)=eq\f(16,15)>1,因此,當(dāng)n≥4時(shí),f(n)>1,2n+1>(n+1)(n+2)>0,所以eq\f(1,2n+1)-eq\f(1,(n+1)(n+2))<0,{an}單調(diào)遞減;當(dāng)1≤n≤3時(shí),f(n)<1,0<2n+1<(n+1)(n+2),所以eq\f(1,2n+1)-eq\f(1,(n+1)(n+2))>0,{an}單調(diào)遞增,所以數(shù)列{an}的最大項(xiàng)為a4,故k=4.⑤根據(jù)題意,令g′(x)=eq\f(2x-a,x)=0,得x=eq\f(a,2).又an=g(n)=2n-alnn,且?n∈N*,an≥a4,所以eq\b\lc\{(\a\vs4\al\co1(3<\f(a,2)<5,,g(3)≥g(4),,g(5)≥g(4),))即eq\b\lc\{(\a\vs4\al\co1(6<a<10,,6-aln3≥8-aln4,,10-aln5≥8-aln4,))解得eq\f(2,2ln2-ln3)≤a≤eq\f(2,ln5-2ln2),故選D.b.研究數(shù)列的單調(diào)性(14)(2023匯編,15分)解答下列關(guān)于數(shù)列單調(diào)性的問(wèn)題.①(多選)已知數(shù)列{an}滿足a1=t(t≠0),an+1an=ean-1(n∈N*),則下列有關(guān)敘述正確的是(ABD)A.?t>0,數(shù)列{an}為遞減數(shù)列B.?t>0,數(shù)列{an}為遞增數(shù)列C.?t<0,數(shù)列{an}一定不為常數(shù)數(shù)列D.?t>0且t≠1,當(dāng)n≥2時(shí),an>1②已知數(shù)列{an},若an=-n2+kn+4,且對(duì)于n∈N*,都有an+1<an,則實(shí)數(shù)k的取值范圍為_(kāi)_(-∞,3)__.③已知數(shù)列{an}滿足:a1=1,an+1=eq\f(an,an+2)(n∈N*).若bn+1=(n-2λ)·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,an)+1))(n∈N*),b1=-λ,且數(shù)列{bn}是單調(diào)遞增數(shù)列,則實(shí)數(shù)λ的取值范圍是(C)A.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3),+∞))B.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2),+∞))C.eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞,\f(2,3)))D.eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞,\f(3,2)))解析:①對(duì)于A,B:當(dāng)t>0時(shí),a1=t>0.因?yàn)閍n+1an=ean-1>0,所以有an>0.由an+1an=ean-1,可得eq\f(an+1,an)=.設(shè)f(u)=eq\f(eu-1,u2)(u>0),則f(1)=1,f′(u)=eq\f(eu-1(u-2),u3).當(dāng)u>2時(shí),f′(u)>0,f(u)單調(diào)遞增;當(dāng)0<u<2時(shí),f′(u)<0,f(u)單調(diào)遞減.因?yàn)閒(1)=1,所以當(dāng)0<u<1時(shí),f(u)>f(1)=1,即當(dāng)0<an<1時(shí),eq\f(an+1,an)>1,所以an+1>an,所以數(shù)列{an}為遞增數(shù)列,故選項(xiàng)B正確.當(dāng)1<u<2時(shí),f(u)<f(1)=1,即當(dāng)1<an<2時(shí),eq\f(an+1,an)<1,所以an+1<an,所以數(shù)列{an}為遞減數(shù)列,故選項(xiàng)A正確.對(duì)于C:當(dāng)t<0時(shí),a1=t<0.因?yàn)閍n+1an=ean-1>0,所以有an<0.當(dāng)數(shù)列{an}為常數(shù)數(shù)列時(shí),設(shè)an=x(x<0),由an+1an=ean-1可知,方程x2=ex-1一定有解.設(shè)g(x)=ex-1-x2,所以g′(x)=ex-1-2x.當(dāng)x<0時(shí),g′(x)>0,函數(shù)g(x)=ex-1-x2單調(diào)遞增.因?yàn)間(0)=eq\f(1,e),g(-1)=e-2-1<0,g(0)g(-1)<0,所以函數(shù)g(x)=ex-1-x2有唯一零點(diǎn),設(shè)為x0,即?x0∈(-1,0)使an=x0構(gòu)成符合題意的常數(shù)列,故選項(xiàng)C錯(cuò)誤.對(duì)于D:當(dāng)t>0且t≠1時(shí),a1=t>0.因?yàn)閍n+1an=ean-1>0,所以有an>0.當(dāng)n≥2時(shí),anan-1=,即an=.設(shè)h(m)=eq\f(em-1,m),m>0,則h′(m)=eq\f(em-1(m-1),m2).當(dāng)m>1時(shí),h′(m)>0,函數(shù)h(m)單調(diào)遞增;當(dāng)0<m<1時(shí),h′(m)<0,函數(shù)h(m)單調(diào)遞減.因?yàn)閔(1)=1,所以h(m)>1,即an>1,n≥2,因此D正確.故選ABD.②(法一)由an+1<an,知數(shù)列{an}為遞減數(shù)列.a(chǎn)n=-n2+kn+4的圖像是二次函數(shù)y=-x2+kx+4的圖像上一些孤立的點(diǎn),如圖所示.∵n∈N*,要使an+1<an,只需a1>a2,只需eq\f(k,2)<eq\f(3,2),∴k的取值范圍是(-∞,3).(法二)∵對(duì)于?n∈N*,都有an+1<an,∴an+1-an=-(n+1)2+k(n+1)+4-(-n2+kn+4)=k-2n-1<0,即k<2n+1,n∈N*,∴k<(2n+1)min=3,∴k的取值范圍是(-∞,3).③由an+1=eq\f(an,an+2),得eq\f(1,an+1)=eq\f(2,an)+1,則eq\f(1,an+1)+1=2eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,an)+1)).由a1=1,得eq\f(1,a1)+1=2,∴數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an)+1))是首項(xiàng)為2,公比為2的等比數(shù)列,∴eq\f(1,an)+1=2×2n-1=2n.由bn+1=(n-2λ)·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,an)+1)),n∈N*,可得bn+1=(n-2λ)·2n.∵數(shù)列{bn}是單調(diào)遞增數(shù)列,∴bn+1>bn,∴(n-2λ)·2n>(n-1-2λ)·2n-1,n≥2,解得λ<eq\f(n+1,2),因此,λ<eq\f(3,2).又b1=-λ,b2=(1-2λ)·2,且b1<b2,∴-λ<(1-2λ)·2,解得λ<eq\f(2,3).綜上,λ的取值范圍是eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞,\f(2,3))).故選C.隨堂普查練381.(2020新疆期中,5分)數(shù)列-1,3,-6,10,…的一個(gè)通項(xiàng)公式是__an=(-1)n×eq\f(n(n+1),2)__.解析:根據(jù)題意,-1,3,-6,10,…可以寫(xiě)成(-1)1×eq\f(1×2,2),(-1)2×eq\f(2×3,2),(-1)3×eq\f(3×4,2),(-1)4×eq\f(4×5,2),…,則該數(shù)列的一個(gè)通項(xiàng)公式為an=(-1)n×eq\f(n(n+1),2).2.(2021江西九江模擬節(jié)選,5分)已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足2Sn=aeq\o\al(2,n)+an(n∈N*),則數(shù)列{an}的通項(xiàng)公式為_(kāi)_an=n__.解析:∵2Sn=aeq\o\al(2,n)+an(n∈N*),∴當(dāng)n≥2時(shí),2Sn-1=aeq\o\al(2,n-1)+an-1,兩式相減,得2an=(aeq\o\al(2,n)-aeq\o\al(2,n-1))+(an-an-1),整理得(an-an-1-1)(an+an-1)=0.∵an+an-1≠0,∴an-an-1-1=0,即an-an-1=1.當(dāng)n=1時(shí),有2a1=aeq\o\al(2,1)+a1,解得a1=1或a1=0(舍去),∴數(shù)列{an}是以1為首項(xiàng),以1為公差的等差數(shù)列,∴數(shù)列{an}的通項(xiàng)公式為an=n.3.(2023改編,5分)已知數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)任意正整數(shù)n均滿足eq\f(S1,2)+eq\f(S2,22)+eq\f(S3,23)+…+eq\f(Sn,2n)=n-1+eq\f(1,2n),n∈N*,則數(shù)列{an}的通項(xiàng)公式為_(kāi)_an=2n-1____.解析:當(dāng)n=1時(shí),eq\f(S1,2)=eq\f(1,2),得S1=a1=1.當(dāng)n≥2時(shí),由eq\f(S1,2)+eq\f(S2,22)+eq\f(S3,23)+…+eq\f(Sn,2n)=n-1+eq\f(1,2n)①,得eq\f(S1,2)+eq\f(S2,22)+eq\f(S3,23)+…+eq\f(Sn-1,2n-1)=(n-1)-1+eq\f(1,2n-1)②,①-②得eq\f(Sn,2n)=1-eq\f(1,2n)(n≥2),∴Sn=2n-1(n≥2).當(dāng)n=1時(shí),S1=1,滿足上式,∴Sn=2n-1(n∈N*).當(dāng)n≥2時(shí),an=Sn-Sn-1=2n-1-2n-1+1=2n-1.又a1=1也滿足上式,∴an=2n-1.4.(2023匯編,25分)在數(shù)列{an}中,a1=1.①若an=eq\f(2n+1,2n-1)an-1(n≥2),則數(shù)列{an}的通項(xiàng)公式為_(kāi)_an=eq\f(2n+1,3)__.②若an+1=2an+1,則數(shù)列{an}的通項(xiàng)公式為_(kāi)_an=2n-1__.③若an+1=eq\f(2an,an+2),則數(shù)列{an}的通項(xiàng)公式為_(kāi)_an=eq\f(2,n+1)__.④若an>0,a1=1,aeq\o\al(2,n)-(2an+1-1)an-2an+1=0,則數(shù)列{an}的通項(xiàng)公式為_(kāi)_an=eq\f(1,2n-1)__.⑤若a2=eq\f(1,2),eq\f(2,an+1)=eq\f(1,an)+eq\f(1,an+2),且數(shù)列{bn}滿足log2bn=eq\f(1,an),則{bn}的前n項(xiàng)和Sn=__2n+1-2__.解析:①(法一)∵a1=1,an=eq\f(2n+1,2n-1)an-1(n≥2),∴{an}中各項(xiàng)均不為0,∴eq\f(an,an-1)=eq\f(2n+1,2n-1)(n≥2),∴an=a1·eq\f(a2,a1)·eq\f(a3,a2)·…·eq\f(an,an-1)=1×eq\f(5,3)×eq\f(7,5)×…×eq\f(2n+1,2n-1)=eq\f(2n+1,3)(n≥2).經(jīng)驗(yàn)證,當(dāng)n=1時(shí),a1=1也符合上式.∴數(shù)列{an}的通項(xiàng)公式為an=eq\f(2n+1,3).(法二)∵an=eq\f(2n+1,2n-1)an-1(n≥2),∴eq\f(an,2n+1)=eq\f(an-1,2n-1),∴eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(an,2n+1)))是常數(shù)列,∴eq\f(an,2n+1)=eq\f(a1,3)=eq\f(1,3),∴an=eq\f(2n+1,3).②∵an+1=2an+1,∴an+1+1=2(an+1).又a1=1,∴a1+1=2,∴數(shù)列{an+1}是首項(xiàng)為2,公比為2的等比數(shù)列.∴an+1=2×2n-1=2n,∴an=2n-1.③∵an+1=eq\f(2an,an+2),a1=1,∴an≠0.將an+1=eq\f(2an,an+2)兩邊取倒數(shù),得eq\f(1,an+1)=eq\f(an+2,2an),即eq\f(1,an+1)=eq\f(1,an)+eq\f(1,2),即eq\f(1,an+1)-eq\f(1,an)=eq\f(1,2),∴eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an)))是以1為首項(xiàng),eq\f(1,2)為公差的等差數(shù)列,∴eq\f(1,an)=1+(n-1)·eq\f(1,2)=eq\f(n+1,2),∴an=eq\f(2,n+1).④∵aeq\o\al(2,n)-(2an+1-1)an-2an+1=0,∴(an-2an+1)(an+1)=0.又∵數(shù)列{an}的各項(xiàng)都為正數(shù),∴an-2an+1=0,即eq\f(an+1,an)=eq\f(1,2),∴{an}是首項(xiàng)為1,公比為eq\f(1,2)的等比數(shù)列,∴an=eq\f(1,2n-1).⑤由a1=1,a2=eq\f(1,2),eq\f(2,an+1)=eq\f(1,an)+eq\f(1,an+2),可得eq\f(1,an+2)-eq\f(1,an+1)=eq\f(1,an+1)-eq\f(1,an),且eq\f(1,a2)-eq\f(1,a1)=1,∴eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an+1)-\f(1,an)))是常數(shù)列,每一項(xiàng)都為1,即eq\f(1,an+1)-eq\f(1,an)=1,∴eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an)))是以1為首項(xiàng),1為公差的等差數(shù)列,∴eq\f(1,an)=n.由log2bn=eq\f(1,an)=n,可得bn=2n.易知數(shù)列{bn}是首項(xiàng)為2,公比為2的等比數(shù)列,∴Sn=eq\f(2(1-2n),1-2)=2n+1-2.5.(2020全國(guó)Ⅰ,5分)數(shù)列{an}滿足an+2+(-1)nan=3n-1,前16項(xiàng)和為540,則a1=__7__.解析:當(dāng)n為奇數(shù)時(shí),由an+2+(-1)nan=3n-1可得an+2-an=3n-1,∴a3-a1=3×1-1,a5-a3=3×3-1,…,an-an-2=3(n-2)-1,累加可得an-a1=3[1+3+…+(n-2)]-eq\f(n-1,2)=3×eq\f([1+(n-2)]·\f(n-1,2),2)-eq\f(n-1,2)=eq\f((n-1)(3n-5),4),∴an=eq\f((n-1)(3n-5),4)+a1.當(dāng)n為偶數(shù)時(shí),由an+2+(-1)nan=3n-1可得an+2+an=3n-1,∴a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41,∴a2+a4+…+a16=92,∴a1+a3+…+a15=540-92=448,∴8a1+eq\f(1,4)(0+8+40+96+176+280+408+560)=448,∴8a1=56,即a1=7.6.(2021廣西南寧校級(jí)月考,5分)已知數(shù)列{an}的通項(xiàng)公式為an=-3n2+88n,則數(shù)列{an}各項(xiàng)中最大項(xiàng)是(C)A.第13項(xiàng)B.第14項(xiàng)C.第15項(xiàng)D.第16項(xiàng)解析:an=-3n2+88n,則an-1=-3(n-1)2+88(n-1)=-3n2+94n-91,n≥2,則an-an-1=(-3n2+88n)-(-3n2+94n-91)=-6n+91,n≥2.當(dāng)2≤n≤15時(shí),an-an-1>0,即an>an-1;當(dāng)n≥16時(shí),an-an-1<0,即an<an-1,故數(shù)列{an}各項(xiàng)中最大項(xiàng)是第15項(xiàng).故選C.7.(經(jīng)典題,5分)已知數(shù)列{an}的通項(xiàng)為an=eq\b\lc\{(\a\vs4\al\co1(2n-1,n≤4,,-n2+(a-1)n,n≥5))(n∈N*),若a5是{an}中的唯一最大項(xiàng),則a的取值范圍為_(kāi)_(9,12)__.解析:當(dāng)n≤4時(shí),an=2n-1,數(shù)列{an}單調(diào)遞增,因此當(dāng)n=4時(shí),an取得最大值,最大值為a4=24-1=15.當(dāng)n≥5時(shí),an=-n2+(a-1)n=-eq\b\lc\(\rc\)(\a\vs4\al\co1(n-\f(a-1,2)))eq\s\up12(2)+eq\f((a-1)2,4),對(duì)應(yīng)的拋物線開(kāi)口向下,對(duì)稱軸為直線n=eq\f(a-1,2).因?yàn)閍5是{an}中的唯一最大項(xiàng),所以eq\f(a-1,2)<5.5,且a5=-25+5(a-1)=5a-30>a4=15,解得9<a<12,所以a的取值范圍是(9,12).8.(2020浙江模擬,4分)已知無(wú)窮遞減實(shí)數(shù)列{an}(n∈N*)滿足a1=1,則下列可作為{an}(n∈N*)遞推公式的是(A)A.a(chǎn)n+1=sinanB.a(chǎn)n+1=cosanC.a(chǎn)n+1=D.a(chǎn)n+1=log2an解析:A:∵a1=1,an+1=sinan,∴an>0.an+1-an=sinan-an.設(shè)f(x)=sinx-x,x∈(0,1].∵f′(x)=cosx-1<0,∴f(x)=sinx-x在(0,1]上單調(diào)遞減,∴當(dāng)x∈(0,1]時(shí),f(x)<sin0-0=0,∴sinan-an<0,∴an+1-an<0,即an+1<an,∴A正確.B:∵a1=1,an+1=cosan,∴an>0.an+1-an=cosan-an.設(shè)g(x)=cosx-x,x∈(0,1],∵g′(x)=-sinx-1<0,∴g(x)=cosx-x在(0,1]上單調(diào)遞減,∴當(dāng)x∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,6)))時(shí),g(x)>geq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)))=eq\f(\r(3),2)-eq\f(π,6)>0,則有an+1>an,∴B錯(cuò)誤.C:∵a1=1,∴a2=21=2,a3=22=4,∴{an}不是遞減數(shù)列,∴C錯(cuò)誤.D:∵a1=1,∴a2=log21=0,a3=log20無(wú)意義,∴{an}不是遞減數(shù)列,∴D錯(cuò)誤.故選A.9.(2023改編,5分)已知數(shù)列{an}是正項(xiàng)遞增數(shù)列,且通項(xiàng)an=eq\f(1,\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a)-1))·\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))\s\up12(n)+1)(a>0),則a的取值范圍為(D)A.(1,2)B.(0,3)C.(0,2)D.(0,1)解析:因?yàn)閿?shù)列{an}是正項(xiàng)遞增數(shù)列,所以an+1>an>0,即eq\f(1,\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a)-1))·\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))\s\up12(n+1)+1)>eq\f(1,\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a)-1))·\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))\s\up12(n)+1)>0,所以0<eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a)-1))·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))eq\s\up12(n+1)+1<eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a)-1))·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))eq\s\up12(n)+1,所以eq\f(1,a)-1>-3n+1,且eq\f(1,3)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a)-1))<eq\f(1,a)-1①.因?yàn)閍>0,所以eq\f(1,a)-1>-1>-9=-32≥-3n+1恒成立,解①得0<a<1,所以a的取值范圍為(0,1).故選D.

課后提分練38數(shù)列的概念與簡(jiǎn)單表示法A組(鞏固提升)1.(2020浙江,4分)已知數(shù)列{an}滿足an=eq\f(n(n+1),2),則S3=__10__.解析:由an=eq\f(n(n+1),2),得a1=1,a2=3,a3=6,所以S3=1+3+6=10.2.(2021北京月考,4分)九連環(huán)是我國(guó)從古至今廣泛流傳的一種益智游戲.在某種玩法中,用an表示解下n(n≤9,n∈N*)個(gè)圓環(huán)所需的最少移動(dòng)次數(shù),數(shù)列{an}滿足a1=1,且an=eq\b\lc\{(\a\vs4\al\co1(2an-1-1,n為偶數(shù),,2an-1+2,n為奇數(shù)))(2≤n≤9,n∈N*),則解下4個(gè)圓環(huán)所需的最少移動(dòng)次數(shù)為(A)A.7B.10C.12D.22解析:根據(jù)題意,a2=2a1-1=1,a3=2a2+2=4,a4=2a3-1=7,∴解下4個(gè)圓環(huán)最少移動(dòng)7次.故選A.3.(多選)(2020山東泰安模擬,5分)大衍數(shù)列,來(lái)源于《乾坤譜》中對(duì)易傳“大衍之?dāng)?shù)五十”的推論,主要用于解釋中國(guó)傳統(tǒng)文化中的太極衍生原理.?dāng)?shù)列中的每一項(xiàng),都代表太極衍生過(guò)程中,曾經(jīng)經(jīng)歷過(guò)的兩儀數(shù)量總和,是中國(guó)傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上第一道數(shù)列題.其前10項(xiàng)依次是0,2,4,8,12,18,24,32,40,50,…,則下列說(shuō)法正確的是(AC)A.此數(shù)列的第20項(xiàng)是200B.此數(shù)列的第19項(xiàng)是182C.此數(shù)列偶數(shù)項(xiàng)的通項(xiàng)公式為a2n=2n2D.此數(shù)列的前n項(xiàng)和為Sn=n·(n-1)解析:根據(jù)題意,數(shù)列的奇數(shù)項(xiàng)為eq\f(12-1,2),eq\f(32-1,2),eq\f(52-1,2),eq\f(72-1,2),eq\f(92-1,2),…,偶數(shù)項(xiàng)為eq\f(22,2),eq\f(42,2),eq\f(62,2),eq\f(82,2),eq\f(102,2),…,則該數(shù)列的一個(gè)通項(xiàng)公式為an=eq\b\lc\{(\a\vs4\al\co1(\a\vs4\al\co1(\f(n2-1,2),n為奇數(shù),,\f(n2,2),n為偶數(shù).)))當(dāng)n=20時(shí),a20=eq\f(202,2)=200,故A正確;當(dāng)n=19時(shí),a19=eq\f(192-1,2)=180,故B錯(cuò)誤;由數(shù)列通項(xiàng)公式可知a2n=eq\f((2n)2,2)=2n2,故C正確;當(dāng)n=4時(shí),S4=0+2+4+8=14≠4×3,故D錯(cuò)誤.故選AC.4.(2023匯編,35分)在數(shù)列{an}中,a1=2.①若an+1an=2n(n∈N*),則a10=__16__.②若an=3an-1+2n-1(n≥2,n∈N*),則數(shù)列{an}的通項(xiàng)公式為an=__4·3n-1-n-1__.③若an=n(an+1-an)(n∈N*),則數(shù)列{an}的通項(xiàng)公式為an=__2n__.④若an+1+an=4n-3(n∈N*),則數(shù)列{an}的前n項(xiàng)和Sn=__eq\b\lc\{(\a\vs4\al\co1(\f(2n2-3n+5,2),n=2k-1,,\f(2n2-3n,2),n=2k))(k∈N*)__.⑤若an+1=eq\f((5n+10)an,(n2+5n+6)an+5n+15),則a13=__eq\f(2,77)__.⑥若a2=0,4an-5an+1+an+2=0(n∈N*),則數(shù)列{an}的通項(xiàng)公式為an=__eq\f(8-22n-1,3)__.⑦若an+1=eq\f(1,1-an)(n∈N*),則a365=__-1__.解析:①∵an+1an=2n,∴an+2an+1=2n+1,兩式相除得eq\f(an+2,an)=2,∴eq\f(a10,a8)·eq\f(a8,a6)·eq\f(a6,a4)·eq\f(a4,a2)=24,即eq\f(a10,a2)=16.∵a1a2=2,a1=2,∴a2=1,∴a10=16.②設(shè)遞推公式an=3an-1+2n-1可以化為an+An+B=3[an-1+A(n-1)+B],即an=3an-1+2An+2B-3A,與原式對(duì)照,得eq\b\lc\{(\a\vs4\al\co1(2A=2,,2B-3A=-1,))解得eq\b\lc\{(\a\vs4\al\co1(A=1,,B=1,))∴an+n+1=3[an-1+(n-1)+1](n≥2).又∵a1+1+1=4,∴數(shù)列{an+n+1}是首項(xiàng)為4,公比為3的等比數(shù)列,∴an+n+1=4·3n-1,∴an=4·3n-1-n-1.③由an=n(an+1-an),a1=2,得an≠0,∴eq\f(an+1,an)=eq\f(n+1,n),∴eq\f(a2,a1)=eq\f(2,1),eq\f(a3,a2)=eq\f(3,2),eq\f(a4,a3)=eq\f(4,3),…,eq\f(an,an-1)=eq\f(n,n-1)(n≥2),將以上(n-1)個(gè)等式的兩邊分別相乘,得eq\f(an,a1)=n(n≥2),∴an=2n(n≥2).經(jīng)驗(yàn)證,當(dāng)n=1時(shí),a1=2也滿足上式,∴an=2n.④由an+1+an=4n-3(n∈N*),得an+2+an+1=4n+1(n∈N*),兩式相減,得an+2+an+1-(an+1+an)=4(n∈N*).又a1+a2=1,∴數(shù)列{an+1+an}是首項(xiàng)為1,公差為4的等差數(shù)列.由等差數(shù)列的性質(zhì)可知,當(dāng)n為偶數(shù)時(shí),Sn=(a1+a2)+(a3+a4)+…+(an-1+an)=1+9+…+(4n-7)=eq\f(1+(4n-7),2)×eq\f(n,2)=eq\f(2n2-3n,2);當(dāng)n為奇數(shù)時(shí),Sn=a1+(a2+a3)+(a4+a5)+…+(an-1+an)=2+5+13+…+(4n-7)=2+eq\f(5+(4n-7),2)·eq\f(n-1,2)=eq\f(2n2-3n+5,2).故Sn=eq\b\lc\{(\a\vs4\al\co1(\f(2n2-3n+5,2),n=2k-1,,\f(2n2-3n,2),n=2k))(k∈N*).⑤由an+1=eq\f((5n+10)an,(n2+5n+6)an+5n+15)=eq\f(5(n+2)an,(n+3)[(n+2)an+5]),得(n+3)an+1=eq\f(5(n+2)an,(n+2)an+5).記bn=(n+2)an,則bn>0,bn+1=eq\f(5bn,bn+5),兩邊取倒數(shù),得eq\f(1,bn+1)=eq\f(1,5)+eq\f(1,bn),∴數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,bn)))是首項(xiàng)為eq\f(1,b1)=eq\f(1,3a1)=eq\f(1,6),公差為eq\f(1,5)的等差數(shù)列,∴eq\f(1,bn)=eq\f(1,6)+eq\f(1,5)(n-1)=eq\f(6n-1,30),∴bn=eq\f(30,6n-1),∴an=eq\f(bn,n+2)=eq\f(30,(6n-1)(n+2)),∴a13=eq\f(30,77×15)=eq\f(2,77).⑥由4an-5an+1+an+2=0,可得an+2-an+1=4(an+1-an).令an+1-an=cn,則c1=a2-a1=-2,且eq\f(cn+1,cn)=4,∴數(shù)列{cn}是首項(xiàng)為-2,公比為4的等比數(shù)列,∴cn=-2×4n-1,∴an-an-1=-2×4n-2,…,a3-a2=-2×4,a2-a1=-2,n≥2,累加可得an-a1=-2(1+4+42+…+4n-2)=-2·eq\f(1-4n-1,1-4)=eq\f(2,3)(1-4n-1),n≥2,∴an=2+eq\f(2,3)(1-4n-1)=eq\f(8,3)-eq\f(2,3)×4n-1=eq\f(8-22n-1,3),n≥2.當(dāng)n=1時(shí),a1=2符合上式,∴an=eq\f(8-22n-1,3).⑦由an+1=eq\f(1,1-an),a1=2,可得a2=eq\f(1,1-a1)=-1,a3=eq\f(1,1-a2)=eq\f(1,2),a4=eq\f(1,1-a3)=2,∴數(shù)列{an}的周期為3,∴a365=a121×3+2=a2=-1.5.(2021內(nèi)蒙古呼和浩特一模,5分)若數(shù)列{an}滿足a1=2,an+1=eq\f(1+an,1-an)(n∈N*),則該數(shù)列的前2021項(xiàng)的乘積是(C)A.-2B.-1C.2D.1解析:因?yàn)閿?shù)列{an}滿足a1=2,an+1=eq\f(1+an,1-an)(n∈N*),所以a2=eq\f(1+a1,1-a1)=eq\f(1+2,1-2)=-3,同理可得a3=-eq\f(1,2),a4=eq\f(1,3),a5=2,…,所以數(shù)列{an}的周期為4,即an+4=an,且a1·a2·a3·a4=1.又因?yàn)?021=505×4+1,所以該數(shù)列的前2021項(xiàng)的乘積是a1·a2·a3·a4·…·a2021=1505×a1=2.故選C.6.(2023原創(chuàng),5分)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an+n-7,若30<ak<50,則k的值為_(kāi)_4__.解析:∵Sn=2an+n-7,∴Sn-1=2an-1+(n-1)-7(n≥2),兩式相減,整理得an=2an-1-1,∴an-1=2(an-1-1).當(dāng)n=1時(shí),a1=S1=2a1+1-7,解得a1=6,∴a1-1=5,∴數(shù)列{an-1}是首項(xiàng)為5,公比為2的等比數(shù)列,∴an-1=5·2n-1,∴an=5·2n-1+1.由30<ak<50,即30<5·2k-1+1<50,解得k=4.7.(2023匯編,15分)已知數(shù)列{an}的前n項(xiàng)和為Sn,求滿足下列條件的數(shù)列{an}的通項(xiàng)公式.(1)a1=1,2Sn=(n+1)an;(2020湘贛粵模擬)答案:an=n解析:解:因?yàn)?Sn=(n+1)an,所以當(dāng)n≥2時(shí),2Sn-1=nan-1,兩式相減得2an=(n+1)an-nan-1(n≥2),即(n-1)an=nan-1(n≥2).易知an≠0,所以eq\f(an,an-1)=eq\f(n,n-1)(n≥2),所以an=eq\f(an,an-1)·…·eq\f(a2,a1)·a1=eq\f(n,n-1)·eq\f(n-1,n-2)·…·eq\f(2,1)·1=n(n≥2).當(dāng)n=1時(shí),a1=1符合上式,故an=n.(5分)(2)an>0,Sn=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(an+\f(1,an)));(2020河北石家莊二中模擬)答案:an=eq\r(n)-eq\r(n-1)解析:解:當(dāng)n≥2時(shí),Sn=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(an+\f(1,an)))=eq\f(1,2)(Sn-Sn-1+eq\f(1,Sn-Sn-1)),即Sn+Sn-1=eq\f(1,Sn-Sn-1),所以Seq\o\al(2,n)-Seq\o\al(2,n-1)=1(n≥2),所以數(shù)列{Seq\o\al(2,n)}是公差為1的等差數(shù)列.(7分)由S1=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(a1+\f(1,a1)))及an>0,解得a1=1,所以Seq\o\al(2,1)=1,所以Seq\o\al(2,n)=1+(n-1)=n.因?yàn)閍n>0,所以Sn>0,所以Sn=eq\r(n),所以當(dāng)n≥2時(shí),an=Sn-Sn-1=eq\r(n)-eq\r(n-1).當(dāng)n=1時(shí),a1=1滿足上式,所以an=eq\r(n)-eq\r(n-1).(10分)(3)an>0,aeq\o\al(2,n)+an=2Sn+eq\f(3,4).(2020山東聊城模擬節(jié)選)答案:an=n+eq\f(1,2)解析:解:當(dāng)n=1時(shí),由題可得aeq\o\al(2,1)+a1=2a1+eq\f(3,4),解得a1=eq\f(3,2)或a1=-eq\f(1,2)(舍去).因?yàn)閍eq\o\al(2,n)+an=2Sn+eq\f(3,4),①所以當(dāng)n≥2時(shí),aeq\o\al(2,n-1)+an-1=2Sn-1+eq\f(3,4).②①-②,得aeq\o\al(2,n)-aeq\o\al(2,n-1)+an-an-1=2(Sn-Sn-1),即aeq\o\al(2,n)-aeq\o\al(2,n-1)-(an+an-1)=0,(13分)整理得(an+an-1)(an-an-1-1)=0.因?yàn)閍n>0,所以an-an-1=1,n≥2,所以數(shù)列{an}是首項(xiàng)為eq\f(3,2),公差為1的等差數(shù)列,所以an=eq\f(3,2)+(n-1)=n+eq\f(1,2).(15分)8.(2021江蘇淮安三模,12分)已知數(shù)列{an}滿足a1=1,a2=3,且an+2-2an+1+an=4,n∈N*.(1)求數(shù)列{an}的通項(xiàng)公式;答案:an=2n2-4n+3解析:解:∵an+2-2an+1+an=4,∴(an+2-an+1)-(an+1-an)=4.令cn=an+1-an,則cn+1-cn=4,c1=a2-a1=2,∴{cn}是首項(xiàng)為2,公差為4的等差數(shù)列,即cn=2+4(n-1)=4n-2,(3分)∴c1+

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論