版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
CARLYLEOctober2023
GlobalInsights
BRAVENEWWORLD
AIanditsDownstreamImplications
2
CARLYLE
EXECUTIVESUMMARY
→TheadventofArtificialIntelligencemayrepresentawatershedinhumanhistory,withthe
potentialtotransformdailylivestoanextentthatmaybedifficulttoappreciatefullyatthis
momentintime.ButasunprecedentedasthetechnologicalshockfromGenerativeAImayprovetobe,thecapitalmarketresponsetoitalreadyfollowsfamiliarpatterns.
→Ratherthansimplyseparaterealityfromhype,successfulinvestorsmustbeabletomapthat
realityontocompanyfundamentals.Thisrewardssecond-and-thirdorderthinking,asthemostsalientfeatureofthetechnologicalrevolution–escalatingrevenuegrowthatcompaniesattheepicenterofthetechnologicalquake–mayultimatelyprovetobeasmallfractionofthetotaleconomicvalueitdelivers.
Aswiththeadventofelectrification–aturningpointtowhichthedevelopmentofAIsystems
hasbeencompared–themainriskforinvestorstodaymaybeviewingtheAIrevolutiontoo
narrowly.Theproductivitygainsfrominvestmentinsoftwaredevelopmentandlifesciences,
contentgeneration,andCRMsystemsalreadysuggestthattheassetsbestpositionedtobenefitfromAImayhavenotyetlandedonthebroadermarket’sradar.
CARLYLE
3
Itisdifficulttooverstatethetransformationpotentialof
ArtificialIntelligence(AI).Wemaysoonliveinaworldwherecomputersystemscangeneratenewscientificknowledgeandperformvirtuallyanyhumantask.Asunprecedentedasthetechnologicalshockmayprovetobe,thecapitalmarketresponsetoitalreadyfollowsfamiliarpatterns.
Whenafoundationaltechnologyentersthepublics
consciousness,investorsnaturallyfocusonthetechnology
itselfandcompaniesthoughttobeoperatingatitsfrontier.GenerativeAIhasbeennoexception.Assetpricesquickly
reachlevelsdifficulttorationalizeusingconventional
financialmetrics;“value”comestobeassociatedwith
subjectiveimpressionsofthetechnologyspotential,barrierstoentry,andultimatescalability.
Debatesregardingthevaluationofnascenttechnologyoftendegradeontwoaxes.Enthusiasts,typicallyfromthetechsectoritself,recastinvestorskepticismasignorance;
anunwillingnesstodeployaggressivelyintothespace
revealsalackoftechnicalunderstanding.Detractors,
fortheirpart,oftendismissnovelvaluationmethodsand
optimistic“totaladdressablemarket”forecasts(Figure1)
astell-talesignsofahypecampaigndesignedtoseparatecredulousinvestorsfromtheircapital.Portfolioscanbe
deridedasuninformedorna?ve,dependingonperspective.
Suchdiscussionselideacrucialpoint.Whiledismissing
AIstransformationalpotentialcouldprovetobeavery
expensivemistake,returnsultimatelydependonhownew
technologygetsadoptedandmonetized.Andthisprocess
canoccuroverlonghorizonsandmanifestonincome
statementssomedistanceawayfromtheinitialshock.As
withtheadventofelectrificationaturningpointtowhichthedevelopmentofAIsystemshasbeencomparedthe
mainriskforinvestorstodaymaybeviewingtheAIrevolutiontoonarrowlyandfailingtoperceiveallofthedownstream
opportunities(andrisks)itcreates.
Figure1.
AIMarketSizeExpectations($Billions)
$1,600$1,500$1,400$1,300$1,200$1,100$1,000$900
$800
$700
$600
$500
$400
$300
$200
$100
$0
20l820l92020202l202220232024202520262027202820292030
GlobeNewswire(June2022)GrandViewResearch(June2020)IDC(February2021)Tractica(March2020)
Figure1.Source:IDC,Tractica,GrandViewResearch,Statista,GlobeNewswire,JefferiesEquityResearch.
CARLYLE
4
GROUNDBREAKINGCAPABILITIES
softwarescapacitytoidentifypatternsindataandanticipate
&ADOPTIONRATES
sequencesfasterandmorepreciselythanhumans.GenerativeAIrepresentsthenextstepinthisevolution,withsoftware
Investorinterestin“artificialintelligence”hasspikedover
nowabletosynthesizedataandcurateresponsesbeyond
thepastyearthankstothereleaseofGenerativeAItools
thosedirectlyintendedbytheprogrammer(Figure3,p.5).
capableofproducingcontentandanalysesofunprecedented
Andthereisstillampleopportunitytoreinventthelanguage
sophisticationandbreadthinresponsetonaturallanguage
toolsthathelpengineersdevelopnewgenerationsof
prompts.MostnotablehasbeenOpenAIsreleaseofChatGPT,whichreached100millionusersinjusttwomonths,asmall
softwareevenmoreefficiently.1
fractionofthetimeittookFacebookandothersocialmedia
OnenotablesubsetofGenerativeAIislargelanguage
platformstoachievesimilarscale(Figure2).Thesemodels
models(LLMs).Impressiveasthisclassofdeep-learning
canreasonprobabilistically,havebeentrainedonvirtually
algorithmis,itrepresentsbutonesteponalongerroad
theentireinternetcorpus,andcanbedirectedtoprocess
to“ArtificialGeneralIntelligence”autonomouscomputer
thatinformationthroughconventionaltextthatonemight
systemsthatcanlearntoperformvirtuallyanytaskof
otherwiseputintoanemail(notarcanecode).
scientificoreconomicvalue.WhilemanyAIresearcherswouldarguethatwereonthecuspofthisworld-historicalturning
GenerativeAIalreadyrepresentsanhistorictechnological
point,otherscontendthatAGImaybedecadesawayifits
leap,atleastasmeaningfulasinternet-basedsearchengines
everachievedatall.Muchofthedisagreementcenterson
displacementofreferencelibraries.Butwhereasthat
arcaneCartesianquestionsofself-awarenessandmysteries
revolutionliberatedinformationfromthephysicalconstraints
surroundingthebiochemistryofhumanconsciousnessand
oftheanalogworld,AIliberatesinformationflowsfromhuman
cognition.2Themorepracticalandeconomicallyrelevantthe
intermediation.MachineLearningalgorithmsdemonstrated
definition,theclosertoAGIwemaybe.
Figure2.
Timeto100MillionUsers
THETIMEITTOOKFORSELECTEDONLINESERVICESTOREACHl00MILLIONUSERS
2
Months
9
2.5
Months
3.5
Years
4
4.5
Years
Years
Years
5
Years
8
l0
Years
ll
Years
Years
2008l9992008200620042008200920l020l62022
Figure2.Source:VisualCapitalist,February2023.
1."DeveloperTools2.0,”SequoiaCapital,March2023.
2.C.f.Landgrebe,J.andB.Smith.WhyMachinesWillNeverRuletheWorld.Routledge,2022.
CARLYLE
5
Figure3.
NextStepinEvolutionofSoftware
SOFTWARE1.0
SOFTWARE2.0
SOFTWARE3.0
Statistically-based
MachineProgram
Optimizer/Compiler
Programmer-readablecode
Natural-language
likeinstructions
MachineProgram
Statistically-based
MachineProgram
AIagent
Data
Programmer-readablecode
NNarchitecture
MachineProgram
Interpreter/Compiler
Programmer-readablecode
Interpreter/Compiler
MachineProgram
Programmer-readablecode
Data+NNarchitecture
IMMEDIATEAPPLICATIONS
preciselytailored,bothintermsofthecontentofadvertisingcampaignsandthetargetingofaudiencesmostlikely
Allmajortechnologyandsoftwarevendorsarecurrently
toactonthem.AIwillrevolutionizecustomerrelations
embeddingGenerativeAIintotheirstack.Desktop
management(CRM)acrossindustries,generatingupselling
applications(email,word-processing,etc.),e-commerce,
proposalsinrealtimebasedontextfromtheconversation
internetsearch,socialmedia,andcontentconsumption
cross-referencedwithinternalcustomerdata,external
willallintegrateAIfunctionality.Sucheffortsremainina
markettrends,andotherrelevantinformation.Chatbotsmay
betastagewithlimitedvisibilityintomonetization.Butthe
soonaccountforthebulkofconsumer-facinginteractions
userexperienceislikelytoimproveimmeasurablyacross
intravel,finance,ande-commerceandeventuallyguide
eachofthesedimensions,withsignificantscopeforlaborproductivitygainsfromacceleratedinformationgathering
customers’entireshoppingexperience.
andideaandtextgeneration(Figure4,p.6).
Theapplicationsformediaandeducationareobvious.
GenerativeAIapplicationscanproducenewmusic,fictional
Moreconsequentialmaybetheevolutionofbusiness
narratives,poetry,visualartwork,anddigitalimagery.The
modelsandcorporatestrategy.Managementteamscould
recentScreenActorsGuild(SAG)andWritersGuildofAmerica
increasinglyrelyonAItoformulatemarketingstrategies
(WGA)strikeshavebeenfomented,inpart,byconcernsabout
andpricingdecisionsanddiligencepotentialacquisition
AI’sdisplacementpotential.AI-generatedcontentraisesnovel
targets.Digitalmarketingislikelytobecomeevenmore
copyrightissuessinceexistingworksareaccessedtoproduce
Figure3.Source:ItamarFriedman,Software3.0—theeraofintelligentsoftwaredevelopment,May2022.
6
CARLYLE
Figure4.
AIUseCases
CONTENTSOFTWAREIMAGE
NEWPRODUCTSALES&Q&A
GENERATIONDEVELOPMENTGENERATION
DEVELOPMENTMARKETINGINTERFACES
?Content
?SEO
?Primaryresearch
?Synthesis
?Alertgeneration
?Supportticketingsystems
?Languagetranslation
?Createwebsitedrafts
?Automaticcodegeneration
?CoPilots
?Regenerativecode
?Testscriptgeneration
?Bugfixes
?Customgeneratedphotos
?Imagetouchup
?Bannercreation
?Medicalimaging
?Productdetailpage
imagegeneration
?“Tryiton”AR
?Interactivedataproducts
?Conversational
interface&querying
?Whitelabeled1st
partytrainedmodels
?UXdesign
?Translationfromdesigntocode
?Contentcreation
?Leadgeneration
?Salesforecasting
?Personalizedads
?Orgspecificsalescollateral
?Customersupport
?Conversionrateoptimization
?A/Btesting
?R&Dideageneration
?Identityverification
?Ordertaking
?AdvancedChatbots
?Disasterplanning&recovery
?Strategy
development
?Competitorresearch
“substantiallysimilar”outputs.3Technologically,thehorseis
Whileguidancefromexperiencedengineersisfundamental
outofthebarn;thequestioniswhetherownersofexisting
toenableLLMstowritecode,LLMscreatesignificant
copyrightswillbetheonlyoneslegallysanctionedtoemploy
efficienciesbyfillingincodinggapsinsimplifiedprompts.
AItoassistintheformulation,production,andmarketingof
Eventualgainsfromsuchautomationmaybeespecially
cinematic,televisual,andaudioworks.
pronouncedamongvideogamemakersoperatingattheintersectionofAI-generatedcontentandsoftware.
ChatGPTeasilypassedtheUniformBarExaminationtaken
byU.S.lawschoolgraduatesandwouldearnarespectable
CompanieswillincreasinglyrelyonGenerativeAItocleanexisting
3.4gradepointaverage(ona4-pointscale)ifenrolledas
dataandproduceprototypedesignsandaccelerateproduct
afreshmanatHarvardCollege.4GenerativeAIsprowess
development.Lifesciencescompanies,forinstance,alreadyuse
writingessaysandtakingtestsraisethornyissuesaboutthe
AItogeneratesequencesofaminoacidsandDNAnucleotides
futureofeducationalintegrity,butalsoopenthedoorto
toshortenthedrugdesignphasefrommonthstoweeks.Existing
anewgenerationofdigitaltutors,autodidacts,andmore
developmentprogramsrequireresearcherstosortthrough
flexibleeducationalarrangements.
millionsofpotentialchemicalreactionstosynthesizeatargetmolecule.AImodelstrainedonexistingchemicalreactions
Hugeproductivitygainsarealreadyevidentinsoftware
datahavealreadyyieldeda15%reductionindevelopment
development,whereGenerativeAIhashalvedthetime
costs.6Weshouldexpecttoseecomparableproductivitygains
necessarytowriteandtestnewcode(Figure5,p.7).LLMs
whereverR&Ddependsontime-consuming,iterativeprocesses
canpredictthenextlinesofcodebasedonthecode
basedoncomplexinteractionsbetweenvariablesorinputs.
alreadywrittenandgeneratenewcodeinresponseto
tailoredpromptsfromsoftwareengineerswhoareskilledin
ManufacturerscannotonlyuseGenerativeAItodesignnew
naturallanguagedescribingsoftwarestructures.AsLLMs
products,butalsooptimizesupplychainsandautomate
becomefamiliarwiththefunctionalityandstructureof
shippingandproductionprocesses.Theautomotiveindustry
programminglanguages,promptscanbecomelessprecise,
hasbeenespeciallyaggressiveinitsadoptionofAIand
allowingneophytestocodelikeseasonedprofessionals.5
antecedentalgorithmictechnologiestotheseends.
Figure4.Source:CarlyleAnalysis,2023.
3.ABAJournal,March2023.“ChatGPTgoestoHarvard,”Substack,July2023.
4.“BeyondTheHype:HowGenerativeAIIsTransformingSoftwareDevelopment,”TowardsDataScience,May2023.
5.G2Retroasatwo-stepgraphgenerativemodelsforretrosynthesisprediction,CommunicationsChemistry,May2023.
6.G2Retroasatwo-stepgraphgenerativemodelsforretrosynthesisprediction,CommunicationsChemistry,May2023.
CARLYLE
7
Figure5.
AcceleratedSoftwareDevelopment
20-30
35-45
45-50
TASKCOMPLETlONTlMEUSlNGGENERATlVEAl,%
<l0
100
80
60
40
20
0
CodedocumentationCodegenerationCoderefactoringHigh-compIexitytasks
WithoutgenerativeAIWithgenerativeAI
RISKS&JOBLOSS
onthespeedwithwhichcompaniesadoptAIcapabilitiestocutcostsandincreasescalability.Competitivepressurethis
TheJanusfaceofnewtechnologyisobsolescence.Itisestimated
greatnaturallyopensthedoortocharlatanism.Companies
thatGenerativeAIapplicationscouldeventuallyautomate
willmarketthemselvesopportunisticallyand,occasionally,
60%to70%ofemployeeworkloads,7andthisnaturallyarouses
deceptively.Mentionsof“AI”oncorporateearningscalls
fearofjobloss.Itisimportanttonotethatthisestimaterefers
hasrisenexponentially(Figure8,p.9),andthemore“AI”
toemployeetasksnottheemployeesthemselves.Formost
isinvokedbycompetitors,themoresusceptiblelaggard
occupations,wesubscribetotheviewthatAIwon’ttakeyour
managementteamsbecometoimprudentbudgetingand
job;someoneusingAIwill.Thiswillresultindynamicadjustmentsinlabordemandacrossoccupationsandactivitiesratherthan
fairy-talesolutions.
jobloss(Figure6,p.8).Workloadautomationshouldincrease
Wemustalsobemindfulofthe“hallucinationproblem”with
throughputvolumes,naturallyincreasingproductivitylevels
LLMs,ortheirtendencytogeneratefactuallyincorrecttext
(outputperhourofwork);andbyfreeingmanagers’finitetime
thatmayseemsemanticallyorsyntacticallyplausiblebased
andattentionandspeedingmorejunioremployees’progression
onthecorpusofdataonwhichithasbeentrained.These
upthelearningcurve,AIalsocouldfacilitateasustainedincrease
statisticalmodelspredictthenextwordbasedonmassive
inproductivitygrowthratesashumancapitalgetsdeployed
volumesofdataandpastcontext.Theyarebuiltforfluency
morecreatively(Figure7,p.9).
ratherthanreason,whichmeanshumanverificationoftheiroutputswillstillberequiredinmanycases,andtheiruse
Obsolescencemaybeofgreaterconcernforbusinesses
inmissioncriticalapplicationslikeaeronauticsordefense
andbusinessmodels,ascompetitionincreasinglydepends
couldlayveryfarinthefuture.
Figure5.Source:McKinsey,2023.
7.“EconomicPotentialofGenerativeAI,”McKinsey&Co.June2023.
CARLYLE
8
Figure6.
DynamicAdjustmentinLaborDemand
Midpointautomationadoptionby2030,%
EmpIoyment,absoIute
EstimatedIabordemandchangeandgenerativeAlautomationacceIerationbyoccupation,US,2022-30
Change
inIabor
demand,%
HeaIth
professionaIs
STEM
professionaIs
HeaIthaides,
technicians,
andweIIness
lncreasingIabordemandandmodestchangeof
workactivities
BuiIdersManage
Transportationservices
MechanicaI
instaIIation
andrepair
rs
nity
Creativesand
artsmanagement
Businessand
IegaIprofessionaIs
Educationandworkforce
training
5
Food
services
l520
Customerservice
andsaIes
O代ce
support
35
30
25
20
l5
l0
5
0
-5
-l0
-l5
-20
l5-
25
25-
35
5Ml0M
40
35-
lncreasingIabordemandandhighchangeof
workactivities
Property
maintenance
Commu
services
AgricuIture
●
l0
Productionwork
DecreasingIabordemandandmodestchangeof
workactivities
lncreaseinautomationadoptiondrivenbygenerativeAlacceIeration,percentagepoints
Figure6.Source:
/mgi/our-research/generative-ai-and-the-future-of-work-in-america
.
CARLYLE
9
Figure7.
Economy-WidePositiveProductivityShock
ProductivityRelativeto2022Baseline
2023
2024
2025
2026
2027
2028
2029
2030
203l
2032
2033
2034
2035
2036
2037
2038
2039
2040
204l
2042
BaselineOne-TimeGenerativeAIShock——PersistentAcceleration
215%
195%
175%
155%
135%
115%
95%
75%
Figure8.
MentionsofAIonCompanyEarningsCalls
90
80
65
56
5352
42
40
30
2l
20
10
0
0
NvidiaAlphabetMetaMicrosoftSalesforceAMDAmazon
Q12022Q12023
70
60
50
83
38
l2
l2
0
8
7
Figure7.Source:CarlyleAnalysis,BrookingsInstitution,2023.
Figure8.Note:Includesmentionsof“AI”inanalyst/journalistquestions.Source:Companydata,Statista,GoldmanSachsGlobalInvestmentResearch.
CARLYLE
BARRIERSTOENTRY
Atthisstage,mostofthemarketdiscoursehasfocusedon
thosecompaniesdirectlyresponsibleforthedevelopmentofLLMs.And,giventheenormouscostsinvolved,thishasbeenandislikelytocontinuetobedominatedbymassive,cash-
richincumbents.Developingastate-of-the-artGenerativeAImodelrequiresmassivecomputationalresources,
specializedhardwarelikeGraphicsProcessingUnits(GPUs)andTensorProcessingUnits(TPUs),andvastdatasetsthatmustbecollected,stored,andcurated.Asingletraining
runforamodelcomparabletoChatGPTrequiresmillionsofdollars.8Ratherthancompetewithbetterfundedandmoresophisticatedincumbents,enterprisesseekingtointegrateAIintotheirproductsandservicesaremorelikelytopartnerwiththem.Thishasledtoaboominthemarketvaluesof
industry-leadinghardware,software,anddatacloud
platforms(Figure9)includinga$700billionincreasein
NvidiasmarketcapitalizationsinceChatGPTsreleaseandcreatessignificantheadwindsfornewentrantsandsmall
companiesacrossmuchofthevaluechain.
Thishasnotstoppedcapitalfromflowingtonewerand
youngercompanies,however.Overthepastyear,virtuallyanyassetwithknown“AIupside”hasbecomeveryrichly
valued,especiallyonarelativebasis(Figure10,p.11).Whileallindustrieshavebeenaffectedbythedeclineinventureandgrowthcapitaloverthepastyear,AIcompanieshavecapturedalargershareofthatfunding,especiallythose
focusedonnovelapproachestoAGI.IntheU.S.,AIsshareoffundingroundsreached23%inQ2-2023,morethantriplingoverthepast10yearsandnowthehighestamongall
industryverticals(Figure11,p11).Intermsofinvestedcapital,AIssharehasincreasedevenmoreoverthepastyear
thanks,inlargepart,toMicrosofts$10billioninvestmentinOpenAIandStripes$6.3billionSeriesIround.9
Figure9.
MegaCapAICompanies’ShareofTotalReturns
ShareofS&P500Return
AppIe
Microsoft
AIphabet
Amazon
TesIa
Meta
NVlDlA
S&P500
ContributiontoS&P500Returnin
PercentagePoints
AppIe
Microsoft
AIphabet
Amazon
TesIa
Meta
NVlDlA
S&P500
BREAKDOWNOFRETURNBYCOMPANY
20%
18%
16%
14%
12%
10%
8%
6%
4%
2%
0%
5.6%
2.2%
l.3%
l.3%
l.4%
l.l%2.3%
Top7Stocks,
PPContribution
l2.6%
2.9%
SHAREOFRETURNBYCOMPANY
100%
30.8%
l2.l%7.2%
7.2%7.9%
6.3%l2.7%
l5.7%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
Top7Stocks,TotalShare
69.2%
Figure9.Source:CarlyleAnalysisofBloombergData,July21,2023.
8.“CanYouBuildLargeLanguageModelsLikeChatGPTAtHalfCost?”UniteAI,May2023.
9.GlobalPrivateMarketsQuarterlyQ2-2023,CarlyleGlobalInvestmentSolutions,July2023.
l0
CARLYLE
11
Figure10.
RiseinAIAttention&Valuations
AI-RELATEDSTOCKSDROVEVIRTUALLYALLTHE
SGAINEWSFLOWINDICATORCONTINUETOSURGE
RETURNSOFTHES&P500THISYEAR
4200
4200
4100
4000
3900
3800
3700
3600
4500
4000
3500
3000
2500
2000
1500
1000
500
0
4500
4000
4100
3500
4000
3000
2500
3900
2000
3800
1500
1000
3700
500
3600
0
Jan/l5
Aug/l5
Mar/l6
Oct/l6
May/l7
Dec/l7
Jul/l8
Feb/l9
Sept/l9
Apr/20
Nov/20
Jun/2l
Jan/22
Aug/22
Mar/23
Jan/23
Feb/23
Mar/23
Apr/23
May/23
S&P500
S&Pex-AlBoomstocks
Figure11.
AI’sIncreasingShareofVCFunding
6,000
NumberofVC&GrowthCapital
5,000
FundingRounds
4,000
3,000
2,000
1,000
0
30%
AIFundingRoundsin%ofTotalRounds
25%
20%
15%
10%
5%
20l4Hl
20l4H2
20l5HI
20l5H2
20l6Hl
20l6H2
20l7Hl
20l7H2
20l8Hl
20l8H2
20l9Hl
20l9H2
2020Hl
2020H2
202lHl
202lH2
2022Hl
2022H2
20l3Hl
0%
Non-AIAIAIShare
Figure10."SGAINewsflowIndicatorContinuetoSurge"Source:Factiva,SGCrossAssetResearch/EquityStrategy.Dataasof08/05/2023.
"AI-RelatedStocksDroveVirtuallyAlltheReturnsoftheS&P500ThisYear"Source:Datastream,SGCrossAsset/Research/EquityStrategy.Dataasof11/05/2023.
Figure11.Source:CarlyleGlobalInvestmentSolutions,GlobalPrivateMarketsQuarterly,Q3-2023.
CARLYLE
LESSONSFROMELECTRIFICATION
Onewondersifbyfocusingnarrowlyontheassetsclosesttotheepicenterofthistechnologicalquake,investors
mayberepeatingthemistakesofthepast.GenerativeAIhasbeenanalogizedtotheadventofelectricity,andthiscomparisonmaybeaptforreasonsthatextend
wellbeyonditstechnologicalsignificance.Though
discoveredinthe1880s,electriccurrentonlybeganto
transformsocietyinthe1920swhenmasselectrification
wasmadepossiblebyhigh-pressuresteampowerplantsandcentralizedgeneration,distribution,andsystem
management.Injustafewyears,electriccompanies
revenuesgrewbymorethan3.4x(~35%CAGR)during
aperiodofconsumerpricedeflation.Thevaluations
assignedtothosefundamentalsdoubledduringthistime(Figure12,p.13),asinvestorsaggressivelybidupthemarketvaluesofcompaniesoperatingatthefrontierofthis
technologicalrevolution.
Asitturnedout,farmoreeconomicvaluewasbeingcreatedbythecompaniesbuyingthatpower.Electrificationallowedmanufacturerstousealargenumberofcomplexmachinessimultaneously,whichmademassproductionprocesses
possibleandsharplyreducedthecostofproducing
consumerdurableslikerefrigerators,washingmachines,andradios(Figure13,p.13).Andsincetheseproductshadtobepluggedintooperate,masselectrificationnotonlydrovedownmanufacturersproductioncosts,butalso
stimulateddemandfortheirproducts.
Inthetenyearsfromthestartofthesustainedboomin
electricitygeneration,durablegoodsmanufacturers
generateda200%totalreturn,onaverage,inthedepthsoftheGreatDepression(!),whichwasmorethan2xthe
averagetotalreturntoelectriccompaniesoverthesameperiod(Figure14,p.14).Nosanepersoncouldcontend
thatmasselectrificationwasmere“hype,”aseventual
marketdemandforelectricitymetorexceededthemostoptimisticforecasts.Butthedisplacementofkerosene-firedilluminationwasbutthetipoftheiceberg,asthe
vastmajorityoftheeconomicvalueaccruedtothe
downstreamusersofthenewtechnologyratherthanthecompaniesresponsibleforitsintroduction.
Thesamedynamicsarelikelyatplaytodaywith
GenerativeAI.Specializedsemiconductorsalesmay
indeedgothroughtheroof,justasdemandforthemostadvancedboilersroseexponentiallyduringtheperiod
ofmasselectrification.Astep-functionincreaseinthe
volumeofdatagenerated,stored,andanalyzedby
companieswillalmostsurelybenefitcloudplatformsjustasacomparablejumpintheregionaltransmissionof
electriccurrentbenefitedelectricutilities.Futuregrowthintheutilitysectorwillrequiresignificantinvestmentin
GenerativeAItosupportpowergriddevelopment.Andcompaniesattheforefrontofthedesignofadvanced
AIsystemstodaywilllikelybeasinfluentialtoeconomic
developmentasthoseresponsiblefordevelopingthe
latestiterationofhigh-pressuresteamturbinesthen.
Butthebulkoftheeconomicvaluemay,onceagain,be
createdbythecompaniesmostadeptatcapitalizingonthesetrendsbyslashingproductioncostsanddevelopingthenewproductsandservicesmadepossiblebythese
newtechnologies.Thisislikelytobeespeciallytrueinsoftware,pharmaceuticals,andothersectorswhereGenerativeAIcanreducetheenormoussumsspentdevelopingintangibleassetsthatcanbeinfinitely
reproducedatnearlyzeromarginalcost.
"Butthebulkoftheeconomic
valuemay,onceagain,becreatedbythecompaniesmostadeptatcapitalizingonthesetrendsby
slashingproductioncostsand
developingthenewproductsandservicesmadepossiblebythesenewtechnologies."
l2
CARLYLE
13
Figure12.
RiseinValuationRatios,1925-29
Retail
Oil&Gas
DurableGoods
Railroad/Other
ConsumerProd
Telecom
Industrials
Tech
HealthCare
Utilities
150.0%
100.0%
50.0%
30%
0.0%
-50.0%
95%
Figure13.
Two-YearDeclineinProductionCostsbyItem
PeakTwoYearPriceDecline,1926-1936
0%
-10%
-20%
-30%
-40%
-50%
-60%
-70%
-80%
CofeeMaker
Electric
BlanketRadioFanCookerWasherToasterRefrigeratorFlatironRange
-17%
-28%
-34%
-41%
-44%
-50%
-52%
-54%
-58%
-69%
Figure12.Source:CarlyleAnalysis;CRSPDatabase,December2021.
Figure13.Source:RonaldC.Tobey,1997,“TechnologyasFreedom:TheNewDealandtheElectricalModernizationoftheAmericanHome.”
CARLYLE
Figure14.
TotalStockMarketReturnsbySector
4.5x
4.0x
CumulativeMOIC
3.5x
3.0x
2.5x
2.0x
1.5x
1.0x
0.5x
0.0x
3.02x
1.96x
1.37x
Jul-26
Oct-26
Jan-27
Apr-27
Jul-27
Oct-27
Jan-28
Ap
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒店餐飲安全與衛(wèi)生管理制度
- 濟寧設(shè)計培訓(xùn)班
- 流調(diào)溯源培訓(xùn)
- 2024-2025學(xué)年山西省運城市高二上學(xué)期期末調(diào)研測試歷史試題(解析版)
- 2026年心理咨詢師青少年心理方向理論測試題
- 2026年英文寫作與翻譯專業(yè)能力測試題
- 2026年法律實務(wù)民法典要點解析與案例分析題庫
- 2026年外語能力水平測試預(yù)測試題及答案
- 2026年政治常識與國家治理能力題集
- 2026年物流管理專業(yè)考試供應(yīng)鏈優(yōu)化與成本控制操作題
- 廠務(wù)設(shè)備運營規(guī)章制度
- 尼帕病毒病的預(yù)防控制學(xué)習(xí)培訓(xùn)課件
- 河道采砂廠安全生產(chǎn)制度
- GJB3206B-2022技術(shù)狀態(tài)管理
- 《不在網(wǎng)絡(luò)中迷失》課件
- 山東省泰安市2024-2025學(xué)年高一物理下學(xué)期期末考試試題含解析
- 竹子產(chǎn)業(yè)發(fā)展策略
- 【可行性報告】2023年硫精砂項目可行性研究分析報告
- 2024-2025年上海中考英語真題及答案解析
- 2023年內(nèi)蒙古呼倫貝爾市海拉爾區(qū)公開招聘公辦幼兒園控制數(shù)人員80名高頻筆試、歷年難易點考題(共500題含答案解析)模擬試卷
- 一年級數(shù)學(xué)質(zhì)量分析強桂英
評論
0/150
提交評論