新疆農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《SPSS應(yīng)用技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
新疆農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《SPSS應(yīng)用技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
新疆農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《SPSS應(yīng)用技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
新疆農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《SPSS應(yīng)用技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
新疆農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《SPSS應(yīng)用技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁新疆農(nóng)業(yè)職業(yè)技術(shù)學(xué)院

《SPSS應(yīng)用技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、假設(shè)我們要預(yù)測(cè)未來一段時(shí)間內(nèi)的股票價(jià)格,以下哪種數(shù)據(jù)分析方法可能不太適用?()A.時(shí)間序列分析B.線性回歸C.聚類分析D.神經(jīng)網(wǎng)絡(luò)2、數(shù)據(jù)分析過程中,數(shù)據(jù)清洗是重要的環(huán)節(jié)。以下關(guān)于數(shù)據(jù)清洗目的的說法中,錯(cuò)誤的是?()A.去除數(shù)據(jù)中的噪聲和異常值,提高數(shù)據(jù)質(zhì)量,為后續(xù)分析提供可靠基礎(chǔ)B.統(tǒng)一數(shù)據(jù)格式和單位,使不同來源的數(shù)據(jù)能夠進(jìn)行有效的整合和比較C.數(shù)據(jù)清洗可以增加數(shù)據(jù)的數(shù)量,從而提高數(shù)據(jù)分析結(jié)果的準(zhǔn)確性D.修復(fù)數(shù)據(jù)中的缺失值,確保數(shù)據(jù)的完整性,避免因缺失數(shù)據(jù)而影響分析結(jié)果3、假設(shè)要分析一個(gè)游戲的玩家行為數(shù)據(jù),包括游戲時(shí)長、關(guān)卡完成情況、付費(fèi)行為等,以優(yōu)化游戲設(shè)計(jì)和盈利模式。以下哪個(gè)指標(biāo)可能最能反映玩家的忠誠度?()A.游戲時(shí)長B.付費(fèi)金額C.重復(fù)游玩頻率D.以上都是4、在進(jìn)行數(shù)據(jù)探索性分析時(shí),需要了解數(shù)據(jù)的分布和關(guān)系。假設(shè)要分析一個(gè)城市的房價(jià)與地理位置、房屋面積等因素的關(guān)系,以下關(guān)于探索性分析方法的描述,正確的是:()A.只繪制簡單的圖表,不進(jìn)行深入的統(tǒng)計(jì)分析B.不考慮變量之間的相關(guān)性,孤立地分析每個(gè)因素C.綜合運(yùn)用數(shù)據(jù)可視化、相關(guān)性分析、分組統(tǒng)計(jì)等方法,揭示數(shù)據(jù)的潛在模式和關(guān)系,提出假設(shè)和研究方向D.忽略數(shù)據(jù)中的異常值和缺失值,認(rèn)為它們不影響分析結(jié)果5、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的結(jié)果解釋和評(píng)估是確保結(jié)果可靠性的重要環(huán)節(jié)。以下關(guān)于數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估應(yīng)結(jié)合具體的業(yè)務(wù)問題和背景進(jìn)行B.數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估可以使用統(tǒng)計(jì)方法和可視化工具來輔助C.數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估應(yīng)考慮結(jié)果的準(zhǔn)確性、可靠性和實(shí)用性等方面D.數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估只需要由數(shù)據(jù)分析師進(jìn)行,不需要其他人員參與6、在數(shù)據(jù)分析的過程中,需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,例如將不同單位和量級(jí)的數(shù)據(jù)轉(zhuǎn)換為統(tǒng)一的尺度。以下哪種情況可能更需要進(jìn)行數(shù)據(jù)標(biāo)準(zhǔn)化?()A.數(shù)據(jù)的分布比較均勻B.數(shù)據(jù)的量級(jí)差異較大C.數(shù)據(jù)的類型比較單一D.以上都不是7、回歸分析是數(shù)據(jù)分析中的常用方法。假設(shè)要研究廣告投入與銷售額之間的關(guān)系,以下關(guān)于回歸分析的描述,正確的是:()A.簡單線性回歸足以捕捉廣告投入和銷售額之間的復(fù)雜非線性關(guān)系B.多元線性回歸中,自變量越多,模型的解釋能力就越強(qiáng)C.在建立回歸模型前,不需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理D.回歸模型的擬合優(yōu)度(R2)越高,說明模型對(duì)數(shù)據(jù)的擬合效果越好8、數(shù)據(jù)分析中的抽樣方法用于從總體中選取部分樣本進(jìn)行分析。假設(shè)我們要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行抽樣。以下關(guān)于抽樣方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.簡單隨機(jī)抽樣每個(gè)樣本被選中的概率相等B.分層抽樣可以保證樣本在不同層次上具有代表性C.整群抽樣效率高,但可能導(dǎo)致樣本的偏差D.抽樣方法對(duì)數(shù)據(jù)分析的結(jié)果沒有影響,任何抽樣方法都可以使用9、對(duì)于一個(gè)包含時(shí)間戳的數(shù)據(jù),若要按照時(shí)間順序進(jìn)行分組并計(jì)算每組的統(tǒng)計(jì)量,以下哪種方法在Python中較為便捷?()A.使用pd.Grouper函數(shù)B.自定義函數(shù)進(jìn)行分組C.先對(duì)時(shí)間戳進(jìn)行排序,再進(jìn)行分組D.以上方法都可行10、在進(jìn)行數(shù)據(jù)分析時(shí),如果數(shù)據(jù)分布呈現(xiàn)右偏態(tài),以下哪種統(tǒng)計(jì)量更能代表數(shù)據(jù)的集中趨勢(shì)?()A.均值B.中位數(shù)C.眾數(shù)D.標(biāo)準(zhǔn)差11、在數(shù)據(jù)分析中,決策樹是一種常用的分類算法。假設(shè)要根據(jù)客戶的特征預(yù)測(cè)他們是否會(huì)購買某種產(chǎn)品,以下關(guān)于決策樹的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.決策樹通過對(duì)數(shù)據(jù)進(jìn)行逐步分裂,構(gòu)建樹狀結(jié)構(gòu)來進(jìn)行分類預(yù)測(cè)B.可以通過剪枝技術(shù)來防止決策樹過擬合,提高模型的泛化能力C.決策樹的生成過程完全是自動(dòng)的,不需要人工干預(yù)和調(diào)整D.隨機(jī)森林是基于決策樹的集成學(xué)習(xí)算法,能夠提高預(yù)測(cè)的準(zhǔn)確性和穩(wěn)定性12、在數(shù)據(jù)分析中,因果推斷用于確定變量之間的因果關(guān)系。假設(shè)要研究廣告投入與銷售額之間的因果關(guān)系,以下關(guān)于因果推斷的描述,哪一項(xiàng)是不正確的?()A.隨機(jī)對(duì)照實(shí)驗(yàn)是確定因果關(guān)系的黃金標(biāo)準(zhǔn),但在實(shí)際中可能難以實(shí)施B.觀察性研究可以通過控制混雜因素來推斷因果關(guān)系,但存在一定的局限性C.相關(guān)性強(qiáng)就意味著存在因果關(guān)系,可以直接根據(jù)相關(guān)性得出因果結(jié)論D.可以使用工具變量、雙重差分等方法來解決因果推斷中的內(nèi)生性問題13、在數(shù)據(jù)挖掘中,若要發(fā)現(xiàn)數(shù)據(jù)中隱藏的模式和關(guān)聯(lián)規(guī)則,以下哪種算法是常用的?()A.Apriori算法B.KNN算法C.SVM算法D.隨機(jī)森林算法14、假設(shè)要分析一個(gè)城市的交通流量數(shù)據(jù),以優(yōu)化交通信號(hào)燈的設(shè)置和道路規(guī)劃。數(shù)據(jù)包括不同時(shí)間段、不同路段的車流量、車速等信息。為了找到交通擁堵的規(guī)律和原因,以下哪個(gè)分析角度可能是關(guān)鍵的?()A.時(shí)空分析B.基于車型的分類分析C.只關(guān)注高峰時(shí)段的分析D.隨機(jī)抽樣分析15、假設(shè)我們要評(píng)估一個(gè)分類模型的性能,除了準(zhǔn)確率外,以下哪個(gè)指標(biāo)還能反映模型對(duì)于不同類別的區(qū)分能力?()A.召回率B.F1值C.均方誤差D.混淆矩陣16、數(shù)據(jù)分析中的時(shí)間序列分析常用于預(yù)測(cè)未來趨勢(shì)。假設(shè)要預(yù)測(cè)未來一個(gè)月的某商品銷售量,該商品的銷售數(shù)據(jù)具有明顯的季節(jié)性和趨勢(shì)性。以下哪種時(shí)間序列預(yù)測(cè)模型在這種情況下更有可能提供準(zhǔn)確的預(yù)測(cè)?()A.移動(dòng)平均模型B.指數(shù)平滑模型C.ARIMA模型D.Prophet模型17、關(guān)于數(shù)據(jù)分析中的數(shù)據(jù)降維,假設(shè)數(shù)據(jù)集具有高維度,但其中可能存在冗余和無關(guān)的特征。為了減少計(jì)算復(fù)雜度并提高分析效率,以下哪種降維方法可能是有效的?()A.主成分分析(PCA),提取主要成分B.線性判別分析(LDA),考慮類別信息C.局部線性嵌入(LLE),保留局部結(jié)構(gòu)D.不進(jìn)行降維,直接處理高維數(shù)據(jù)18、對(duì)于一個(gè)不平衡的數(shù)據(jù)集(例如,某一類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別),以下哪種方法可以提高模型對(duì)少數(shù)類別的識(shí)別能力?()A.過采樣B.欠采樣C.調(diào)整分類閾值D.以上都是19、某數(shù)據(jù)分析項(xiàng)目需要對(duì)大量文本數(shù)據(jù)進(jìn)行情感分析。以下哪種技術(shù)常用于文本情感分析?()A.決策樹B.樸素貝葉斯C.支持向量機(jī)D.詞袋模型20、對(duì)于數(shù)據(jù)分析中的關(guān)聯(lián)規(guī)則挖掘,假設(shè)要從超市的銷售數(shù)據(jù)中發(fā)現(xiàn)商品之間的購買關(guān)聯(lián),例如哪些商品經(jīng)常一起被購買。以下哪種關(guān)聯(lián)規(guī)則挖掘算法可能會(huì)產(chǎn)生更有價(jià)值的結(jié)果?()A.Apriori算法,基于頻繁項(xiàng)集挖掘B.FP-Growth算法,提高挖掘效率C.Eclat算法,基于垂直數(shù)據(jù)格式D.不進(jìn)行關(guān)聯(lián)規(guī)則挖掘,依靠直覺判斷商品關(guān)聯(lián)21、在數(shù)據(jù)分析中,數(shù)據(jù)分析的結(jié)果需要進(jìn)行解釋和評(píng)估。以下關(guān)于結(jié)果解釋和評(píng)估的描述中,錯(cuò)誤的是?()A.結(jié)果解釋應(yīng)該結(jié)合問題的背景和目的,進(jìn)行合理的分析和推斷B.結(jié)果評(píng)估應(yīng)該使用客觀的指標(biāo)和方法,進(jìn)行準(zhǔn)確的評(píng)價(jià)和判斷C.結(jié)果解釋和評(píng)估可以根據(jù)需要進(jìn)行調(diào)整和修改,以滿足不同的需求D.結(jié)果解釋和評(píng)估只需要關(guān)注數(shù)據(jù)分析的結(jié)果,無需考慮數(shù)據(jù)的質(zhì)量和可靠性22、關(guān)于數(shù)據(jù)分析中的客戶細(xì)分,假設(shè)要根據(jù)客戶的購買行為、人口統(tǒng)計(jì)信息和在線活動(dòng)將客戶分為不同的細(xì)分群體。以下哪種細(xì)分方法可能更能揭示客戶的潛在需求和行為模式?()A.RFM模型,基于消費(fèi)頻率、金額和最近消費(fèi)時(shí)間B.基于聚類的細(xì)分,自動(dòng)發(fā)現(xiàn)相似群體C.基于決策樹的細(xì)分,根據(jù)規(guī)則劃分D.不進(jìn)行客戶細(xì)分,對(duì)所有客戶采用相同的策略23、在時(shí)間序列數(shù)據(jù)分析中,預(yù)測(cè)未來值是一個(gè)重要的應(yīng)用。假設(shè)我們有一個(gè)股票價(jià)格的時(shí)間序列數(shù)據(jù),想要預(yù)測(cè)未來一段時(shí)間的價(jià)格走勢(shì),以下哪種方法可能較為有效?()A.移動(dòng)平均法B.指數(shù)平滑法C.ARIMA模型D.以上都有可能,取決于數(shù)據(jù)特點(diǎn)24、對(duì)于數(shù)據(jù)分析中的優(yōu)化問題,假設(shè)要在一定的約束條件下最大化或最小化某個(gè)目標(biāo)函數(shù)。以下哪種優(yōu)化算法可能適用于解決這類復(fù)雜的優(yōu)化任務(wù)?()A.線性規(guī)劃,處理線性目標(biāo)和約束B.遺傳算法,通過模擬進(jìn)化過程搜索最優(yōu)解C.模擬退火算法,避免陷入局部最優(yōu)D.不進(jìn)行優(yōu)化,隨機(jī)選擇解決方案25、在進(jìn)行數(shù)據(jù)倉庫設(shè)計(jì)時(shí),需要考慮數(shù)據(jù)的存儲(chǔ)和組織方式。假設(shè)一個(gè)企業(yè)有大量的銷售、庫存和客戶數(shù)據(jù),以下哪種數(shù)據(jù)模型可能最適合用于構(gòu)建數(shù)據(jù)倉庫?()A.星型模型B.雪花模型C.關(guān)系模型D.網(wǎng)狀模型二、簡答題(本大題共4個(gè)小題,共20分)1、(本題5分)在數(shù)據(jù)分析中,如何進(jìn)行模型的可解釋性分析?請(qǐng)介紹一些可解釋性方法,如局部可解釋模型-解釋(LIME)、SHAP值等,并舉例說明。2、(本題5分)在數(shù)據(jù)倉庫中,如何進(jìn)行數(shù)據(jù)存儲(chǔ)的優(yōu)化以提高查詢性能?請(qǐng)說明存儲(chǔ)格式選擇、分區(qū)策略等方面的優(yōu)化方法,并舉例說明。3、(本題5分)時(shí)間序列數(shù)據(jù)分析在經(jīng)濟(jì)、金融等領(lǐng)域有重要應(yīng)用,請(qǐng)解釋時(shí)間序列的平穩(wěn)性概念,以及如何進(jìn)行平穩(wěn)性檢驗(yàn)和處理。4、(本題5分)解釋什么是元學(xué)習(xí),說明其在快速適應(yīng)新任務(wù)和數(shù)據(jù)中的應(yīng)用和原理,并舉例分析。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某視頻網(wǎng)站的紀(jì)錄片類目擁有用戶觀看數(shù)據(jù),如紀(jì)錄片主題、觀看時(shí)長、評(píng)論熱度、分享意愿等。分析紀(jì)錄片主題與觀看時(shí)長和評(píng)論熱度、分享意愿的相關(guān)性。2、(本題5分)某電商平臺(tái)的美妝工具類目擁有銷售數(shù)據(jù),包括品牌、產(chǎn)品類型、價(jià)格、銷量、促銷活動(dòng)等。分析促銷活動(dòng)對(duì)不同品牌和類型美妝工具銷量的提升效果。3、(本題5分)某能源企業(yè)收集了能源消耗數(shù)據(jù)、設(shè)備運(yùn)行狀況、天氣情況等信息。分析怎樣借助這些數(shù)據(jù)優(yōu)化能源分配和設(shè)備維護(hù)計(jì)劃。4、(本題5分)一家物流公司掌握了貨物運(yùn)輸?shù)穆肪€、運(yùn)輸時(shí)間、成本等數(shù)據(jù)。優(yōu)化運(yùn)輸路線規(guī)劃,降低運(yùn)輸成本,提高物流效率。5、(本題5分)某電商直播平臺(tái)存有主播的直播數(shù)據(jù),如直播時(shí)長、觀看人數(shù)、商品銷售額、粉絲互動(dòng)等。分析主播的直播時(shí)長與商品銷售額之間的相關(guān)性以及粉絲互動(dòng)的影響。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)物流行業(yè)在貨物運(yùn)輸和倉儲(chǔ)管理中積累了豐富的數(shù)據(jù)。探討如何借助數(shù)據(jù)分析方法,比如運(yùn)輸路徑優(yōu)化、庫存水平預(yù)測(cè)等,降低物流成本、提高物流服務(wù)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論