版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PublicDisclosureAuthorizedPublicDisclosureAuthorized
PolicyResearchWorkingPaper11125
FromChalkboardstoChatbots
EvaluatingtheImpactofGenerativeAIonLearningOutcomesinNigeria
MartínDeSimone
FedericoTiberti
MariaBarronRodriguez
FedericoManolio
WuraolaMosuro
EliotJolomiDikoru
WORLDBANKGROUP
EducationGlobalDepartmentMay2025
PolicyResearchWorkingPaper11125
Abstract
ThisstudyevaluatestheimpactofaprogramleveraginglargelanguagemodelsforvirtualtutoringinsecondaryeducationinNigeria.Usingarandomizedcontrolledtrial,theprogramdeployedMicrosoftCopilot(poweredbyGPT-4)tosupportfirst-yearseniorsecondarystudentsinEnglishlanguagelearningoversixweeks.Theinterventiondemonstratedasignificantimprovementof0.31standarddeviationonanassessmentthatincludedEnglishtopicsalignedwiththeNigeriancurriculum,knowledgeofartifi-cialintelligenceanddigitalskills.TheeffectonEnglish,themainoutcomeofinterest,wasof0.23standarddeviations.
Cost-effectivenessanalysisrevealedsubstantiallearninggains,equatingto1.5to2yearsof’business-as-usual’schooling,situatingtheinterventionamongsomeofthemostcost-effectiveprogramstoimprovelearningoutcomes.Ananalysisofheterogeneouseffectsshowsthatwhiletheprogrambenefitsstudentsacrossthebaselineabilitydis-tribution,thelargesteffectsareforfemalestudents,andthosewithhigherinitialacademicperformance.Thefind-ingshighlightthatartificialintelligence-poweredtutoring,whendesignedandusedproperly,canhavetransformativeimpactsintheeducationsectorinlow-resourcesettings.
ThispaperisaproductoftheEducationGlobalDepartment.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat
/prwp.Theauthorsmaybecontactedat
desimone@
,ftiberti@,mbarronrodriguez@,fmanolio@,wmosuro@,andedikoru@.
ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
ProducedbytheResearchSupportTeam
FromChalkboardstoChatbots:Evaluatingthe
ImpactofGenerativeAIonLearningOutcomesin
Nigeria*
MartnDeSimone,FedericoTiberti,MariaBarronRodriguez,FedericoManolio,WuraolaMosuro,EliotJolomiDikoru?
Keywords:large-languagemodels,adaptivelearning,artificialintelligence,educa-tiontechnology,secondaryeducation,teachingattherightlevel.
JELClassification:C93,I21,J24,O15,O33.
*TheteamwouldliketothankScherezadLatifandHalilDundar,EducationPracticeManagers,WorldBank.TheteamextendsitsappreciationtoDr.JoanOsaOviaweandJenniferAisuan,fortheircollaborationthroughouttheimplementationofthepilot,aswellasAlexTwinomugisha,RobertHawkins,andCristbalCobofortheirsupportwiththeintervention.Theteamthanksthosewhoprovidedcommentstoapreviousversionofthispaper,includingDavidEvans,HalseyRogers,CarolinaLopez,FranciscoHaimovich,DanielRodriguez-Segura,NoahYarrow,JuanBarn,andLucasGortazar.TheteamacknowledgesthefinancialsupportreceivedfromtheMastercardFoundation.
?DeSimone:TheWorldBank.E-mail:mdesimone@.Tiberti:TheWorldBank.E-mail:ftiberti@.Barron:TheWorldBank.E-mail:mbarronrodriguez@.Manolio:TheWorldBank.E-mail:fmanolio@.Mosuro:TheWorldBank.E-mail:wmo-suro@.Dikoru:TheWorldBank.E-mail:edikoru@.
2
1Introduction
Theglobaleducationsectorisgrapplingwithalearningcrisis.AccordingtotheLearningPovertyIndex,approximately70%of10-year-oldsinlow-andmiddle-incomecountriescannotreadandunderstandanage-appropriatetext(WorldBank,2022).Thesedeficitsinlearningaccumulateandbecomeparticularlyacuteatthesecondaryschoollevel,asevidencedbynumerousinternational,regional,andnationalassessments.
Inhisseminal1984study,Bloomdemonstratedthatstudentsreceivingone-on-onetu-toringoutperformedtheirpeersintraditionalclassroomsettingsbyanaverageoftwostandarddeviations(Bloom,1984).Subsequentstudieshaveconsistentlyconfirmedthesignificantbenefitsofone-on-onetutoring(Nickowetal.,2020).Thechallenge,however,isthatimplementingone-on-onetutoringatscaleiscostlyandunaffordableformosted-ucationsystems.Bloomreferredtothischallengeasthe“two-sigmaproblem”:howtoreplicatethegainsofpersonalizedtutoringatscaleinacost-effectivemanner.
Thispaperexamineswhethergenerativeartificialintelligence,specificallylargelanguagemodels(LLMs),canhelpsolvethatproblem.Weevaluateasix-weekafter-schooltutoringprograminNigeriathatusedapubliclyavailableLLM(ChatGPT-4)tosupportstudentsinlearningEnglish.First-yearsecondarystudentsfromninepublicschoolsinBeninCitywereinvitedtoparticipate;fromthispool,52%ofeligiblestudentsexpressedinterest,andparticipantswererandomlyselectedfromamongthem.Thoseassignedtotheinter-ventionattendedtwelve90-minutesessionsincomputerlabs,engagingincurriculum-alignedactivitiesguidedbyteachers.Weusearandomizedcontrolledtrial(RCT)designtoestimatethecausalimpactoftheprogramonlearningoutcomes.
Wepresentthreemainsetsofresults.First,weshowthatstudentsselectedtoparticipateintheprogramscore0.31standarddeviationhigherinthefinalassessmentthatwasdeliv-eredattheendoftheintervention.Wefindstrongstatistically-significantintent-to-treat(ITT)effectsonallsectionsofthatassessment:Englishskills(whichincludedthemajorityofquestions,0.24σ),digitalskills(0.14σ),AIskills(0.31σ)andanItemResponseTheory(IRT)compositescoreofeachstudent’sexam(0.26σ).WealsoshowthattheinterventionyieldedstrongpositiveresultsontheregularEnglishcurricularexamofthethirdterm.Thisresultisimportantbecausethecontentevaluatedinthatexamwasbroaderthantheonecoveredduringthesixweeksoftheinterventionandincludedthecontentoftheen-tireyear.WecalculateanITTeffectofbeingselectedfortheprogramontheperformanceinthethird-termexamof0.21standarddeviations.
Second,weexamineheterogeneityoftheeffectsbycertainpre-treatmentcharacteristics.
3
Treatmenteffectswerepositiveandstatisticallysignificantacrossalllevelsofbaselineper-formance,butstrongeramongstudentswithbetterpriorperformance.Similarly,treat-menteffectswerepositiveandstatisticallysignificantovertheentiredistributionofaproxyforsocioeconomicstatus,butstrongeramongstudentswithahigherone.Lastly,treatmenteffectswerestrongeramongfemalestudents,compensatingforadeficitintheirbaselineperformance.
Third,weconductdose-responseanalysis.WeestimateLocalAverageTreatmentEffect(LATE)estimates,focusingontheimpactofactualattendancetotheinterventionsessions,whichaveraged72%amongthetreatmentgroup.Usingattendancedata,weestimateadose-responserelationship,findingastronglinearassociationbetweendaysattendedandimprovedlearningoutcomes,withaneffectsizeofapproximately0.031standarddeviationperadditionaldayofattendance.Furtheranalysispredictssubstantialgainswithextendedprogramduration,estimatinganincreaseofbetween1.2and2.2standarddeviationsforafullacademicyearofparticipation,dependingonattendancerates.
Thefindings,combinedwithacostanalysis,seemtoindicatethattheprogramwashighlycost-effective.Thesix-weekpilotgeneratedlearninggainsthattakebetween1.5and2yearsinabusiness-as-usualscenario.Theprogramachieved3.2equivalentyearsofschooling(EYOS)per$100invested,surpassingmanycomparableinterventions.UsingLearning-adjustedyearsofschooling(LAYS)asthemetricfortheanalysis,theprogramgeneratesupto0.9yearofhigh-performanceeducation.Whenbenchmarkedagainstevidencefrombothlow-andmiddle-incomecountries,thepilotprogramranksamongthemostcost-effectivesolutionsforaddressinglearningcrises.
Ourstudycontributestodifferentstrandsoftheliteraturethataimtoidentifytheef-fectofprogramsthattrytocustomizeinstructiontothelevelofstudents,bothwithandwithouttechnology.Effortstoaddressthischallengehaveincludedthedevelopmentofthe”TeachingattheRightLevel”(TaRL)approach,whichhasshowntoimprovelearningoutcomesincontextssuchasIndia,Kenya,Ghana,andZambia(Banerjeeetal.,2016).Im-plementationmodalitiesofTaRLhavevaried,rangingfrompullingstudentsoutofclass(Banerjeeetal.,2007),trackingclassrooms(Dufloetal.,2011),providingextrainstruc-tionaltimeoutsideofschool(Banerjeeetal.,2016),andemployingvolunteersinsteadofteachers(Banerjeeetal.,2008).However,scalingTaRLprogramsremainsdifficultduetotheirlabor-intensivenature.Thischallengeisparticularlypronouncedgiventheglobalshortageofteachers,whichisparticularlypronouncedinSub-SaharanAfrica.Recentestimatessuggestthatby2040,countriesintheregionwillneed21%moresecondaryschoolteachersperyear(EvansandMendezAcosta,forthcoming).Teachershortagesare
4
furthercompoundedbyhighattritionrates,andtheneedforspecializedknowledgeatthesecondarylevelmakesTaRLprogramsevenmoredifficulttoimplement.
Inrecentyears,adaptivelearningsoftwarehasemergedasapotentialsolutiontothescal-abilityoftutoringprogramsbyusingtechnologytomimicone-on-onetutoring.Evidencesuggeststhatcomputer-adaptivelearningsystemscanimprovelearningoutcomes.Forexample,astudyofpersonalized,technology-aidedafter-schoolinstructionformiddleschoolstudentsinIndiareportedgainsof0.37standarddeviationinmathand0.23stan-darddeviationinHindiovera4.5-monthperiod(Muralidharanetal.,2019).AstudyinCambodiathatfocusedonmathinstructionforprimaryschoolstudentsfoundimpactsoncognitiveskillsduetostudents’increasedlearningproductivityperhour(Itoetal.,2021).InElSalvador,theuseofsoftwareforadaptivelearningprovedeffectiveinanen-vironmentwithheterogeneousclassesandpoorlyqualifiedteachers(Bcheletal.,2022).ExperimentsinChinahavealsofoundpositiveeffectsonstandardizedmathscores(Laietal.,2015a)andonMandarin(Laietal.,2015b),includingwhenimplementedduringregularschoolhours(Moetal.,2014).InEcuador,thepossibilitytouseanadaptive-learningsoftwarefor4monthsledtolargepositiveimpactonstandardizedtestscoresinmath(Angel-Urdinolaetal.,2023).Otherstudiesthatdonotfollowexperimentalap-proacheshavealsoestimatedpositiveeffectsofsimilarsoftwareprograms,suchasapro-graminUruguaythatshowedgainsof0.2standarddeviationonmathematicstestscores(PereraandAboal,2019).
Despitethesesuccesses,adaptivelearningprogramsfaceseveralchallenges.First,mostarenotdeployedintheworld’smostchallengingeducationalcontexts,particularlyinSub-SaharanAfrica,raisingquestionsaboutexternalvalidity.Second,theseprogramsoftenrelyonproprietarysoftware,whichtypicallyinvolvesbothfixedandper-studentcosts,makingthemdifficulttoscaleinresource-constrainedenvironments.
Someadaptive-learningoptionsaredevelopedusingartificialintelligence(AI)toadjusttothelevelofthestudents,buttheyprimarilyrelyonpatternrecognitionandpredictivealgorithms,toprovidestudentswithexercisesadjustedtotheirlevelbasedonapoolofthousandsofitems.Therecentadvancesingenerativeartificialintelligenceofferapromisingavenuetousesoftwaretoteachstudentswhilemaintainingamorehuman-likeinteractionwithstudentsthroughtheuseofnaturallanguage.
MostofthestudiesthathaveexaminedgenerativeAIineducationhavebeenconductedindevelopedcountriesandlabsettings,assessingtheshort-termeffectsofbriefinterac-tions(Kumaretal.,2023).InItaly,studieshavefoundpositiveeffectsofLargeLanguageModels(LLMs)onlearningoutcomesthroughhomeworksupport(Vanzoetal.,2024).In
5
theUnitedStates,ahuman-AIapproachwithexpertguidancethroughlanguagemod-elssupportstutorsinsteadofprovidingdirecthelptostudents,andfoundthatstudentsworkingonmathematicswithtutorsrandomlyassignedtohaveaccesstoatutorco-pilotare4percentagepointsmorelikelytomastertopics(Wangetal.,2024).AstudycarriedoutamongundergraduatestudentsatHarvardUniversityshowedthatthosewhoben-efitedfromanAI-poweredtutorathomeperformedbetterthanthoseexposedonlytoactivelearningclasses(Kestinetal.,2024).
OnlyafewstudiesevaluatetheeffectofgenerativeAItosupportstudentsthroughtutor-ing.InGhana,studentswhoweregivenaccesstoaphoneforonehouraweekandwereallowedtouseanAI-poweredmathtutorviaamessagingapptoindependentlystudymathimprovedtheirscoresmuchmorethanthosewithoutaccess,withaneffectsizeof0.36(Henkeletal.,2024).ArecentstudyinTu…rkiyeofaninterventionthatincludedonlyfoursessionsshowedthatwhileLLMscanimprovemathematicslearningoutcomes,theycanalsobedetrimentaltolearninginthelongtermiftheyareusedas”crutches”ratherthanastutors(Bastanietal.,2024).Asimilareffectwasfoundforcodingclassesinalabsetting(Lehmannetal.,2024).ThisstudyshowedmorepositiveimpactswiththeLLMusedwithpromptstosafeguardlearning(Bastanietal.,2024).
Thus,thispapercontributestothisrecentliteraturebyexaminingtheimpactofoneofthefirstprogramstoleverageLLMsforeducationalpurposesinadevelopingcountrycon-textusingarealexperimentaldesigninSub-SaharanAfrica.ItalsoaimstoaddresssomeofthechallengesidentifiedinrecentreviewsofemergingstudiesontheeffectofLLMsonlearning:thelackofobjectivemeasurestocomplementsubjectiveassessmentsofim-pact,weaknessesinthedefinitionofthecontrolandtreatmentgroups(Weidlichetal.,2025),andthelackofpoweranalysistodetermineadequatesamplesizes(Dengetal.,2024).Furthermore,theinterventionusedafree,off-the-shelfmodel,requiringminimalcustomizationandnopre-builtquestionbanks,whichmightfacilitateitsscalability.
Thefindingsofthisinterventionunderscoreseveralcriticalpolicyimplicationsforad-dressingthelearningcrisisindevelopingcountries,particularlyinSub-SaharanAfrica.Theprogramdemonstratedsignificantimpactsonlearningoutcomes,evenamidchal-lengessuchasinternetdisruptionsandpoweroutages,highlightingitspotentialincon-textswithsevereteachershortagesandresourceconstraints.AI-poweredtutoringpro-gramsusingLLMscancomplementtraditionalteachingbyenhancingteacherproduc-tivityanddeliveringpersonalizedlearningexperiences,particularlywhenpairedwithguidedprompts,teacheroversight,andalignmentwiththecurriculum.Theinterven-tion’scost-effectivenessandscalabilityarepromising,leveraginglocalstaffandfreetools
6
tominimizecostswhileeliminatingtheneedforextensivequestionbanksrequiredbytraditionaladaptivesoftware.However,policymakersmustaddresspotentialinequitiesarisingfromdisparitiesindigitalliteracyandaccesstotechnology.Investmentsininfras-tructure,teachertraining,andinclusivedigitaleducationareessentialtoensureequitableaccessandmitigatetheriskofexacerbatinginequalities.GiventhenascentapplicationofLLMsineducation,numerousquestionsremainunanswered,underscoringtheimpor-tanceofreplicatingthisstudy,includingwithsmallvariations.
Therestofthispaperisorganizedasfollows.Section2describestheinterventionandtheexperimentaldesign,includingthedataused.Section3presentsourmainresults,includingaheterogeneityanddosageanalysis,aswellasarobustnessanalysis.Section4discussescosteffectiveness,proposesfutureresearchdirections,andpresentspolicyimplications.
2InterventionandStudyDesign
2.1TheIntervention
Thestudyanalyzestheeffectsofanafter-schoolprograminwhichstudentsinteractedwithalargelanguagemodeltwiceperweektoimprovetheirEnglishskills,followingthenationalcurriculum.TheinterventionwasimplementedinBeninCity,Nigeria,us-ingCopilot,anLLMpoweredbytheGPT-4modelatthetimeofimplementation.1Theprogramwasimplementedoverasix-weekperiodbetweenJuneandJuly2024,targetingfirst-yearseniorsecondaryschoolstudents,whoaretypically15yearsold.2Theinterven-tionaimedtoimprovelearningoutcomesinEnglishlanguageclassesusinganAIchatbotasavirtualtutor.TheselectedtoolwasMicrosoftCopilot,poweredbyChatGPT-4,whichwasfreelyavailableandrequiredonlystudentregistration.Theprogramwasconductedinnineschoolsandthestudentsweregroupedaccordingtothenumberofcomputersineachschoollab,withanaverageof30studentspersession.Eachstudentwasallowedtoparticipateinamaximumoftwo1.5-hourafter-schoolsessionsperweek.
Theselectionofschoolswasbasedontheavailabilityofcomputerlabs.Theselabsvariedinthetypesofdevicestheyused,rangingfromlaptopstodesktopcomputers.Internetaccess,essentialforreal-timeinteractionwiththeLLM,wasprovidedthroughrouters
1GPT-4exhibitshuman-levelperformanceonvariousprofessionalandacademicbenchmarks,includingpassingasimulatedbarexamwithascorearoundthetop10percentoftesttakers(Achiametal.,2023).
2AdetailedimplementationtimelinecanbefoundinTable14.
7
andmobiletelephonesignals.However,internetdisruptionsandpoweroutageswerecommonchallengesfacedduringtheintervention.Despitetheseissues,studentswereabletointeractwiththechatbotforthemajorityofthesessions.
Allstudents’guardianssignedconsentforms,agreeingtotheirchildren’sparticipationinthepilotprogram.Studentsworkedinpairs,sharingacomputer,andengagedindialoguewiththeAItooltoenhancetheirlearning.Teachers,whoplayedacriticalroleinguidingthestudentsbutdidnotprovidedirectinstruction,participatedinasinglethree-daytrainingprogramwithonecohort.ThistrainingintroducedteacherstothefunctionalitiesoftheLLMandequippedthemwithpedagogicaltechniquestoensuretheirresponsibleuseandsupervisestudentsduringthesessions.Italsomadethemawareofpotentialrisks,suchashallucinationsandbiases,thattheLLMcouldhave.
Inthefirstsession,teachersfamiliarizedstudentswithMicrosoftCopilot,emphasizingbothitseducationalbenefitsandpotentialrisks,suchasover-relianceonthemodelandthepossibilityofhallucinationsandbiasedoutputs.Thegoalwastofosterresponsibleus-age,encouragingstudentstocomplementtheirlearningwiththeAItoolwhileretainingcriticalthinkingskills.
Eachsubsequentsessionfocusedonatopicfromthefirst-yearEnglishlanguagecurricu-lum,alignedwiththematerialthatstudentscoveredduringtheirregularclasses.Thesessionsbeganwithateacher-providedprompt,followedbyfreeinteractionbetweenthestudentpairsandtheAItool.Teacherscirculatedtheclassroom,ensuringstudents’in-teractionsremainedrelevantandontask.Eachteacherwasprovidedwithathree-partimplementationtoolkitwhichincluded:a)curatedonlinelearningresourcesontheuseofCopilotandLLMs;b)ahandbookfocusedonAIliteracyandpotentialrisksandbenefits;andc)sessionguidelines,includingsuggestedinitialpromptsandpotentialfollow-upquestionstoassiststudentsifneeded.Teacherswerealsoprovidedwithcontactsincasetheyfacedanyproblemswiththeprogramimplementation,andagroup-chatwascre-atedtostreamlinecommunications.Thestudentsalsohadacustomizedguide,whichincludedtheinitialprompts.
ThelessonguidesandtheirpromptswerecarefullycraftedtopositiontheLLMasatu-tor,focusingonfacilitatinglearningratherthansimplyprovidingdirectanswers.ThesepromptswereinformedbyprinciplesfromthescienceoflearningandweretailoredtotheculturalcontextofsouthernNigeria,incorporatingfamiliarnamesandcustomstoresonatewithstudents.3SomeofthepromptstructureswerederivedfromMollickand
3OneofthestrategiesemployedtoenhancelearningthroughpromptingwastoencouragetheLLMtoleverage”desirabledifficulties”ratherthansimplyprovidingdirectanswers.Theseareconditionsthat,
8
Mollick(2023a).ThisdesignaimedtoencouragetheLLMtoadapttoeachstudent’sindividuallearninglevel,providingpedagogicalsupportthroughcontextuallyrelevantexamplesanddiverseteachingtechniques.StudentsinteractedwiththeLLMbyaskingquestions,completingexercises,andreceivingpersonalizedfeedback.Attheendofeachsession,thestudentswereencouragedtoreflectanddiscusslessonslearnedandchal-lengesencounteredduringsessiontofacilitateknowledgesharingamongthegroup.
Toensurethefidelityofprogramimplementation,monitorswerefirsttrained,providedwithmonitoringguidelines,andthenassignedtotrackstudentattendanceandgatherinformationabouteachsessionusingKoboToolbox.4Thissystemallowedforreal-timedatacollection,ensuringthattheinterventionwascarriedoutasintendedineachschoolandofferedtheopportunitytorespondpromptlytoanychallenges.5
2.2SampleandRandomization
Therandomizationforthepilotprogramwasconductedatthestudentlevelinthenineselectedschools.Allfirst-yearseniorsecondaryschoolstudentsintheseschoolswereinformedabouttheprogramthroughinformationsessionsandgivenawindowoftendaystoexpresstheirinterestinparticipating.Onlystudentswhovoluntarilyexpressedinterestwithinthisperiodwereincludedintherandomizationpool.
Toassesswhetherstudentswhoexpressedinterestintheafter-schoolprogramdifferedsystematicallyfromthosewhodidnot,wecomparepre-programexamscoresbetweenstudentswhowereeligibleforthelottery(i.e.,thosewholaterexpressedinterest)andthosewhowerenot.Table12reportsestimatesfromregressionsofbaselineacademicoutcomesoneligibilitystatus.Inthefirstterm,studentswhowouldlaterexpressinterestscored0.085standarddeviationshigherthantheirpeers(p?0.1)(seeFigure6).However,bythesecondterm—stillpriortothelottery—thisrelationshipreverses:studentswho
whileseeminglychallenging,fostermoredurableandflexiblelearning(Bjork,1994).Forexample,theinitialandsuggestedpromptsincorporatedevidence-basedprinciplessuchasretrievalpractice—showntobeeffectiveforuppersecondarystudentswhenimplementedthroughmultiple-choiceandshort-answerquizzes(McDermottetal.,2014)—elaborativeinterrogation(Dunloskyetal.,2013),andtheuseofconcreteexamples(Weinsteinetal.,2018).However,webelievethereissignificantpotentialforfutureiterationsoftheinterventiontomorefullyexploitevidence-basedstrategiesforimprovinglearningoutcomes.Forinstance,whileinourprogram,eachsessionwasdedicatedtoasinglecurriculumtopic,futureprogramscouldexperimentwithvariations,suchasincorporatinginterleaving(Weinsteinetal.,2018)andspacingpractices(Kang,2016).Theseapproacheswouldallowforthecoverageofmultipletopicswithinasinglesession,revisitingandreinforcingthemovertimetoenhancelong-termretentionandunderstanding.
4Fordetailsonthistool,seeDas(2024).
5Themonitoringdataincludedteacherandstudentattendance,punctuality,powerandinternetcondi-tions,aswellasparticipants’engagement,amongotherfactors
9
didnotexpressinterestscored0.147standarddeviationshigher(pi0.01)(seeFigure7).Theabsenceofaconsistentdirectionalpatternacrosstermssuggeststhatselectionintotheprogramwasnotstronglyorsystematicallycorrelatedwithacademicperformance.Whileouranalysisfocusesontreatmenteffectsamongthosewhoexpressedinterest,thelackofclearacademicselectionimpliesthatresultsmaygeneralizebeyondthisgroup.Nevertheless,welackdemographicdataonnon-interestedstudents,whichlimitsourabilitytoassessrepresentativenessalongotherdimensions.
Oncetheperiodtoexpressinterestclosed,therandomizationwascarriedoutusingsim-plerandomsamplingwithoutreplacement6amonginterestedstudentstoassignthemeithertothetreatmentgroup,whichparticipatedintheprogram,ortothecontrolgroup,whichdidnotreceiveanyinterventionbutcontinuedtheirregularlearningintheclass-room.Thestudentscompletedabaselinesurveyandanend-linesurveywithsociodemo-graphicinformation.Initially,657studentswereassignedtothetreatmentgroupand671tothecontrolgroup.However,only422studentsinthetreatmentgroupand337inthecontrolgroupcompletedthefinalassessment,whichconstitutesthefinalsampleusedfortheanalysis.
Table1providessummarystatisticsandbalancetestsforkeyobservablecharacteristicsofthetwogroups.Demographicvariablesincludegender,age,andasocio-economicstatus(SES)index.Thisindexwasderivedfromaprincipalcomponentsanalysisofhouseholdcharacteristics,suchasaccesstogoods(computers,phones),services(internetconnec-tion),studyspaces,andparentaleducation.7TheSESindex,aswellasothervariablessuchastheproportionoffemalestudentsandage,showsthatthesampleisbalancedacrossthetreatmentandcontrolgroups,withdifferencesth
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 油氣電站操作員風(fēng)險(xiǎn)評(píng)估與管理評(píng)優(yōu)考核試卷含答案
- 計(jì)算機(jī)及外部設(shè)備裝配調(diào)試員崗前風(fēng)險(xiǎn)評(píng)估與管理考核試卷含答案
- 2025年湖南鄉(xiāng)村產(chǎn)業(yè)發(fā)展有限公司招聘人員9人筆試參考題庫(kù)附帶答案詳解(3卷)
- 2025年山東省環(huán)保發(fā)展集團(tuán)綠能有限公司權(quán)屬企業(yè)招聘(社招校招)筆試參考題庫(kù)附帶答案詳解(3卷)
- 2025屆湖北武昌造船校園招聘160人筆試參考題庫(kù)附帶答案詳解(3卷)
- 2025安徽蕪湖大??蓤?bào)蕪宣機(jī)場(chǎng)招23人筆試參考題庫(kù)附帶答案詳解(3卷)
- 溫州市2024年浙江溫州市交通工程管理中心編外招聘2人筆試歷年參考題庫(kù)典型考點(diǎn)附帶答案詳解(3卷合一)
- 柳江區(qū)2024廣西柳州市柳江區(qū)文聯(lián)招聘編外聘用人員1人筆試歷年參考題庫(kù)典型考點(diǎn)附帶答案詳解(3卷合一)
- 寧波市2024浙江寧波市鄞州區(qū)經(jīng)濟(jì)和信息化局招聘編外人員1人筆試歷年參考題庫(kù)典型考點(diǎn)附帶答案詳解(3卷合一)
- 國(guó)家事業(yè)單位招聘2024全國(guó)工商聯(lián)直屬單位招聘10人筆試歷年參考題庫(kù)典型考點(diǎn)附帶答案詳解(3卷合一)
- 2021大慶讓胡路萬(wàn)達(dá)廣場(chǎng)商業(yè)購(gòu)物中心開業(yè)活動(dòng)策劃方案預(yù)算-67P
- 2022年福建翔安區(qū)社區(qū)專職工作者招聘考試真題
- 2023年考研考博-考博英語(yǔ)-湖南師范大學(xué)考試歷年真題摘選含答案解析
- 英語(yǔ)電影的藝術(shù)與科學(xué)智慧樹知到答案章節(jié)測(cè)試2023年中國(guó)海洋大學(xué)
- 2023-2024學(xué)年新疆維吾爾自治區(qū)烏魯木齊市小學(xué)數(shù)學(xué)六年級(jí)上冊(cè)期末??紲y(cè)試題
- GB/T 16786-2007術(shù)語(yǔ)工作計(jì)算機(jī)應(yīng)用數(shù)據(jù)類目
- GB/T 15814.1-1995煙花爆竹藥劑成分定性測(cè)定
- GB/T 11446.7-2013電子級(jí)水中痕量陰離子的離子色譜測(cè)試方法
- 中國(guó)地質(zhì)大學(xué)武漢軟件工程專業(yè)學(xué)位研究生實(shí)踐手冊(cè)
- 《民法》全冊(cè)精講課件
- 山東大學(xué)2021年量子力學(xué)試題
評(píng)論
0/150
提交評(píng)論