解分式方程與計(jì)算題專練 暑假作業(yè)(含解析)數(shù)學(xué)八年級(jí)蘇科版_第1頁(yè)
解分式方程與計(jì)算題專練 暑假作業(yè)(含解析)數(shù)學(xué)八年級(jí)蘇科版_第2頁(yè)
解分式方程與計(jì)算題專練 暑假作業(yè)(含解析)數(shù)學(xué)八年級(jí)蘇科版_第3頁(yè)
解分式方程與計(jì)算題專練 暑假作業(yè)(含解析)數(shù)學(xué)八年級(jí)蘇科版_第4頁(yè)
解分式方程與計(jì)算題專練 暑假作業(yè)(含解析)數(shù)學(xué)八年級(jí)蘇科版_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

試卷第=page11頁(yè),共=sectionpages33頁(yè)試卷第=page11頁(yè),共=sectionpages33頁(yè)限時(shí)練習(xí):90min完成時(shí)間:___________月___________日天氣:作業(yè)八下解分式方程與計(jì)算題專練題型一、分式的約分、通分1.(1)通分:和;(2)約分:2.計(jì)算.(1)約分:;(2)通分:,.3.(1)約分:;(2)通分:,.4.已知,求分式的值.5.已知(其中),求分式的值.題型二、分式的混合運(yùn)算與化簡(jiǎn)求值6.計(jì)算:(1)(2)7.計(jì)算(1);(2).8.計(jì)算:(1);(2).(3)先化簡(jiǎn),再求值:,其中.9.先化簡(jiǎn),再求值:,其中a從1,2,3中選一個(gè)恰當(dāng)?shù)臄?shù)代入求值.10.先化簡(jiǎn),再求值:,請(qǐng)從0,1,2,3,中選取一個(gè)你認(rèn)為合適的整數(shù)作為a的值,再代入求值.題型三、分式方程11.解方程:(1);(2).12.解方程.(1);(2).13.解方程:(1);(2).14.解方程(1);(2).15.解方程(1)(2)16.計(jì)算:(1)(2)17.計(jì)算:(1).(2)18.計(jì)算(1)(2)19.計(jì)算(1)(2)20.計(jì)算:(1)(2)題型五、分母有理化21.比較與的大小可以采用下面的方法:;.顯然,所以.仔細(xì)研讀上面的解題方法,然后完成下列問題:(1)猜想:與的大小關(guān)系;(2)嘗試計(jì)算:.22.閱讀材料:像,,…這種兩個(gè)含二次根式的代數(shù)式相乘,積不含二次根式,我們稱這兩個(gè)代數(shù)式互為有理化因式.其中一個(gè)是另一個(gè)的有理化因式.在進(jìn)行二次根式運(yùn)算時(shí),利用有理化因式可以化去分母中的根號(hào).如,.像這樣,通過分子、分母同乘以一個(gè)式子把分母中的根號(hào)化去或把根號(hào)中的分母化去,叫做分母有理化.(1)解決問題:的有理化因式是,分母有理化,得;(2)已知,求的值;(3)利用上述知識(shí)比較代數(shù)式與的大?。?4)計(jì)算:.23.在進(jìn)行二次根式化簡(jiǎn)時(shí),我們有時(shí)會(huì)碰上如這樣的式子,我們可以將其進(jìn)一步化:.這種化簡(jiǎn)的方法叫做分母有理化,請(qǐng)利用分母有理化解答下列問題:(1)化簡(jiǎn):.(2)若a是的小數(shù)部分,求的值.(3)矩形的面積為,一邊長(zhǎng)為,求它的周長(zhǎng).24.先閱讀,再解答.由可以看出,兩個(gè)含有二次根式的代數(shù)式相乘,積不含有二次根式,我們稱這兩個(gè)代數(shù)式互為有理化因式,在進(jìn)行二次根式計(jì)算時(shí),利用有理化因式,有時(shí)可以化去分母中的根號(hào),例如:.請(qǐng)完成下列問題:(1)的有理化因式是_____;_____.(2)利用這一規(guī)律計(jì)算:的值.25.探究:觀察下列等式:;;;……解答下列問題:(1)模仿:化簡(jiǎn):__________,__________.(2)拓展:比較和的大?。?3)運(yùn)用:計(jì)算題型六、二次根式的化簡(jiǎn)求值26.已知,求的值.27.已知:,分別求下列代數(shù)式的值:(1)(2)28.(1),,求代數(shù)式的值.(2)先化簡(jiǎn),再求值.,其中,.29.先化簡(jiǎn),再求值:,其中.30.先化簡(jiǎn),再求值:,其中.答案第=page11頁(yè),共=sectionpages22頁(yè)答案第=page11頁(yè),共=sectionpages22頁(yè)參考答案1.(1);;(2)【分析】此題考查了通分及約分,通分的關(guān)鍵是找出各分母的最簡(jiǎn)公分母,約分的關(guān)鍵是找出分子分母的公因式.(1)找出兩分母的最簡(jiǎn)公分母,通分即可;(2)原式變形后,約分即可得到結(jié)果.【詳解】解:(1);(2)原式.2.(1)(2),【分析】本題主要考查了分式的約分和通分,熟知約分和通分的計(jì)算法則是解題的關(guān)鍵.(1)分別把分子和分母分解因式,然后約去公因式即可得到答案;(2)先把兩個(gè)分式的分母分解因式,再找到兩個(gè)分式的公分母,再進(jìn)行通分即可.【詳解】(1);(2),,,3.(1);(2),【分析】本題主要考查了分式的約分和通分,熟知約分和通分的計(jì)算法則是解題的關(guān)鍵.(1)分別把分子和分母分解因式,然后約去公因式即可得到答案;(2)先把兩個(gè)分式的分母分解因式,再找到兩個(gè)分式的公分母,再進(jìn)行同分即可.【詳解】解(1);(2)∵,,∴,.4.【分析】本題主要考查分式的值,熟練掌握分式的性質(zhì)是解題的關(guān)鍵;根據(jù)題意先對(duì)分式進(jìn)行化簡(jiǎn),然后再代入求值即可.【詳解】解:由條件可知,因此.原式.另解:∵,∴,∴.5.【分析】本題考查求分式的值.設(shè),即可得到,代入分式即可求解.【詳解】解:設(shè),則,∴.6.(1)(2)【分析】本題考查了分式的混合運(yùn)算,熟練掌握運(yùn)算法則是解答本題的關(guān)鍵.(1)根據(jù)同分母分式的加減法法則計(jì)算即可;(2)把括號(hào)內(nèi)通分,并把除法轉(zhuǎn)化為乘法,然后約分化簡(jiǎn).【詳解】(1)解:原式(2)原式7.(1)(2)【分析】本題考查的是分式的混合運(yùn)算,熟知分式混合運(yùn)算的法則是解題的關(guān)鍵.(1)先算乘方,再算乘除即可;(2)先算括號(hào)里面的,再算除法即可.【詳解】(1)解:;(2).8.(1)1(2)(3),【分析】本題主要考查了分式的化簡(jiǎn)求值,分式的混合計(jì)算,分式的加減計(jì)算,熟知相關(guān)計(jì)算法則是解題的關(guān)鍵.(1)根據(jù)分式的加法計(jì)算法則求解即可;(2)先把小括號(hào)內(nèi)的式子通分化簡(jiǎn),再把除法變成乘法后約分化簡(jiǎn)即可得到答案;(3)先把小括號(hào)內(nèi)的式子通分化簡(jiǎn),再把除法變成乘法后約分化簡(jiǎn),接著把最右邊的分式約分,最后計(jì)算分式加法化簡(jiǎn)并代值計(jì)算即可.【詳解】(1)解:;(2)解:;(3)解:,當(dāng)時(shí),原式.9.,【分析】本題考查了分式的化簡(jiǎn)與求值,熟練掌握分式的運(yùn)算法則是解題的關(guān)鍵.先利用分式的運(yùn)算法則化簡(jiǎn),再根據(jù)分式有意義的條件得出且,所以選擇代入求值即可.【詳解】解:,且,代入,原式.10.,當(dāng)時(shí),原式;當(dāng)時(shí),原式;當(dāng)時(shí),原式.【分析】本題考查的是分式的化簡(jiǎn)求值,熟知分式混合運(yùn)算的法則是解題的關(guān)鍵.先根據(jù)分式混合運(yùn)算的法則把原式進(jìn)行化簡(jiǎn),再選取合適的x的值代入進(jìn)行計(jì)算即可.【詳解】解:??,∵,∴,∴當(dāng)時(shí),原式;當(dāng)時(shí),原式;當(dāng)時(shí),原式.11.(1)(2)無解【分析】本題主要考查了解分式方程,熟知解分式方程的方法是解題的關(guān)鍵.(1)先把原方程去分母化為整式方程,再解方程并檢驗(yàn)即可;(2)先把原方程去分母化為整式方程,再解方程并檢驗(yàn)即可.【詳解】(1)解:方程兩邊同乘,得,解這個(gè)一元一次方程,得,檢驗(yàn):當(dāng)時(shí),,∴是原方程的解.(2)解:方程兩邊同乘,得,解這個(gè)一元一次方程,得,檢驗(yàn):當(dāng)時(shí),,∴是原方程的增根,∴原方程無解.12.(1)(2)【分析】本題考查了分式方程的計(jì)算,熟知運(yùn)算法則是解題的關(guān)鍵.(1)先去分母,再計(jì)算一元一次方程即可;(2)先去分母,再計(jì)算一元一次方程即可.【詳解】(1)解:,方程兩邊同乘,得,解得:,檢驗(yàn):時(shí),,∴是該分式方程的解;(2)解:方程兩邊同乘,得,解得:,檢驗(yàn):時(shí),,∴是該分式方程的解.13.(1)(2)原方程無解【分析】本題考查了解分式方程,掌握解分式方程的方法是解題的關(guān)鍵.(1)根據(jù)解分式方程的方法,先把分式方程轉(zhuǎn)變?yōu)檎椒匠?,解整式方程求出x的值,然后檢驗(yàn)即可;(2)根據(jù)解分式方程的方法,先把分式方程轉(zhuǎn)變?yōu)檎椒匠?,解整式方程求出x的值,然后檢驗(yàn)即可.【詳解】(1)解:去分母得:,解得:,檢驗(yàn):把代入得:,∴分式方程的解為;(2)解:去分母得:,解得:,檢驗(yàn):當(dāng)時(shí),,∴是原方程的增根,∴原方程無解.14.(1)(2)無解【分析】本題考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.解分式方程一定注意要驗(yàn)根.(1)方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解;(2)方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解.【詳解】(1)解:,去分母得,,解得,,經(jīng)檢驗(yàn),是分式方程的解;(2)解:,去分母得,,去括號(hào)得,,移項(xiàng)合并得,解得,,經(jīng)檢驗(yàn)是增根,分式方程無解.15.(1)(2)無解【分析】本題主要考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解,解分式方程一定注意要驗(yàn)根.(1)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解;(2)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解.【詳解】(1)解:方程兩邊同時(shí)乘以,得:,經(jīng)檢驗(yàn),當(dāng)時(shí),,所以,是原分式方程的解;(2)解:方程兩邊同時(shí)乘以,得:,經(jīng)檢驗(yàn),當(dāng)時(shí),,所以,是原分式方程的增根,所以,原分式方程無解.16.(1)(2)【分析】(1)根據(jù)二次根式混合運(yùn)算法則進(jìn)行解答即可;(2)根據(jù)平方差公式、完全平方公式及二次根式混合運(yùn)算法則進(jìn)行解答即可.本題考查二次根式的混合運(yùn)算及平方差公式和完全平方公式的應(yīng)用,解題關(guān)鍵是掌握二次根式的混合運(yùn)算法則.【詳解】(1)解:;(2)解:原式.17.(1)(2)【分析】本題考查了二次根式的混合運(yùn)算,先把各二次根式化為最簡(jiǎn)二次根式,再進(jìn)行二次根式的乘除運(yùn)算,然后合并同類二次根式.(1)先根據(jù)二次根式的乘除法法則運(yùn)算,然后合并即可;(2)先化簡(jiǎn)二次根式及絕對(duì)值,然后合并即可.【詳解】(1)解:原式;(2)解:原式.18.(1)(2)1【分析】此題考查了二次根式的混合運(yùn)算,熟練掌握運(yùn)算法則是關(guān)鍵.(1)先利用二次根式的性質(zhì)化簡(jiǎn),再計(jì)算加減法即可;(2)利用平方差公式計(jì)算即可.【詳解】(1)解:(2)原式19.(1)(2)【分析】本題主要考查了二次根式的混合計(jì)算,熟知二次根式的相關(guān)計(jì)算法則是解題的關(guān)鍵.(1)先化簡(jiǎn)二次根式,再去括號(hào)后計(jì)算二次根式乘法,最后計(jì)算加減法即可得到答案;(2)根據(jù)二次根式的乘除法計(jì)算法則求解即可.【詳解】(1)解:;(2)解;.20.(1);(2)【分析】本題主要考查二次根式的性質(zhì)和化簡(jiǎn),二次根式的混合運(yùn)算,熟練掌握相關(guān)運(yùn)算法則是解題的關(guān)鍵;(1)先化簡(jiǎn)二次根式,先計(jì)算乘除法,再計(jì)算加減法即可;(2)先計(jì)算乘除法,再化簡(jiǎn)二次根式.【詳解】(1)解:原式(2)解:原式21.(1)(2)9【分析】此題考查了分母有理化,二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特點(diǎn)的式子.即一項(xiàng)符號(hào)和絕對(duì)值相同,另一項(xiàng)符號(hào)相反絕對(duì)值相同.(1)根據(jù)閱讀材料中的方法將兩式化簡(jiǎn),即可做出比較;(2)原式變形后,計(jì)算即可得到結(jié)果.【詳解】(1)解:,.顯然,所以.所以(2)解:22.(1),;(2)(3)(4)2023【分析】本題主要考查了分母有理化,二次根式的化簡(jiǎn)求值,熟知分母有理化的方法是解題的關(guān)鍵.(1)仿照題意找出各式的分母有理化因式即可;(2)先對(duì)分母有理化,再根據(jù)計(jì)算求解即可;(3)分別把和分母有理化,然后比較出二者分母有理化的結(jié)果即可得到答案;(4)先證明,再把所求式子裂項(xiàng)求解即可.【詳解】(1)解:,,的有理化因式是,分母有理化,得;故答案為:,;(2)解:,∴;(3)解:,,∵,且,∴;(4)解:,∴.23.(1)(2)(3)【分析】本題考查估算無理數(shù)的大小、二次根式的混合運(yùn)算、二次根式的應(yīng)用,解答本題的關(guān)鍵是明確它們各自的計(jì)算方法.(1)根據(jù)題目中的例子可以解答本題;(2)根據(jù)題意,可以得,可以求得所求式子的值;(3)根據(jù)題意,可以求得矩形的另一邊長(zhǎng),從而可以求得該矩形的周長(zhǎng).【詳解】(1)解:;(2)解:∵a是的小數(shù)部分,,∴,;(3)解:∵矩形的面積為,一邊長(zhǎng)為,∴其鄰邊長(zhǎng)為,∴該矩形的周長(zhǎng)為.24.(1),.(2)2024【分析】本題主要考查了二次根式的混合運(yùn)算、分母有理化、二次根式的性質(zhì)、二次根式的乘法和除法法則等知識(shí)點(diǎn).掌握相關(guān)運(yùn)算法則成為解題的關(guān)鍵.(1)根據(jù)有理化因式和平方差公式求解即可;(2)先分母有理化,再把括號(hào)內(nèi)合并,然后利用平方差公式求解即可.【詳解】(1)解:∵∴的有理化因式是;.故答案為:,.(2)解:.25.(1),(2)(3)【分析】()仿照例題化簡(jiǎn)即可;()先求出和的倒數(shù),進(jìn)而比較倒數(shù)即可判斷求解;()利用二次根式的化簡(jiǎn)方法對(duì)括號(hào)內(nèi)的各項(xiàng)化簡(jiǎn),進(jìn)而利用平方差公式計(jì)算即可求解;本題考查了二次根式的分母有理化,掌握二次根式運(yùn)算法則是解題的關(guān)鍵.【詳解】(1)解:,,故答案為:,;(2)解:,,,,;(3)解:.26.【分析】本題考查了二次根式的化簡(jiǎn)求值,掌握二次根式的運(yùn)算法則是解題的關(guān)鍵.先根據(jù)二次根式的運(yùn)算法則化簡(jiǎn)得到,再把,整體代入計(jì)算即可.【詳解】解:∵,,∴a、b同號(hào),且a、b均為正數(shù)數(shù),∴.27.(1)(2)【分析】本題主要考查了二次根式的化簡(jiǎn)求值,正確把a(bǔ)、b分母有理化是解題的關(guān)鍵.(1)先把a(bǔ)、b分母有理化,再求出的值,根據(jù)計(jì)算求解即可;(2)根據(jù)(1)所求,結(jié)合計(jì)算求解即可.【詳解】(1)解:∵,∴,∴,,∴;(2)解:∵,,∴.28.(1)(2),【分析】本題主要考查了二次根式的化簡(jiǎn)求值,平方差公式等知識(shí)點(diǎn),能靈活運(yùn)用二次根式的運(yùn)算法則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論