空間向量運算的坐標(biāo)表示學(xué)習(xí)研究報告_第1頁
空間向量運算的坐標(biāo)表示學(xué)習(xí)研究報告_第2頁
空間向量運算的坐標(biāo)表示學(xué)習(xí)研究報告_第3頁
空間向量運算的坐標(biāo)表示學(xué)習(xí)研究報告_第4頁
空間向量運算的坐標(biāo)表示學(xué)習(xí)研究報告_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

12單位正交基底:

如果空間的一個基底的三個基向量互相垂直,且大小都為1,那么這個基底叫做單位正交基底,常用來表示.下面我們類似平面直角坐標(biāo)系,建立空間直角坐標(biāo)系3坐標(biāo)化規(guī)律思考2在空間直角坐標(biāo)系O–x

y

z中,對空間任一點A,對應(yīng)一個向量,于是存在唯一的有序?qū)崝?shù)組x,y,z,使(如圖).

顯然,向量的坐標(biāo),就是點A在此空間直角坐標(biāo)系中的坐標(biāo)(x,y,z).xyzOA(x,y,z)ijk

也就是說,以O(shè)為起點的有向線段(向量)的坐標(biāo)可以和點的坐標(biāo)建立起一一對應(yīng)的關(guān)系,從而互相轉(zhuǎn)化.

我們說,點A的坐標(biāo)為(x,y,z),記作A(x,y,z),其中x叫做點A的橫坐標(biāo),y叫做點A的縱坐標(biāo),z叫做點A的豎坐標(biāo).5空間向量運算的坐標(biāo)規(guī)律:,則設(shè)6練習(xí)1:已知

求解:7結(jié)論:若A(x1,y1,z1),B(x2,y2,z2),則AB=OB-OA=(x2,y2,z2)-(x1,y1,z1)

=(x2-x1,

y2-y1,

z2-z1)注:空間一個向量在直角坐標(biāo)系中的坐標(biāo)等于表示這個向量的有向線段的終點的坐標(biāo)減去起點的坐標(biāo).

如果知道有向線段的起點和終點的坐標(biāo),那么有向線段表示的向量坐標(biāo)怎樣求?8繼續(xù)解:設(shè)正方體的棱長為1,如圖建立空間直角坐標(biāo)系,則

例5如圖,在正方體中,,求與所成的角的余弦值.

910小結(jié):1、空間向量的坐標(biāo)運算;2、利用向量的坐標(biāo)運算判斷空間幾何關(guān)系的關(guān)鍵:首先要選定單位正交基底,進而確定各向量的坐標(biāo),再利用向量的坐標(biāo)運算確定幾何關(guān)系。1112以

建立空間直角坐標(biāo)系O—xyz若A(x1,y1,z1),B(x2,y2,z2),則AB=OB-OA=(x2-x1

,

y2-y1

,

z2-z1)131415161答案2答案A1D1C1B1ACBDFE17證明:設(shè)正方體的棱長為1,建立如圖的空間直角坐標(biāo)系xyzA1D1C1B1ACBDFE18191.基本知識:(1)向量的長度公式與兩點間的距離公式;(2)兩個向量的夾角公式。2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論