版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
京改版數(shù)學(xué)9年級上冊期中測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、已知為銳角,且,則()A. B. C. D.2、對于拋物線,下列說法正確的是()A.拋物線開口向上B.當(dāng)時,y隨x增大而減小C.函數(shù)最小值為﹣2D.頂點坐標(biāo)為(1,﹣2)3、如圖,點A與點B關(guān)于原點對稱,點C在第四象限,∠ACB=90°.點D是軸正半軸上一點,AC平分∠BAD,E是AD的中點,反比例函數(shù)()的圖象經(jīng)過點A,E.若△ACE的面積為6,則的值為(
)A. B. C. D.4、三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小完全相同.當(dāng)水面剛好淹沒小孔時,大孔水面寬度為10米,孔頂離水面1.5米;當(dāng)水位下降,大孔水面寬度為14米時,單個小孔的水面寬度為4米,若大孔水面寬度為20米,則單個小孔的水面寬度為()A.4米 B.5米 C.2米 D.7米5、如圖,已知動點,分別在軸,軸正半軸上,動點在反比例函數(shù)圖象上,軸,當(dāng)點的橫坐標(biāo)逐漸增大時,的面積將會()A.越來越小 B.越來越大C.不變 D.先變大后變小6、下列各式中表示二次函數(shù)的是()A.y=x2+ B.y=2﹣x2C.y= D.y=(x﹣1)2﹣x2二、多選題(7小題,每小題2分,共計14分)1、函數(shù)y1=x與y2=的圖象如圖所示,下列關(guān)于函數(shù)y=y1+y2的結(jié)論中正確的是(
)A.函數(shù)的圖象關(guān)于原點中心對稱;B.當(dāng)x<2時,y隨x的增大而減??;C.當(dāng)x>0時,函數(shù)的圖象最低點的坐標(biāo)是(2,4)2、二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(-1,n),其部分圖象如圖所示.下列結(jié)論正確的是(
)A.B.C.若,是拋物線上的兩點,則D.關(guān)于x的方程無實數(shù)根3、如圖,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,則下列結(jié)論不正確的是()A.sinA= B.tanA= C.cosB= D.tanB=4、如圖,二次函敗y=ax2+bx+c(a、b、c為常數(shù),且a≠0)的圖象與x軸的交點的橫坐標(biāo)分別為﹣1、3,則下列結(jié)論中正確的有()A.a(chǎn)bc<0 B.2a+b=0 C.3a+2c>0 D.對于任意x均有ax2﹣a+bx﹣b≥05、如圖,在2×3的方格中,畫有格點△ABC,下列選項的方格中所畫格點三角形(陰影部分)與△ABC不相似的是()A. B. C. D.6、如圖,在△ABC中,點D在邊AC上,下列條件中,不能判斷△BDC與△ABC相似的是(
)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA7、在反比例函數(shù)y=的圖象中,陰影部分的面積等于4的是()A. B.C. D.第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、二次函數(shù)y=ax2+bx+c(a≠0)圖象上部分點的坐標(biāo)(x,y)對應(yīng)值列表如下:x…-3-2-101…y…-4-3-4-7-12…則該圖象的對稱軸是___________2、在平面直角坐標(biāo)系中,已知和是拋物線上的兩點,將拋物線的圖象向上平移n(n是正整數(shù))個單位,使平移后的圖象與x軸沒有交點,則n的最小值為_____.3、cos45°-tan60°=________;4、如圖,在矩形ABCD中,E,F(xiàn)為邊AD上兩點,將矩形ABCD沿BE折疊,點A恰好落在BF上的A'處,且A′E=A'F,再將矩形ABCD沿過點B的直線折疊,使點C落在BF上的C'處,折痕交CD于點H,將矩形ABCD再沿FH折疊,D與C'恰好重合.已知AE=,則AD=_____.5、如圖,矩形ABCD中,點E,F(xiàn)分別在AD,BC上,且AE=DE,BC=3BF,連接EF,將矩形ABCD沿EF折疊,點A恰好落在BC邊上的點G處,則cos∠EGF的值為_____.6、若,則________.7、如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點為O,拋物線y=a(x﹣2)2+1(a>0)的頂點為A,過點A作y軸的平行線交拋物線于點B,連接AO、BO,則△AOB的面積為________.四、解答題(6小題,每小題10分,共計60分)1、如圖,公路為東西走向,在點北偏東方向上,距離千米處是村莊,在點北偏東方向上,距離千米處是村莊;要在公路旁修建一個土特產(chǎn)收購站(取點在上),使得,兩村莊到站的距離之和最短,請在圖中作出的位置(不寫作法)并計算:(1),兩村莊之間的距離;(2)到、距離之和的最小值.(參考數(shù)據(jù):sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75計算結(jié)果保留根號.)2、在平面直角坐標(biāo)系中,拋物線交x軸于點,,過點B的直線交拋物線于點C.(1)求該拋物線的函數(shù)表達(dá)式;(2)若點P是直線BC下方拋物線上的一個動點(P不與點B,C重合),求面積的最大值;(3)若點M在拋物線上,將線段OM繞點O旋轉(zhuǎn)90°,得到線段ON,是否存在點M,使點N恰好落在直線BC上?若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.3、已知有三條長度分別為2cm、4cm、8cm的線段,請再添一條線段.使這四條線段成比例,求所添線段的長度.4、如圖,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE.點M,N分別是BD,CE的中點,連接AM,AN,MN.(1)求證:△CAE≌△BAD;(2)求證:△AMN∽△ABC;(3)若AC=6,AE=4,∠EAC=60°,求AN的長.5、(1)計算:.(2)解方程:.6、已知拋物線c:y=-x2-2x+3和直線l:y=x+d。將拋物線c在x軸上方的部分沿x軸翻折180°,其余部分保持不變,翻折后的圖象與x軸下方的部分組成一個“M”型的新圖象(即新函數(shù)m:y=-|x2+2x-3|的圖象)。(1)當(dāng)直線l與這個新圖象有且只有一個公共點時,d=;(2)當(dāng)直線l與這個新圖象有且只有三個公共點時,求d的值;(3)當(dāng)直線l與這個新圖象有且只有兩個公共點時,求d的取值范圍;(4)當(dāng)直線l與這個新圖象有四個公共點時,直接寫出d的取值范圍.-參考答案-一、單選題1、A【解析】【分析】根據(jù)特殊角的三角函數(shù)值解答.【詳解】∵為銳角,且,∴.故選A.【考點】此題考查的是特殊角的三角函數(shù)值,屬較簡單題目.2、B【解析】【分析】根據(jù)二次函數(shù)圖象的性質(zhì)對各項進(jìn)行分析判斷即可.【詳解】解:拋物線解析式可知,A、由于,故拋物線開口方向向下,選項不符合題意;B、拋物線對稱軸為,結(jié)合其開口方向向下,可知當(dāng)時,y隨x增大而減小,選項說法正確,符合題意;C、由于拋物線開口方向向下,故函數(shù)有最大值,且最大值為-2,選項不符合題意;D、拋物線頂點坐標(biāo)為(-1,-2),選項不符合題意.故選:B.【考點】本題主要考查了二次函數(shù)的性質(zhì),解題關(guān)鍵是熟練運用拋物線的開口方向、對稱軸、頂點坐標(biāo)以及二次函數(shù)圖象的增減性解題.3、C【解析】【分析】過A作,連接OC、OE,根據(jù)點A與點B關(guān)于原點對稱,∠ACB=90°,AC平分∠BAD得出,從而得出三角形AEC的面積與三角形AOE的面積相等,設(shè),根據(jù)E是AD的中點得出得出三角形OAE的面積等于四邊形AFGE的面積建立等量關(guān)系求解.【詳解】解:過A作,連接OC,連接OE:∵點A與點B關(guān)于原點對稱,∠ACB=90°∴又∵AC平分∠BAD∴∴∴設(shè),根據(jù)E是AD的中點得出:∴解得:故答案選:C.【考點】本題考查反比例函數(shù)與幾何綜合,有一定的難度.將三角形AEC的面積轉(zhuǎn)化與三角形AOE的面積相等是解題關(guān)鍵.4、B【解析】【分析】根據(jù)題意,可以畫出相應(yīng)的拋物線,然后即可得到大孔所在拋物線解析式,再求出頂點為A的小孔所在拋物線的解析式,將x=﹣10代入可求解.【詳解】解:如圖,建立如圖所示的平面直角坐標(biāo)系,由題意可得MN=4,EF=14,BC=10,DO=,設(shè)大孔所在拋物線解析式為y=ax2+,∵BC=10,∴點B(﹣5,0),∴0=a×(﹣5)2+,∴a=-,∴大孔所在拋物線解析式為y=-x2+,設(shè)點A(b,0),則設(shè)頂點為A的小孔所在拋物線的解析式為y=m(x﹣b)2,∵EF=14,∴點E的橫坐標(biāo)為-7,∴點E坐標(biāo)為(-7,-),
∴-=m(x﹣b)2,∴x1=+b,x2=-+b,∴MN=4,∴|+b-(-+b)|=4∴m=-,∴頂點為A的小孔所在拋物線的解析式為y=-(x﹣b)2,∵大孔水面寬度為20米,∴當(dāng)x=-10時,y=-,∴-=-(x﹣b)2,∴x1=+b,x2=-+b,∴單個小孔的水面寬度=|(+b)-(-+b)|=5(米),故選:B.【考點】本題考查二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.5、C【解析】【分析】設(shè)點,作可得,根據(jù)可得答案.【詳解】解:如圖,過點作于點,則,設(shè)點,則,當(dāng)點的橫坐標(biāo)逐漸增大時,的面積將會不變,始終等于,故選:.【考點】本題主要考查反比例函數(shù)系數(shù)的幾何意義,熟練掌握在反比例函數(shù)的圖象上任意一點向坐標(biāo)軸作垂線,這一點和垂足以及坐標(biāo)原點所構(gòu)成的三角形的面積是,且保持不變.6、B【解析】【分析】利用二次函數(shù)的定義逐項判斷即可.【詳解】解:A、y=x2+,含有分式,不是二次函數(shù),故此選項錯誤;B、y=2﹣x2,是二次函數(shù),故此選項正確;C、y=,含有分式,不是二次函數(shù),故此選項錯誤;D、y=(x﹣1)2﹣x2=﹣2x+1,是一次函數(shù),故此選項錯誤.故選:B.【考點】本題考查了二次函數(shù)的概念,屬于應(yīng)知應(yīng)會題型,熟知二次函數(shù)的定義是解題關(guān)鍵.二、多選題1、AC【解析】【分析】y1和y2的函數(shù)圖象關(guān)于原點對稱,可推出A,當(dāng)x<2
時,不同象限內(nèi),y1和y2兩個函數(shù)的自變量的取值,函數(shù)值的變化是不同的,可推出B,當(dāng)x>0時,函數(shù)圖象的最低點的橫坐標(biāo)是
2,可得出C.【詳解】A.根據(jù)題意,直線經(jīng)過原點,直線關(guān)于原點對稱,反比例函數(shù)圖象關(guān)于原點對稱,函數(shù)y=y1+y2的圖象關(guān)于原點對稱,故正確,符合題意;B.當(dāng)x<2
時,不同象限內(nèi),y1和y2兩個函數(shù)的自變量的取值,函數(shù)值的變化是不同的,比如當(dāng)x<2
時,y隨x的增大而增大,故錯誤,不符合題意;C.當(dāng)x>0時,函數(shù)圖象先下降后上升,最低點的橫坐標(biāo)是
2,將x=
2代入函數(shù)表達(dá)式求得y
=
4,函數(shù)的最低點坐標(biāo)為(2,4),故正確,符合題意.故選:AC.【考點】本題考查反比例函數(shù),一次函數(shù)的圖象與性質(zhì),理解一次函數(shù)、反比例函數(shù)的圖象特征是解答此題的關(guān)鍵點.2、CD【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)及與x軸另一交點的位置,即可判定A;當(dāng)x=2時,即可判定B;根據(jù)對稱性及二次函數(shù)的性質(zhì),可判定C;根據(jù)平移后與x軸有無交點,可判定D.【詳解】解:由圖象可知:該二次函數(shù)圖象的對稱軸為直線,∴b=2a,由圖象可知:該二次函數(shù)圖象與x軸的左側(cè)交點在-3與-2之間,故與x軸的另一個交點在0與1之間,∴當(dāng)x=1時,y<0,即a+b+c<0,3a+c<0,故A錯誤;當(dāng)x=-2時,y>0,即4a-2b+c>0,故B錯誤;點關(guān)于對稱軸對稱的點的坐標(biāo)為,即,在對稱軸的左側(cè)y隨x的增大而增大,故,故C正確;該二次函數(shù)的頂點坐標(biāo)為(?1,n),將函數(shù)向下平移n+1個單位,函數(shù)圖象與x軸無交點,∴方程無實數(shù)根,故D正確,故選:CD.【考點】本題考查了二次函數(shù)圖象與性質(zhì),根據(jù)二次函數(shù)的圖象判定式子是否成立,解題的關(guān)鍵是從圖象中找到相關(guān)信息.3、ABC【解析】【分析】先根據(jù)勾股定理求出AC=,再根據(jù)三角函數(shù)的定義分別求解可得.【詳解】解:A、sinA=,故該選項符合題意;B、tanA=,故該選項符合題意;C、cosB=,故該選項符合題意;D、tanB==,故該選項不符合題意;故選:ABC.【考點】本題主要考查了銳角三角函數(shù),正確記憶相關(guān)比例關(guān)系是解題關(guān)鍵.4、BD【解析】【分析】由拋物線開口方向得到a>0,利用拋物線與x軸的交點問題和拋物線的對稱性得到拋物線的對稱軸為直線x=1,即-=1,所以b=-2a<0,利用拋物線與y軸的交點位置得到c<0,則可對A進(jìn)行判斷;利用b=-2a可對B進(jìn)行判斷;由于x=-1時,y=0,所以a-b+c=0,則c=-3a,3a+2c=-3a<0,于是可對C進(jìn)行判斷;根據(jù)二次函數(shù)性質(zhì),x=1時,y的值最小,所以a+b+c≤ax2+bx+c,于是可對D進(jìn)行判斷.【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線與x軸的交點的坐標(biāo)分別為(-1,0),(3,0),∴拋物線的對稱軸為直線x=1,即-=1,∴b=-2a<0,∵拋物線與y軸的交點在x軸下方,∴c<0,∴abc>0,所以A錯誤;∵b=-2a,∴2a+b=0,所以B正確;∵x=-1時,y=0,∴a-b+c=0,即a+2a+c=0,∴c=-3a,∴3a+2c=3a-6a=-3a<0,所以C錯誤;∵x=1時,y的值最小,∴對于任意x,a+b+c≤ax2+bx+c,即ax2-a+bx-b≥0,所以D正確.故選:BD.【考點】本題考查了二次函數(shù)與不等式(組):函數(shù)值y與某個數(shù)值m之間的不等關(guān)系,一般要轉(zhuǎn)化成關(guān)于x的不等式,解不等式求得自變量x的取值范圍;利用兩個函數(shù)圖象在直角坐標(biāo)系中的上下位置關(guān)系求自變量的取值范圍,可作圖利用交點直觀求解,也可把兩個函數(shù)解析式列成不等式求解.5、BCD【解析】【分析】先判斷格中所畫格點三角形為直角三角形,利用兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似,否則不相似,對各選項進(jìn)行判斷.【詳解】解:由圖知:∠ACB=90°,AC=2,BC=1,AC:BC=2,A選項中,三條線段的長為,因為,此三角形為直角三角形,長直角邊與短直角邊的比為2,所以A選項的方格中所畫格點三角形(陰影部分)與△ABC相似,不符合題意;B選項中,長直角邊與短直角邊的比為3,所以B中格點三角形與△ABC不相似,符合題意;C選項中,三條線段的長為√,因為,此三角形為直角三角形,兩直角邊的比為1,所以C選項的方格中所畫格點三角形(陰影部分)與△ABC不相似,符合題意;D選項中,三角形的兩直角邊的比為1:1.所以D中格點三角形與△ABC不相似,符合題意,故選:BCD.【考點】本題考查相似三角形的判定,能在格點中表示各個線段的長度和掌握相似三角形的判定定理是解決此題的關(guān)鍵.6、ABD【解析】【分析】根據(jù)三角形相似的判斷方法逐個判斷即可.【詳解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合題意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合題意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故選項不符合題意;D、BD2=CD·DA,不能判定△BDC與△ABC,符合題意;故選:ABD.【考點】此題考查了三角形相似的判定方法,解題的關(guān)鍵是熟練掌握三角形相似的判定方法.7、ACD【解析】【分析】根據(jù)反比例函數(shù)y=中k的幾何意義,過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|解答即可.【詳解】解:A、陰影圖形面積為|k|=4;B、陰影是梯形,面積大于4;C、D陰影圖形面積均為兩個三角形面積之和,為2×(|k|)=4.故選:ACD.【考點】主要考查了反比例函數(shù)y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€知識點;這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點與原點所連的線段、坐標(biāo)軸、向坐標(biāo)軸作垂線所圍成的直角三角形面積S的關(guān)系即S=|k|.三、填空題1、【解析】【分析】根據(jù)二次函數(shù)的圖象具有對稱性和表格中的數(shù)據(jù),可以計算出該函數(shù)圖象的對稱軸.【詳解】解:由表格可得,當(dāng)x取-3和-1時,y值相等,該函數(shù)圖象的對稱軸為直線,故答案為:.【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是明確題意,利用二次函數(shù)的對稱性解答.2、4【解析】【分析】通過A、B兩點得出對稱軸,再根據(jù)對稱軸公式算出b,由此可得出二次函數(shù)表達(dá)式,從而算出最小值即可推出n的最小值.【詳解】∵A、B的縱坐標(biāo)一樣,∴A、B是對稱的兩點,∴對稱軸,即,∴b=-4.∴拋物線解析式為:.∴拋物線頂點(2,-3).∴滿足題意n的最小值為4,故答案為:4.【考點】本題考查二次函數(shù)對稱軸的性質(zhì),頂點式的變形及拋物線的平移,關(guān)鍵在于根據(jù)對稱軸的性質(zhì)從題意中判斷出對稱軸.3、【解析】【分析】根據(jù)特殊角的三角函數(shù)值進(jìn)行計算.【詳解】解:原式.故答案是:.【考點】本題考查特殊角的三角函數(shù)值,解題的關(guān)鍵是記住特殊角的三角函數(shù)值.4、【解析】【分析】由折疊的性質(zhì)得出△A'EF為等腰直角三角形,得出EF=A'E=2,∠EFC'=45°,求出AF=AE+EF=+2,證明△ABF為等腰直角三角形,求出AB的長,證明△FDH∽△EAB,由相似三角形的性質(zhì)得出,求出DF的長,則可得出答案.【詳解】解:∵AE=A'E,∴A'E=,∵A'E=A'F,∠EA'B=∠EAB=90°,∴△A'EF為等腰直角三角形,∴EF=A'E=2,∠EFC'=45°,∴AF=AE+EF=+2,△ABF為等腰直角三角形,∴AB=AF=+2,∠ABF=45°,∴∠ABE=∠HBF=22.5°,∴∠AEB=67.5°,∵將矩形ABCD再沿FH折疊,D與C'恰好重合,∴∠C'FH=∠DFH=67.5°,∴∠AEB=∠DFH,又∵∠A=∠D,∴△FDH∽△EAB,∴,∵DH=C'H=CH,∴DH=∴DF=AE=,∴AD=AE+EF+DF=+2.故答案為:+2.【考點】本題考查了三角形相似的判定與性質(zhì),折疊的性質(zhì),矩形的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.5、【解析】【分析】連接AF,由矩形的性質(zhì)得AD∥BC,AD=BC,由平行線的性質(zhì)得∠AEF=∠GFE,由折疊的性質(zhì)得∠AFE=∠GFE,AF=FG,推出∠AEF=∠AFE,則AF=AE,AE=FG,得出四邊形AFGE是菱形,則AF∥EG,得出∠EGF=∠AFB,設(shè)BF=2x,則AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB==,即可得出結(jié)果.【詳解】解:連接AF,如圖所示:∵四邊形ABCD為矩形,∴AD∥BC,AD=BC,∴∠AEF=∠GFE,由折疊的性質(zhì)可知:∠AFE=∠GFE,AF=FG,∴∠AEF=∠AFE,∴AF=AE,∴AE=FG,∴四邊形AFGE是菱形,∴AF∥EG,∴∠EGF=∠AFB,設(shè)BF=2x,則AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB===,∴cos∠EGF=,故答案為:.【考點】此題考查的是矩形與折疊問題、菱形的判定及性質(zhì)、等腰三角形的性質(zhì)和銳角三角函數(shù),掌握矩形的性質(zhì)、折疊的性質(zhì)、菱形的判定及性質(zhì)、等角對等邊和等角的銳角三角函數(shù)值相等是解決此題的關(guān)鍵.6、【解析】【分析】設(shè),,代入求解即可.【詳解】由可設(shè),,k是非零整數(shù),則.故答案為:.【考點】本題主要考查了比例的基本性質(zhì),準(zhǔn)確利用性質(zhì)變形是解題的關(guān)鍵.7、【解析】【分析】先求得頂點A的坐標(biāo),然后根據(jù)題意得出B的橫坐標(biāo),把橫坐標(biāo)代入拋物線,得出B點坐標(biāo),從而求得A、B間的距離,最后計算面積即可.【詳解】設(shè)AB交x軸于C∵拋物線線y=a(x﹣2)2+1(a>0)的頂點為A,∴A(2,1),∵過點A作y軸的平行線交拋物線于點B,∴B的橫坐標(biāo)為2,OC=2把x=2代入得y=-3,∴B(2,-3),∴AB=1+3=4,.故答案為:4.【考點】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征,求得A、B的坐標(biāo)是解題的關(guān)鍵.四、解答題1、(1)M,N兩村莊之間的距離為千米;(2)村莊M、N到P站的最短距離和是5千米.【解析】【分析】(1)作N關(guān)于AB的對稱點N'與AB交于E,連結(jié)MN’與AB交于P,則P為土特產(chǎn)收購站的位置.求出DN,DM,利用勾股定理即可解決問題.(2)由題意可知,M、N到AB上點P的距離之和最短長度就是MN′的長.【詳解】解:作N關(guān)于AB的對稱點N'與AB交于E,連結(jié)MN’與AB交于P,則P為土特產(chǎn)收購站的位置.(1)在Rt△ANE中,AN=10,∠NAB=36.5°∴NE=AN?sin∠NAB=10?sin36.5°=6,AE=AN?cos∠NAB=10?cos36.5°=8,過M作MC⊥AB于點C,在Rt△MAC中,AM=5,∠MAB=53.5°∴AC=MA?sin∠AMB=MA?sin36.5°=3,MC=MA?cos∠AMC=MA?cos36.5°=4,過點M作MD⊥NE于點D,在Rt△MND中,MD=AE-AC=5,ND=NE-MC=2,∴MN==,即M,N兩村莊之間的距離為千米.(2)由題意可知,M、N到AB上點P的距離之和最短長度就是MN′的長.DN′=10,MD=5,在Rt△MDN′中,由勾股定理,得MN′==5(千米)∴村莊M、N到P站的最短距離和是5千米.【考點】本題考查解直角三角形,軸對稱變換等知識,解題的關(guān)鍵是熟練掌握基本知識,學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題.2、(1);(2);(3)存在,或或或【解析】【分析】(1)將A、B兩點的坐標(biāo)分別代入拋物線的解析式中,得關(guān)于a、b的二元一次方程組,解方程組即可求得a、b,從而可求得拋物線的函數(shù)解析式;(2)過點P作軸,交x軸于點D,交BC于點E,作于點F,連接PB,PC,則有,設(shè),則可得E點坐標(biāo),從而可分別求得PE、DE,從而求得PE,解由二次函數(shù)與一次函數(shù)組成的方程組,可求得點C的坐標(biāo),進(jìn)而求得△PBC的面積關(guān)于m的函數(shù),求出函數(shù)的最值即可;(3)設(shè)點M的坐標(biāo)為(p,q),分別求出直線OM、ON的解析式,再求得ON與直線的交點N的坐標(biāo),根據(jù)OM=ON,即可求出p與q的值,從而求得點M的坐標(biāo).【詳解】(1)將點,代入中,得:解得∴該拋物線表達(dá)式為.(2)過點P作軸,交x軸于點D,交BC于點E,作于點F,連接PB,PC,如圖.設(shè)點,則點.∵點P、E均位于直線的下方∴P、E兩點的縱坐標(biāo)均為負(fù)∴,∴∵點C的坐標(biāo)為方程組的一個解∴解這個方程組,得,∵點B坐標(biāo)為∴點C的橫坐標(biāo)為∴∴.(其中)∵∴這個二次函數(shù)有最大值,且當(dāng)時,的最大值為.(3)存在設(shè)M(p,q),其中,且p≠0,則直線OM的解析式為:由于ON⊥OM,則直線ON的解析式為:解方程組,得,即點N的坐標(biāo)為∴∵,且OM=ON∴∴即或把代入兩式中并整理,得:或解方程得:,,,(舍去)當(dāng)時,;當(dāng)時,;當(dāng)時,故點M的坐標(biāo)分別為:或或當(dāng)p=0時,則q=-3,即M(0,-3),而,且OM⊥OB即此時點M也滿足題意綜上所述,滿足題意的點M的坐標(biāo)為或或或.【考點】本題是二次函數(shù)的壓軸題,也是中考??碱}型,它考查了待定系數(shù)法求二次數(shù)解析式,二次函數(shù)的圖象,求二次函數(shù)的最值,平面直角坐標(biāo)系中圖象旋轉(zhuǎn)問題,解方程組,勾股定理等知識,運算量較大,這對學(xué)生的運算能力提出了更高的要求;求三角形面積時用到圖形的割補(bǔ)方法,這是在平面直角坐標(biāo)系中求圖象面積常用的方法.3、1或4或16.【解析】【分析】根據(jù)成比例線段的性質(zhì)求解即可.【詳解】解:設(shè)添加的線段長度為x,當(dāng)時,解得:;當(dāng)時,解得:;當(dāng)時,解得:.∴所添線段的長度為1或4或16.【考點】此題考查了線段成比例,解題的關(guān)鍵是熟練掌握線段成比例性質(zhì)并分類討論.4、(1)證明見解析(2)證明見解析(3)【解析】【分析】(1)根據(jù)全等三角形的判定即可求出答案.(2)根據(jù)相似三角形的判定即可求出答案.(3)取AC的中點F,連接FN,過點N作NG⊥AC于點G,由于點N是CE的中點,易證得∠GFN=∠EAC=60°,所以∠FNG=30°,從而求出AG=4,NG=,在Rt△ANG中,根據(jù)勾股定理即可求出AN=.【詳解】(1)∵∠BAC=∠AE,∴∠BAC-∠BAE=∠DAE-∠BAE,∴∠EAC=∠DAB,在△CAE與△BAD中,,∴△CAE≌△BAD(SAS);(2)由(1)得△CAE≌△BAD,∴∠ACE=∠ABD,CE=BD,∵M(jìn)、N分別是BD,CE的中點,∴CN=BM,在△CAN與△BAM中,,∴△CAN≌△BAM(SAS),∴AN=AM,∠CAN=∠BAM,∴∠CAN+∠BAN=∠BAM+∠BAN,即∠CAB=∠NAM,∵AC=AB,AN=AM,∴,∴△AMN∽△ABC;(3)取AC的中點F,連接FN,過點點N作NG⊥AC于點G,∵點N是CE的中點,∴NF∥AE,NF=AE=2,∴∠GFN=∠EAC=60°,∴∠FNG=30°,∴FG=FN=1,∴AG=1+3=4,NG==,在Rt△ANG中,根據(jù)勾股定理可知:AN=.【考點】本題考查
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 民宿客棧財務(wù)制度
- 攝制組財務(wù)制度
- 學(xué)校餐飲衛(wèi)生自查制度
- 幼兒園烹調(diào)間衛(wèi)生制度
- 衛(wèi)生院財政審計制度匯編
- 衛(wèi)生監(jiān)管考核制度
- 手術(shù)室衛(wèi)生消毒管理制度
- 口腔門診衛(wèi)生消毒制度
- 各國醫(yī)療衛(wèi)生制度
- 基本衛(wèi)生公共服務(wù)制度
- 保密車間出入管理制度
- 肯德基副經(jīng)理養(yǎng)成課程
- 鐵路勞動安全 課件 第四章 機(jī)務(wù)勞動安全
- 智慧人社大數(shù)據(jù)綜合分析平臺整體解決方案智慧社保大數(shù)據(jù)綜合分析平臺整體解決方案
- 脊柱與四肢檢查課件
- 六宮格數(shù)獨100題
- 2024年河北省供銷合作總社招聘筆試參考題庫附帶答案詳解
- 宅基地及地上房屋確權(quán)登記申請審批表
- 醫(yī)療衛(wèi)生輿情課件
- 2024年甘肅省安全員A證考試題庫及答案
- 數(shù)據(jù)安全保護(hù)與隱私保護(hù)
評論
0/150
提交評論