昌都地區(qū)昌都縣2024-2025學年中考猜題數(shù)學試卷含解析_第1頁
昌都地區(qū)昌都縣2024-2025學年中考猜題數(shù)學試卷含解析_第2頁
昌都地區(qū)昌都縣2024-2025學年中考猜題數(shù)學試卷含解析_第3頁
昌都地區(qū)昌都縣2024-2025學年中考猜題數(shù)學試卷含解析_第4頁
昌都地區(qū)昌都縣2024-2025學年中考猜題數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

昌都地區(qū)昌都縣2024-2025學年中考猜題數(shù)學試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.據(jù)國土資源部數(shù)據(jù)顯示,我國是全球“可燃冰”資源儲量最多的國家之一,海、陸總儲量約為39000000000噸油當量,將39000000000用科學記數(shù)法表示為()A.3.9×1010 B.3.9×109 C.0.39×1011 D.39×1092.如圖,如果從半徑為9cm的圓形紙片剪去圓周的一個扇形,將留下的扇形圍成一個圓錐(接縫處不重疊),那么這個圓錐的高為A.6cm B.cm C.8cm D.cm3.運用乘法公式計算(4+x)(4﹣x)的結(jié)果是()A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x24.若關(guān)于x的方程=3的解為正數(shù),則m的取值范圍是()A.m< B.m<且m≠C.m>﹣ D.m>﹣且m≠﹣5.下列每組數(shù)分別是三根小木棒的長度,用它們能擺成三角形的是()A.3cm,4cm,8cmB.8cm,7cm,15cmC.13cm,12cm,20cmD.5cm,5cm,11cm6.在⊙O中,已知半徑為5,弦AB的長為8,則圓心O到AB的距離為()A.3 B.4 C.5 D.67.下列運算正確的是()A. B.C. D.8.甲、乙兩人同時分別從A,B兩地沿同一條公路騎自行車到C地.已知A,C兩地間的距離為110千米,B,C兩地間的距離為100千米.甲騎自行車的平均速度比乙快2千米/時.結(jié)果兩人同時到達C地.求兩人的平均速度,為解決此問題,設(shè)乙騎自行車的平均速度為x千米/時.由題意列出方程.其中正確的是()A. B. C. D.9.如圖,⊙O的半徑OC與弦AB交于點D,連結(jié)OA,AC,CB,BO,則下列條件中,無法判斷四邊形OACB為菱形的是()A.∠DAC=∠DBC=30° B.OA∥BC,OB∥AC C.AB與OC互相垂直 D.AB與OC互相平分10.如圖,在ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,,則DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,AB=5,AC=4,BC=3,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB、AC于點M、N;②分別以點M、N為圓心,以大于的長為半徑作弧,兩弧相交于點E;③作射線AE;④以同樣的方法作射線BF,AE交BF于點O,連接OC,則OC=________.12.如圖,在矩形ABCD中,點E是CD的中點,點F是BC上一點,且FC=2BF,連接AE,EF.若AB=2,AD=3,則tan∠AEF的值是_____.13.用48米長的竹籬笆在空地上,圍成一個綠化場地,現(xiàn)有兩種設(shè)計方案,一種是圍成正方形的場地;另一種是圍成圓形場地.現(xiàn)請你選擇,圍成________(圓形、正方形兩者選一)場在面積較大.14.大自然是美的設(shè)計師,即使是一片小小的樹葉,也蘊含著“黃金分割”,如圖,P為AB的黃金分割點(AP>PB),如果AB的長度為10cm,那么PB的長度為__________cm.15.若a+b=5,ab=3,則a2+b2=_____.16.已知拋物線y=x2﹣x+3與y軸相交于點M,其頂點為N,平移該拋物線,使點M平移后的對應點M′與點N重合,則平移后的拋物線的解析式為_____.17.一個扇形的面積是πcm,半徑是3cm,則此扇形的弧長是_____.三、解答題(共7小題,滿分69分)18.(10分)春節(jié)期間,收發(fā)微信紅包已經(jīng)成為各類人群進行交流聯(lián)系、增強感情的一部分,小王在2017年春節(jié)共收到紅包400元,2019年春節(jié)共收到紅包484元,求小王在這兩年春節(jié)收到紅包的年平均增長率.19.(5分)某新建成學校舉行美化綠化校園活動,九年級計劃購買A,B兩種花木共100棵綠化操場,其中A花木每棵50元,B花木每棵100元.(1)若購進A,B兩種花木剛好用去8000元,則購買了A,B兩種花木各多少棵?(2)如果購買B花木的數(shù)量不少于A花木的數(shù)量,請設(shè)計一種購買方案使所需總費用最低,并求出該購買方案所需總費用.20.(8分)已知一個矩形紙片OACB,將該紙片放置在平面直角坐標系中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B、C重合),經(jīng)過點O、P折疊該紙片,得點B′和折痕OP.設(shè)BP=t.(Ⅰ)如圖①,當∠BOP=300時,求點P的坐標;(Ⅱ)如圖②,經(jīng)過點P再次折疊紙片,使點C落在直線PB′上,得點C′和折痕PQ,若AQ=m,試用含有t的式子表示m;(Ⅲ)在(Ⅱ)的條件下,當點C′恰好落在邊OA上時,求點P的坐標(直接寫出結(jié)果即可).21.(10分)如圖,男生樓在女生樓的左側(cè),兩樓高度均為90m,樓間距為AB,冬至日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為CA;春分日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為DA,已知.求樓間距AB;若男生樓共30層,層高均為3m,請通過計算說明多少層以下會受到擋光的影響?參考數(shù)據(jù):,,,,,22.(10分)如圖,在△ABC中,∠BAC=90°,AD⊥BC于點D,BF平分∠ABC交AD于點E,交AC于點F,求證:AE=AF.23.(12分)某工廠計劃生產(chǎn)A、B兩種產(chǎn)品共60件,需購買甲、乙兩種材料.生產(chǎn)一件A產(chǎn)品需甲種材料4千克,乙種材料1千克;生產(chǎn)一件B產(chǎn)品需甲、乙兩種材料各3千克.經(jīng)測算,購買甲、乙兩種材料各1千克共需資金60元;購買甲種材料2千克和乙種材料3千克共需資金155元.(1)甲、乙兩種材料每千克分別是多少元?(2)現(xiàn)工廠用于購買甲、乙兩種材料的資金不能超過10000元,且生產(chǎn)B產(chǎn)品要超過38件,問有哪幾種符合條件的生產(chǎn)方案?(3)在(2)的條件下,若生產(chǎn)一件A產(chǎn)品需加工費40元,若生產(chǎn)一件B產(chǎn)品需加工費50元,應選擇哪種生產(chǎn)方案,才能使生產(chǎn)這批產(chǎn)品的成本最低?請直接寫出方案.24.(14分)在同一時刻兩根木竿在太陽光下的影子如圖所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墻上的影子MN=1.1m,求木竿PQ的長度.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

用科學記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【詳解】39000000000=3.9×1.故選A.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).2、B【解析】試題分析:∵從半徑為9cm的圓形紙片上剪去圓周的一個扇形,∴留下的扇形的弧長==12π,根據(jù)底面圓的周長等于扇形弧長,∴圓錐的底面半徑r==6cm,∴圓錐的高為=3cm故選B.考點:圓錐的計算.3、B【解析】

根據(jù)平方差公式計算即可得解.【詳解】,故選:B.本題主要考查了整式的乘法公式,熟練掌握平方差公式的運算是解決本題的關(guān)鍵.4、B【解析】

解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,已知關(guān)于x的方程=3的解為正數(shù),所以﹣2m+9>0,解得m<,當x=3時,x==3,解得:m=,所以m的取值范圍是:m<且m≠.故答案選B.5、C【解析】

根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進行分析.【詳解】A、3+4<8,不能組成三角形;B、8+7=15,不能組成三角形;C、13+12>20,能夠組成三角形;D、5+5<11,不能組成三角形.故選:C.本題考查了三角形的三邊關(guān)系,關(guān)鍵是靈活運用三角形三邊關(guān)系.6、A【解析】解:作OC⊥AB于C,連結(jié)OA,如圖.∵OC⊥AB,∴AC=BC=AB=×8=1.在Rt△AOC中,OA=5,∴OC=,即圓心O到AB的距離為2.故選A.7、D【解析】

由去括號法則:如果括號外的因數(shù)是負數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反;完全平方公式:(a±b)2=a2±2ab+b2;單項式與單項式相乘,把他們的系數(shù),相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式進行計算即可.【詳解】解:A、a-(b+c)=a-b-c≠a-b+c,故原題計算錯誤;

B、(x+1)2=x2+2x+1≠x2+1,故原題計算錯誤;

C、(-a)3=≠,故原題計算錯誤;

D、2a2?3a3=6a5,故原題計算正確;

故選:D.本題考查了整式的乘法,解題的關(guān)鍵是掌握有關(guān)計算法則.8、A【解析】設(shè)乙騎自行車的平均速度為x千米/時,則甲騎自行車的平均速度為(x+2)千米/時,根據(jù)題意可得等量關(guān)系:甲騎110千米所用時間=乙騎100千米所用時間,根據(jù)等量關(guān)系可列出方程即可.解:設(shè)乙騎自行車的平均速度為x千米/時,由題意得:=,故選A.9、C【解析】(1)∵∠DAC=∠DBC=30°,∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△AOC和△OBC都是等邊三角形,∴OA=AC=OC=BC=OB,∴四邊形OACB是菱形;即A選項中的條件可以判定四邊形OACB是菱形;(2)∵OA∥BC,OB∥AC,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即B選項中的條件可以判定四邊形OACB是菱形;(3)由OC和AB互相垂直不能證明到四邊形OACB是菱形,即C選項中的條件不能判定四邊形OACB是菱形;(4)∵AB與OC互相平分,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即由D選項中的條件能夠判定四邊形OACB是菱形.故選C.10、B【解析】

∵四邊形ABCD是平行四邊形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF∽△BAF∴∵,∴DE:AB=2:5∵AB=CD,∴DE:EC=2:3故選B二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】

直接利用勾股定理的逆定理結(jié)合三角形內(nèi)心的性質(zhì)進而得出答案.【詳解】過點O作OD⊥BC,OG⊥AC,垂足分別為D,G,由題意可得:O是△ACB的內(nèi)心,∵AB=5,AC=4,BC=3,∴BC2+AC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴四邊形OGCD是正方形,∴DO=OG==1,∴CO=.故答案為.此題主要考查了基本作圖以及三角形的內(nèi)心,正確得出OD的長是解題關(guān)鍵.12、1.【解析】

連接AF,由E是CD的中點、FC=2BF以及AB=2、AD=3可知AB=FC,BF=CE,則可證△ABF≌△FCE,進一步可得到△AFE是等腰直角三角形,則∠AEF=45°.【詳解】解:連接AF,∵E是CD的中點,∴CE=,AB=2,∵FC=2BF,AD=3,∴BF=1,CF=2,∴BF=CE,F(xiàn)C=AB,∵∠B=∠C=90°,∴△ABF≌△FCE,∴AF=EF,∠BAF=∠CFE,∠AFB=∠FEC,∴∠AFE=90°,∴△AFE是等腰直角三角形,∴∠AEF=45°,∴tan∠AEF=1.故答案為:1.本題結(jié)合三角形全等考查了三角函數(shù)的知識.13、圓形【解析】

根據(jù)竹籬笆的長度可知所圍成的正方形的邊長,進而可計算出所圍成的正方形的面積;根據(jù)圓的周長公式,可知所圍成的圓的半徑,進而將圓的面積計算出來,兩者進行比較.【詳解】圍成的圓形場地的面積較大.理由如下:設(shè)正方形的邊長為a,圓的半徑為R,∵竹籬笆的長度為48米,∴4a=48,則a=1.即所圍成的正方形的邊長為1;2π×R=48,∴R=,即所圍成的圓的半徑為,∴正方形的面積S1=a2=144,圓的面積S2=π×()2=,∵144<,∴圍成的圓形場地的面積較大.故答案為:圓形.此題主要考查實數(shù)的大小的比較在實際生活中的應用,所以學生在學這一部分時一定要聯(lián)系實際,不能死學.14、(15﹣5)【解析】

先利用黃金分割的定義計算出AP,然后計算AB-AP即得到PB的長.【詳解】∵P為AB的黃金分割點(AP>PB),∴AP=AB=×10=5﹣5,∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.故答案為(15﹣5).本題考查了黃金分割:把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項(即AB:AC=AC:BC),叫做把線段AB黃金分割,點C叫做線段AB的黃金分割點.其中AC=AB.15、1【解析】試題分析:首先把等式a+b=5的等號兩邊分別平方,即得a2+2ab+b2=25,然后根據(jù)題意即可得解.解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=1.故答案為1.考點:完全平方公式.16、y=(x﹣1)2+【解析】

直接利用拋物線與坐標軸交點求法結(jié)合頂點坐標求法分別得出M、N點坐標,進而得出平移方向和距離,即可得出平移后解析式.【詳解】解:y=x2-x+3=(x-)2+,∴N點坐標為:(,),令x=0,則y=3,∴M點的坐標是(0,3).∵平移該拋物線,使點M平移后的對應點M′與點N重合,∴拋物線向下平移個單位長度,再向右平移個單位長度即可,∴平移后的解析式為:y=(x-1)2+.故答案是:y=(x-1)2+.此題主要考查了拋物線與坐標軸交點求法以及二次函數(shù)的平移,正確得出平移方向和距離是解題關(guān)鍵.17、【解析】

根據(jù)扇形面積公式求解即可【詳解】根據(jù)扇形面積公式.可得:,,故答案:.本題主要考查了扇形的面積和弧長之間的關(guān)系,利用扇形弧長和半徑代入公式即可求解,正確理解公式是解題的關(guān)鍵.注意在求扇形面積時,要根據(jù)條件選擇扇形面積公式.三、解答題(共7小題,滿分69分)18、小王在這兩年春節(jié)收到的年平均增長率是10【解析】

增長后的量=增長前的量×(1+增長率),2018年收到微信紅包金額400(1+x)元,在2018年的基礎(chǔ)上再增長x,就是2019年收到微信紅包金額400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可.【詳解】解:設(shè)小王在這兩年春節(jié)收到的紅包的年平均增長率是x.依題意得:400解得x1答:小王在這兩年春節(jié)收到的年平均增長率是10本題考查了一元二次方程的應用.對于增長率問題,增長前的量×(1+年平均增長率)年數(shù)=增長后的量.19、(1)購買A種花木40棵,B種花木60棵;(2)當購買A種花木50棵、B種花木50棵時,所需總費用最低,最低費用為7500元.【解析】

(1)設(shè)購買A種花木x棵,B種花木y棵,根據(jù)“A,B兩種花木共100棵、購進A,B兩種花木剛好用去8000元”列方程組求解可得;(2)設(shè)購買A種花木a棵,則購買B種花木(100﹣a)棵,根據(jù)“B花木的數(shù)量不少于A花木的數(shù)量”求得a的范圍,再設(shè)購買總費用為W,列出W關(guān)于a的解析式,利用一次函數(shù)的性質(zhì)求解可得.【詳解】解析:(1)設(shè)購買A種花木x棵,B種花木y棵,根據(jù)題意,得:,解得:,答:購買A種花木40棵,B種花木60棵;(2)設(shè)購買A種花木a棵,則購買B種花木(100﹣a)棵,根據(jù)題意,得:100﹣a≥a,解得:a≤50,設(shè)購買總費用為W,則W=50a+100(100﹣a)=﹣50a+10000,∵W隨a的增大而減小,∴當a=50時,W取得最小值,最小值為7500元,答:當購買A種花木50棵、B種花木50棵時,所需總費用最低,最低費用為7500元.考點:一元一次不等式的應用;二元一次方程組的應用.20、(Ⅰ)點P的坐標為(,1).(Ⅱ)(0<t<11).(Ⅲ)點P的坐標為(,1)或(,1).【解析】

(Ⅰ)根據(jù)題意得,∠OBP=90°,OB=1,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案.(Ⅱ)由△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易證得△OBP∽△PCQ,然后由相似三角形的對應邊成比例,即可求得答案.(Ⅲ)首先過點P作PE⊥OA于E,易證得△PC′E∽△C′QA,由勾股定理可求得C′Q的長,然后利用相似三角形的對應邊成比例與,即可求得t的值:【詳解】(Ⅰ)根據(jù)題意,∠OBP=90°,OB=1.在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=-(舍去).∴點P的坐標為(,1).(Ⅱ)∵△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,∴△OB′P≌△OBP,△QC′P≌△QCP.∴∠OPB′=∠OPB,∠QPC′=∠QPC.∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°.∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.又∵∠OBP=∠C=90°,∴△OBP∽△PCQ.∴.由題意設(shè)BP=t,AQ=m,BC=11,AC=1,則PC=11-t,CQ=1-m.∴.∴(0<t<11).(Ⅲ)點P的坐標為(,1)或(,1).過點P作PE⊥OA于E,∴∠PEA=∠QAC′=90°.∴∠PC′E+∠EPC′=90°.∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A.∴△PC′E∽△C′QA.∴.∵PC′=PC=11-t,PE=OB=1,AQ=m,C′Q=CQ=1-m,∴.∴.∵,即,∴,即.將代入,并化簡,得.解得:.∴點P的坐標為(,1)或(,1).21、(1)的長為50m;(2)冬至日20層包括20層以下會受到擋光的影響,春分日6層包括6層以下會受到擋光的影響.【解析】

如圖,作于M,于則,設(shè)想辦法構(gòu)建方程即可解決問題.求出AC,AD,分兩種情形解決問題即可.【詳解】解:如圖,作于M,于則,設(shè).在中,,在中,,,,,的長為50m.由可知:,,,,,冬至日20層包括20層以下會受到擋光的影響,春分日6層包括6層以下會受到擋光的影響.考查解直角三角形的應用,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考常考題型.22、見解析【解析】

根據(jù)角平分線的定義可得∠ABF=∠CBF,由已知條件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根據(jù)余角的性質(zhì)可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可證得結(jié)論.【詳解】∵BF平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.本題考查了等腰

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論