版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
【備考期末】保定市中考數(shù)學(xué)幾何綜合壓軸題易錯專題一、中考數(shù)學(xué)幾何綜合壓軸題1.《函數(shù)的圖象與性質(zhì)》拓展學(xué)習(xí)片段展示:(問題)如圖①,在平面直角坐標(biāo)系中,拋物線y=a(x﹣2)2﹣經(jīng)過原點O,與x軸的另一個交點為A,則a=.(操作)將圖①中拋物線在x軸下方的部分沿x軸折疊到x軸上方,將這部分圖象與原拋物線剩余部分的圖象組成的新圖象記為G,如圖②.直接寫出圖象G對應(yīng)的函數(shù)解析式.(探究)在圖②中,過點B(0,1)作直線l平行于x軸,與圖象G的交點從左至右依次為點C,D,E,F(xiàn),如圖③.求圖象G在直線l上方的部分對應(yīng)的函數(shù)y隨x增大而增大時x的取值范圍.(應(yīng)用)P是圖③中圖象G上一點,其橫坐標(biāo)為m,連接PD,PE.直接寫出△PDE的面積不小于1時m的取值范圍.解析:【問題】:a=;【操作】:y=;【探究】:當(dāng)1<x<2或x>2+時,函數(shù)y隨x增大而增大;【應(yīng)用】:m=0或m=4或m≤2﹣或m≥2+.【詳解】試題分析:【問題】:把(0,0)代入可求得a的值;【操作】:先寫出沿x軸折疊后所得拋物線的解析式,根據(jù)圖象可得對應(yīng)取值的解析式;【探究】:令y=0,分別代入兩個拋物線的解析式,分別求出四個點CDEF的坐標(biāo),根據(jù)圖象呈上升趨勢的部分,即y隨x增大而增大,寫出x的取值;【應(yīng)用】:先求DE的長,根據(jù)三角形面積求高的取值h≥1;分三部分進(jìn)行討論:①當(dāng)P在C的左側(cè)或F的右側(cè)部分時,設(shè)P[m,],根據(jù)h≥1,列不等式解出即可;②如圖③,作對稱軸由最大面積小于1可知:點P不可能在DE的上方;③P與O或A重合時,符合條件,m=0或m=4.試題解析:【問題】∵拋物線y=a(x﹣2)2﹣經(jīng)過原點O,∴0=a(0﹣2)2﹣,a=;【操作】:如圖①,拋物線:y=(x﹣2)2﹣,對稱軸是:直線x=2,由對稱性得:A(4,0),沿x軸折疊后所得拋物線為:y=﹣(x﹣2)2+如圖②,圖象G對應(yīng)的函數(shù)解析式為:y=;【探究】:如圖③,由題意得:當(dāng)y=1時,(x﹣2)2﹣=0,解得:x1=2+,x2=2﹣,∴C(2﹣,1),F(xiàn)(2+,1),當(dāng)y=1時,﹣(x﹣2)2+=0,解得:x1=3,x2=1,∴D(1,1),E(3,1),由圖象得:圖象G在直線l上方的部分,當(dāng)1<x<2或x>2+時,函數(shù)y隨x增大而增大;【應(yīng)用】:∵D(1,1),E(3,1),∴DE=3﹣1=2,∵S△PDE=DE?h≥1,∴h≥1;①當(dāng)P在C的左側(cè)或F的右側(cè)部分時,設(shè)P[m,],∴h=(m﹣2)2﹣﹣1≥1,(m﹣2)2≥10,m﹣2≥或m﹣2≤﹣,m≥2+或m≤2﹣,②如圖③,作對稱軸交拋物線G于H,交直線CD于M,交x軸于N,∵H(2,),∴HM=﹣1=<1,∴當(dāng)點P不可能在DE的上方;③∵M(jìn)N=1,且O(0,0),a(4,0),∴P與O或A重合時,符合條件,∴m=0或m=4;綜上所述,△PDE的面積不小于1時,m的取值范圍是:m=0或m=4或m≤2﹣或m≥2+.考點:二次函數(shù)綜合題.2.問題背景如圖1,點E在BC上,AB⊥BC,AE⊥ED,DC⊥DC,求證:.嘗試應(yīng)用如圖2,在?ABCD中,點F在DC邊上,將△ADF沿AF折疊得到△AEF,且點E恰好為BC邊的中點,求的值.拓展創(chuàng)新如圖3,在菱形ABCD中,點E,F(xiàn)分別在BC,DC邊上,∠AFE=∠D,AE⊥FE,F(xiàn)C=2.EC=6.請直接寫出cos∠AFE的值.解析:(1)見解析;(2);(3)cos∠AFE=.【分析】(1)根據(jù)相似三角形的判定定理證△ABE∽△ECD即可;(2)在AB邊取點G,使GE=BE,則∠B=∠BGE,證△AGE∽△ECF,列比例式即可;(3)作FM=FD,F(xiàn)N⊥AD,同(2)構(gòu)造△AMF∽△FCE,證△AEF∽△FHD,求出AM長即可.【詳解】解:(1)∵AB⊥BC,AE⊥ED,DC⊥DC∴∠B=∠C=90°,∠BAE+∠AEB=90°,∠CED+∠AEB=90°,∴∠BAE=∠CED,∴△ABE∽△ECD∴.(2)在AB邊取點G,使GE=BE,則∠B=∠BGE又∵∠B+∠C=180°,∠BGE+∠AGE=180°∴∠AGE=∠C∵∠B=∠D=∠AEF又∵∠B+∠BAE=∠AEF+∠FEC∴∠BAE=∠FEC,∴△AGE∽△ECF∴,即∵EF=FD,∴∵GE=BE,AE=BC=2BE,∴(3)cos∠AFE=如圖:作FM=FD,F(xiàn)N⊥AD,由(2)同理可證△AMF∽△FCE,∴設(shè)AM=,F(xiàn)M=FD=,則AD=CD=,MD=,ND=∵∠AEF=∠FND=90°,∠AFE=∠D,∴△AEF∽△FND,∴,即,∵,∴,解得,,經(jīng)檢驗,是原方程的解;∴cos∠AFE=.【點睛】本題考查了相似三角形的判定與性質(zhì)和解直角三角形,解題關(guān)鍵是依據(jù)已知條件構(gòu)造相似三角形,列比例式解決問題.3.如圖,在菱形中,,將邊繞點逆時針旋轉(zhuǎn)至,記旋轉(zhuǎn)角為.過點作于點,過點作直線于點,連接.(探索發(fā)現(xiàn))填空:當(dāng)時,=.的值是(驗證猜想)當(dāng)時,中的結(jié)論是否仍然成立?若成立,請僅就圖的情形進(jìn)行證明;若不成立,請說明理由;(拓展應(yīng)用)在的條件下,若,當(dāng)是等腰直角三角形時,請直接寫出線段的長.解析:(1),;(2)當(dāng)時,(1)中的結(jié)論仍然成立,理由見解析;(3)線段的長為或.【分析】當(dāng)時,點B′與點C重合,,由四邊形ABCD為菱形,可求∠ABE=90°,由,可求∠ABC=60°,=30°,由DF⊥BC,DC∥AB,∠FDC=∠EBC=30°,由sin∠FDC=sin∠EBC=,可得CF=CE,可求∠CEF=∠FDC=30°即可;當(dāng)時,中的結(jié)論仍然成立.先求,再證.最后證即可;連接,交于點.先求,..分兩種情況:如圖先求,再證△B′BD∽△EBF,可得,如圖先求.再證△B′BD∽△EBF,.【詳解】當(dāng)時,點B′與點C重合,∵,四邊形ABCD為菱形,CD∥AB,∴⊥AB,∴∠ABE=90°,∵,AD∥BC,∴∠ABC=180°-∠BAD=180°-120°=60°,∴=∠ABE-∠ABC=90°-60°=30°,∵DF⊥BC,DC∥AB,∴DF⊥AD,∠CDA=180°-∠BAD=60°,∴∠FDC=90°-∠CDA=30°,∠FCD=90°-∠FDC=60°,∴∠FDC=∠EBC=30°,∴sin∠FDC=sin∠EBC=,∵DC=BC,∴CF=CE,∴∠CFE=∠CEF=∠FCD=30°,∴∠CEF=∠FDC=30°,∴DF=FE,∵cos∠FDC=,∴=,故答案為,.當(dāng)時,中的結(jié)論仍然成立.證明:如圖,連接.,,.,...,即.,,..,線段的長為或.連接,交于點.,,,,∵DE=BE,∠DEB=90°,∴∠EDB=∠EBD=45°,.,∠B′EB=90°,,.,..分兩種情況:如圖,,∵∠B′BE=∠DBF=30°,∴cos∠B′BE=cos∠DBF=,又∵∠B′BE+∠EBD=∠EBD+∠DBF,∴∠B′BD=∠EBF,∴△B′BD∽△EBF,∴,.如圖,.∵∠B′BE=∠DBF=30°,∴cos∠B′BE=cos∠DBF=,又∵∠B′BE-∠FBB′=∠DBF-∠FBB′,∴∠B′BD=∠EBF,∴△B′BD∽△EBF,∴,.綜上所述,線段的長為或.【點睛】本題考查圖形旋轉(zhuǎn)變換,菱形性質(zhì),銳角三角函數(shù)值,等腰直角三角形性質(zhì),三角形相似判定與性質(zhì),掌握圖形旋轉(zhuǎn)變換,菱形性質(zhì),銳角三角函數(shù)值,等腰直角三角形性質(zhì),三角形相似判定與性質(zhì)是解題關(guān)鍵.4.平面上,矩形ABCD與直徑為QP的半圓K如圖擺放,分別延長DA和QP交于點O,且∠BOQ=60°,OQ=OD=3,OP=2,OA=AB=1.讓線段OD及矩形ABCD位置固定,將線段OQ連帶著半圓K一起繞著點O按逆時針方向形如旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°≤α≤60°).發(fā)現(xiàn)(1)當(dāng)α=0°,即初始位置時,點P____直線AB上.(填“在”或“不在”)求當(dāng)α是多少時,OQ經(jīng)過點B?(2)在OQ旋轉(zhuǎn)過程中.簡要說明α是多少時,點P,A間的距離最???并指出這個最小值:(3)如圖,當(dāng)點P恰好落在BC邊上時.求α及S陰影.拓展如圖.當(dāng)線段OQ與CB邊交于點M,與BA邊交于點N時,設(shè)BM=x(x>0),用含x的代數(shù)式表示BN的長,并求x的取值范圍.探究當(dāng)半圓K與矩形ABCD的邊相切時,求sinα的值.解析:發(fā)現(xiàn):(1)在,15°;(2)當(dāng)α=60°時,最小距離為1;(3)30°,.拓展:x的范圍是;探究:sinα的值為或或.【詳解】解:發(fā)現(xiàn)(1)在;當(dāng)OQ過點B時,在Rt△OAB中,AO=AB,得∠DOQ=∠ABO=45°,∴α=60°-45°=15°.(2)如圖3.連AP,有OA+AP≥OP,當(dāng)OP過點A,即α=60°時等號成立.∴AP≥OP-OA=2-1=1.∴當(dāng)α=60°時.P,A間的距離最?。郟A的最小值為1.(3)如圖3,設(shè)半圓K與PC交點為R,連接RK,過點P作PH⊥AD于點H,過點R作RE⊥KQ于點E.在Rt△OPH中,PH=AB=1,OP=2,∴∠POH=30°,∴α=60°-30°=30°.由AD//BC知,∠RPQ=∠POH=30°.∴∠RKQ=2×30°=60°.,在Rt△RKE中,,,;拓展如圖5,∠OAN=∠MBN=90°,∠ANO=∠BNM,所以△AON∽△BMN.∴,即,∴.如圖4,當(dāng)點Q落在BC上時,x取最大值,作QF⊥AD于點F..∴x的范圍是.【注:如果考生答“或”均不扣分】探究半圓與矩形相切,分三種情況:①如圖5,半圓K與BC切于點T,設(shè)直線KT與AD和OQ的初始位置所在直線分別交于S,O′,則∠KSO=∠KTB=90°,作KG⊥OO′于點G.Rt△OSK中,.Rt△OSO′中,,.Rt△KGO′中,∠O′=30°,KG=Rt△OGK中,②半圓K與AD切于點T,如圖6,同理可得.③當(dāng)半圓K與CD相切時,成Q與點D重合,且為切點.∴α=60°,∴.綜上述,sinα的值為或或.考點:圓,直線與圓的位置關(guān)系,銳角三角函數(shù),相似,三角形法則求最值5.如圖1,兩個完全相同的三角形紙片和重合放置,其中,.(1)操作發(fā)現(xiàn):如圖2,固定,使繞點旋轉(zhuǎn),當(dāng)點恰好落在邊上時,填空:①線段與的位置關(guān)系是________;②設(shè)的面積為,的面積為,則與的數(shù)量關(guān)系是_____.(2)猜想論證:當(dāng)繞點旋轉(zhuǎn)到如圖3所示的位置時,請猜想(1)中與的數(shù)量關(guān)系是否仍然成立?若成立,請證明;若不成立,請說明理由.(3)拓展探究:已知,平分,,,交于點(如圖4).若在射線上存在點,使,請求相應(yīng)的的長.解析:(1)DE∥AC;S1=S2;(2)成立,證明見解析;(3)BF的長為3或6.【分析】(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,然后求出△ACD是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得∠ACD=60°,然后根據(jù)內(nèi)錯角相等,兩直線平行解答;②根據(jù)等邊三角形的性質(zhì)可得AC=AD,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AC=AB,然后求出AC=BD,再根據(jù)等邊三角形的性質(zhì)求出點C到AB的距離等于點D到AC的距離,然后根據(jù)等底等高的三角形的面積相等解答;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角邊”證明△ACN和△DCM全等,根據(jù)全等三角形對應(yīng)邊相等可得AN=DM,然后利用等底等高的三角形的面積相等證明;(3)過點D作DF1∥BE,求出四邊形BEDF1是菱形,根據(jù)菱形的對邊相等可得BE=DF1,然后根據(jù)等底等高的三角形的面積相等可知點F1為所求的點,過點D作DF2⊥BD,求出∠F1DF2=60°,從而得到△DF1F2是等邊三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“邊角邊”證明△CDF1和△CDF2全等,根據(jù)全等三角形的面積相等可得點F2也是所求的點,然后勾股定理求出EG的長,即可得解【詳解】(1)①∵△DEC繞點C旋轉(zhuǎn)點D恰好落在AB邊上,∴AC=CD,∵∠BAC=90°-∠B=90°-30°=60°,∴△ACD是等邊三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;故答案為:DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根據(jù)等邊三角形的性質(zhì),△ACD的邊AC、AD上的高相等,∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),即S1=S2;故答案為:S1=S2;(2)如圖,過點D作DM⊥BC于M,過點A作AN⊥CE交EC的延長線于N,∵△DEC是由△ABC繞點C旋轉(zhuǎn)得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),即S1=S2;(3)如圖,過點D作DF1∥BE,易求四邊形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此時S△DCF1=S△BDE;過點D作DF2⊥BD,∵∠ABC=60°,F(xiàn)1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等邊三角形,∴DF1=DF2,過點D作DG⊥BC于G,∵BD=CD,∠ABC=60°,點D是角平分線上一點,∴∠DBC=∠DCB=×60°=30°,BG=BC=,∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,∠CDF2=360°-150°-60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴點F2也是所求的點,∵∠ABC=60°,點D是角平分線上一點,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,∴∠CDE=360°-∠CDF2-∠F2DB-DBE=360°-150°-90°-30°=90°,∴∠CDG=90°-∠DCG=60°,又∵BD=CD=3,∴DG=,設(shè)EG為x,則DE=2x,,解得x=1.5,∴BE=BG-EG=4.5-1.5=3,∴BF1=3,BF2=BF1+F1F2=3+3=6,故BF的長為3或6.【點睛】此題考查全等三角形的判定與性質(zhì),三角形的面積,等邊三角形的判定與性質(zhì),直角三角形30°角所對的直角邊等于斜邊的一半的性質(zhì),熟練掌握等底等高的三角形的面積相等,以及全等三角形的面積相等是解題的關(guān)鍵,(3)要注意符合條件的點F有兩個.6.綜合與實踐如圖①,在中中,,,,過點作于,將繞點逆時針方向旋轉(zhuǎn),得到,連接,,記旋轉(zhuǎn)角為.(1)問題發(fā)現(xiàn)如圖②,當(dāng)時,__________;如圖③,當(dāng)時,__________.(2)拓展探究試判斷:當(dāng)時,的大小有無變化?請僅就圖④的情形給出證明.(3)問題解決如圖⑤,當(dāng)繞點逆時針旋轉(zhuǎn)至點落在邊上時,求線段的長.解析:(1),;(2)無變化,理由詳見解析;(3).【分析】(1)首先利用勾股定理可求出AB的值,再根據(jù)三角形面積求出CD的值,再次利用勾股定理求出AD、BD的值,再分情況進(jìn)一步得出的值即可;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得出,,再證明即可得出結(jié)論;(3)過點作于,證,推出,得出,繼而得到,再根據(jù),即可得出答案.【詳解】解:(1)∵,,∴∵∴∴當(dāng)時,∴當(dāng)時,∴故答案為:;;(2)無變化.證明:∵在中,,,,∴.∵,∴.∵,,∴.∴,即.∴,.∴.由旋轉(zhuǎn)可知,,.∴.∵,∴.∴.∴.(3)如圖,過點作于.∵,∴.∵,,∴.∴,即.∴.∴.∴.∵,∴.【點睛】本題考查了勾股定理、三角形的面積公式、旋轉(zhuǎn)的性質(zhì)、相似三角形的判定及性質(zhì)等多個知識點,綜合性較強(qiáng),要會利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來,會利用相似三角形的性質(zhì)解題,此題結(jié)構(gòu)精巧,考查范圍廣.7.在△ABC中,AD為BC邊上的中線,E為AD上一動點,設(shè)DE=nEA,連接CE并延長,交AB于點F.(1)嘗試探究:如圖1,當(dāng)∠BAC=90°,∠B=30°,DE=EA時,BF,BA之間的數(shù)量關(guān)系是;(2)類比延伸:如圖2,當(dāng)△ABC為銳角三角形,DE=EA時,(1)中的結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請說明理由;(3)拓展遷移:如圖3,當(dāng)△ABC為銳角三角形,DE=nEA時,請直接寫出BF,BA之間的數(shù)量關(guān)系.解析:(1);(2)仍然成立,見解析;(3)【分析】(1)嘗試探究:過點作,交于,可證,,,可得,可證,可得BF,BA之間的數(shù)量關(guān)系;(2)類比延伸:過點作,交于,可證,,可得,可證,可得之間的數(shù)量關(guān)系;(3)拓展遷移:過點作,交于,由平行線分線段成比例可得,可得,即可求之間的數(shù)量關(guān)系.【詳解】解:(1)嘗試探究如圖,過點作,交于∵是中線,∴∵,∴,∴∴∴∴∴(2)類比延伸:結(jié)論仍然成立,理由如下:如圖,過點作,交于∵是中線,∴∵,∴,∴∴∴∴∴(3)拓展遷移如圖,過點作,交于∵,且∴∴∵∴∴∴∴∴【點睛】本題主要考查了相似三角形的判定和性質(zhì)綜合,根據(jù)題干條件作出輔助線并得到對應(yīng)的相似三角形是解決本題的關(guān)鍵.8.如圖1,邊長為4的正方形與邊長為的正方形的頂點重合,點在對角線上.問題發(fā)現(xiàn)(1)如圖1,與的數(shù)量關(guān)系為______.類比探究(2)如圖2,將正方形繞點旋轉(zhuǎn)度().請問(1)中的結(jié)論還成立嗎?若不成立,請說明理由.拓展延伸(3)若為的中點,在正方形的旋轉(zhuǎn)過程中,當(dāng)點,,在一條直線上時,線段的長度為______.解析:(1);(2)成立,見解析;(3)或【分析】問題發(fā)現(xiàn):證出AB∥EF,由平行線分線段成比例定理得出,即可得出結(jié)論;類比探究:證明△ACE∽△BCF,得出,即可的結(jié)論;拓展延伸:分兩種情況,連接CE交GF于H,由正方形的性質(zhì)得出AB=BC=4,,,GH=HF=HE=HC,得出,,,由勾股定理求出,即可得出答案.【詳解】[問題發(fā)現(xiàn)]解:,理由如下:∵四邊形ABCD和四邊形CFEG是正方形,∴∠B=∠CFE=90°,∠FCE=∠BCA=45°,CE=CF,CE⊥GF,∴AB∥EF,∴,;故答案為:;[類比探究]解:上述結(jié)論還成立,理由如下:連接CE,如圖2所示:∵∠FCE=∠BCA=45°,∴∠BCF=∠ACE=45°-∠ACF,在Rt△CEG和Rt△CBA中,,,∴△ACE∽△BCF,,;[拓展延伸]解:分兩種情況:①如圖3所示:連接CE交GF于H,∵四邊形ABCD和四邊形CFEG是正方形,∴AB=BC=4,AC=AB=4,GF=CE=CF,HF=HE=HC,∵點F為BC的中點,∴CF=BC=2,GF=CE=2,GH=HF=HE=HC=,∴,∴;②如圖4所示:連接CE交GF于H,同①得:GH=HF=HE=HC=,∴,∴;故答案為:或.【點睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、平行線分線段成比例定理、相似三角形的判定與性質(zhì)、勾股定理等知識;熟練掌握正方形的性質(zhì),證明三角形相似是解題的關(guān)鍵.9.問題背景(1)如圖(1),,都是等邊三角形,可以由通過旋轉(zhuǎn)變換得到,請寫出旋轉(zhuǎn)中心、旋轉(zhuǎn)方向及旋轉(zhuǎn)角的大?。畤L試應(yīng)用(2)如圖(2).在中,,分別以AC,AB為邊,作等邊和等邊,連接ED,并延長交BC于點F,連接BD.若,求的值.拓展創(chuàng)新(3)如圖(3).在中,,,將線段AC繞點A順時針旋轉(zhuǎn)得到線段AP,連接PB,直接寫出PB的最大值.解析:(1)旋轉(zhuǎn)中心是點A,旋轉(zhuǎn)方向是順時針,旋轉(zhuǎn)角是;(2);(3).【分析】(1)由等邊三角形得出,,,,證明,由旋轉(zhuǎn)性質(zhì)即可得;(2)證明,由全等三角形的性質(zhì)得,,得出,由直角三角形性質(zhì)得,則可計算得答案;(3)過點A作,且使AE=AD,連接PE,BE,由直角三角形的性質(zhì)求出BE、PE的長即可得解.【詳解】解(1)∵,都是等邊三角形,∴,,,,,,,可以由繞點A順時針旋轉(zhuǎn)得到,即旋轉(zhuǎn)中心是點A,旋轉(zhuǎn)方向是順時針,旋轉(zhuǎn)角是;(2)和都是等邊三角形,,,,,,,,,,,,,,,設(shè)BF=x,則CF=DF=2x,DE=3x,∴;(3),∴點C在以AB為直徑的圓上運動,取AB的中點D,連接CD,,如圖,過點A作,且使AE=AD,連接PE,BE,∵將線段AC繞點A順時針旋轉(zhuǎn)得到線段AP,,PA=AC.,,,∴PE=CD=1.∵AB=2,AE=AD=1,∴BE===,,∴BP的最大值為+1.【點睛】本題是幾何變換的綜合題,考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、直角三角形的性質(zhì)、圓周角定理;熟練掌握旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.10.探究:小明在求同一坐標(biāo)軸上兩點間的距離時發(fā)現(xiàn),對于平面直角坐標(biāo)系內(nèi)任意兩點P1(x1,y1),P2(x2,y2),可通過構(gòu)造直角三角形利用圖1得到結(jié)論:他還利用圖2證明了線段P1P2的中點P(x,y)P的坐標(biāo)公式:,.(1)請你幫小明寫出中點坐標(biāo)公式的證明過程;運用:(2)①已知點M(2,﹣1),N(﹣3,5),則線段MN長度為;②直接寫出以點A(2,2),B(﹣2,0),C(3,﹣1),D為頂點的平行四邊形頂點D的坐標(biāo):;拓展:(3)如圖3,點P(2,n)在函數(shù)(x≥0)的圖象OL與x軸正半軸夾角的平分線上,請在OL、x軸上分別找出點E、F,使△PEF的周長最小,簡要敘述作圖方法,并求出周長的最小值.解析:(1)答案見解析;(2)①;②(﹣3,3)或(7,1)或(﹣1,﹣3);(3).【詳解】試題分析:(1)用P1、P2的坐標(biāo)分別表示出OQ和PQ的長即可證得結(jié)論;(2)①直接利用兩點間距離公式可求得MN的長;②分AB、AC、BC為對角線,可求得其中心的坐標(biāo),再利用中點坐標(biāo)公式可求得D點坐標(biāo);(3)設(shè)P關(guān)于直線OL的對稱點為M,關(guān)于x軸的對稱點為N,連接PM交直線OL于點R,連接PN交x軸于點S,則可知OR=OS=2,利用兩點間距離公式可求得R的坐標(biāo),再由PR=PS=n,可求得n的值,可求得P點坐標(biāo),利用中點坐標(biāo)公式可求得M點坐標(biāo),由對稱性可求得N點坐標(biāo),連接MN交直線OL于點E,交x軸于點S,此時EP=EM,F(xiàn)P=FN,此時滿足△PEF的周長最小,利用兩點間距離公式可求得其周長的最小值.試題解析:(1)∵P1(x1,y1),P2(x2,y2),∴Q1Q2=OQ2﹣OQ1=x2﹣x1,∴Q1Q=,∴OQ=OQ1+Q1Q=x1+=,∵PQ為梯形P1Q1Q2P2的中位線,∴PQ==,即線段P1P2的中點P(x,y)P的坐標(biāo)公式為x=,y=;(2)①∵M(jìn)(2,﹣1),N(﹣3,5),∴MN==,故答案為;②∵A(2,2),B(﹣2,0),C(3,﹣1),∴當(dāng)AB為平行四邊形的對角線時,其對稱中心坐標(biāo)為(0,1),設(shè)D(x,y),則x+3=0,y+(﹣1)=2,解得x=﹣3,y=3,∴此時D點坐標(biāo)為(﹣3,3),當(dāng)AC為對角線時,同理可求得D點坐標(biāo)為(7,1),當(dāng)BC為對角線時,同理可求得D點坐標(biāo)為(﹣1,﹣3),綜上可知D點坐標(biāo)為(﹣3,3)或(7,1)或(﹣1,﹣3),故答案為(﹣3,3)或(7,1)或(﹣1,﹣3);(3)如圖,設(shè)P關(guān)于直線OL的對稱點為M,關(guān)于x軸的對稱點為N,連接PM交直線OL于點R,連接PN交x軸于點S,連接MN交直線OL于點E,交x軸于點F,又對稱性可知EP=EM,F(xiàn)P=FN,∴PE+PF+EF=ME+EF+NF=MN,∴此時△PEF的周長即為MN的長,為最小,設(shè)R(x,),由題意可知OR=OS=2,PR=PS=n,∴=2,解得x=﹣(舍去)或x=,∴R(,),∴,解得n=1,∴P(2,1),∴N(2,﹣1),設(shè)M(x,y),則=,=,解得x=,y=,∴M(,),∴MN==,即△PEF的周長的最小值為.考點:一次函數(shù)綜合題;閱讀型;分類討論;最值問題;探究型;壓軸題.11.旋轉(zhuǎn)是一種重要的圖形變換,當(dāng)圖形中有一組鄰邊相等時往往可以通過旋轉(zhuǎn)解決問題.(1)嘗試解決:如圖①,在等腰中,,點M是上的一點,,,將繞點A旋轉(zhuǎn)后得到,連接,則___________.(2)類比探究:如圖②,在“箏形”四邊形中,于點B,于點D,點P、Q分別是上的點,且,求的周長.(結(jié)果用a表示)(3)拓展應(yīng)用:如圖③,已知四邊形,,求四邊形的面積.解析:(1);(2)2a;(3)【分析】(1)由旋轉(zhuǎn)的性質(zhì)可得△ABM≌△ACN,從而得出∠MCN=∠ACB+∠ACN=90°,再根據(jù)勾股得出AM的長;(2)將繞點C旋轉(zhuǎn)后得到,利用SAS得出△QCP≌△QCM,從而得出的周長(3)連接BD,由于AD=CD,所以可將△BCD繞點D順時針方向旋轉(zhuǎn)60°,得到△DAB′,連接BB′,延長BA,作B′E⊥BE;易證△AFB′是等腰直角三角形,△AEB是等腰直角三角形,利用勾股定理計算AE=B′E=,BB′=,求△ABB′和△BDB′的面積和即可.【詳解】(1)∵,∴∠B=∠ACB=45°,將繞點A旋轉(zhuǎn)后得到,此時AB與AC重合,由旋轉(zhuǎn)可得:△ABM≌△ACN,∴∠BAM=∠CAN,AM=AN,BM=CN=1,∠B=∠ACN=45°,∴∠MCN=∠ACB+∠ACN=90°,∠MAN=∠ABC=90°,∴∴;(2)∵,,∴將繞點C旋轉(zhuǎn)后得到,此時BC與DC重合,∴△BCP≌△DCM,∴∠DCM=∠PCB,BP=DM,PC=CM,∵,∴,∴,∵PC=CM,QC=QC,∴△QCP≌△QCM,∴PQ=QM,∴的周長=AQ+AP+PQ=AQ+AP+QM=AQ+AP+DQ+DM=AQ+AP+DQ+BP=AD+AB,∵,∴的周長=2a;(3)如圖3,連接BD,由于AD=CD,所以可將△BCD繞點D順時針方向旋轉(zhuǎn)60°,得到△DAB′,連接BB′,延長BA,作B′E⊥BE;∴△BCD≌△B′AD∴S四邊形ABCD=S四邊形BDB′A,∵∠ABC=75°,∠ADC=60°,∴∠BAB′=135°∴∠B′AE=45°,∵∴B′E=AE=,∴BE=AB+AE=2+=,∴∵等邊△DBB′,∴BB′上的高=,∴∴,∴S四邊形ABCD=S四邊形BDB′A=S△BDB′-S△ABB′=;【點睛】本題考查了圖形的旋轉(zhuǎn)變換,三角形全等,勾股定理,等積代換思想,類比思想等.構(gòu)造直角三角形,求出三角形的高是解決問題的關(guān)鍵.12.如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:(3)拓展與運用:正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC=.解析:(1)①四邊形CEGF是正方形;②;(2)線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)3【分析】(1)①由、結(jié)合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質(zhì)知、,據(jù)此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證∽即可得;(3)證∽得,設(shè),知,由得、、,由可得a的值.【詳解】(1)①∵四邊形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四邊形CEGF是正方形;②由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴,故答案為;(2)連接CG,由旋轉(zhuǎn)性質(zhì)知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=、=,∴=,∴△ACG∽△BCE,∴,∴線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)∵∠CEF=45°,點B、E、F三點共線,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴,設(shè)BC=CD=AD=a,則AC=a,則由得,∴AH=a,則DH=AD﹣AH=a,CH==a,∴由得,解得:a=3,即BC=3,故答案為3.【點睛】本題考查了正方形的性質(zhì)與判定,相似三角形的判定與性質(zhì)等,綜合性較強(qiáng),有一定的難度,正確添加輔助線,熟練掌握正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.13.(性質(zhì)探究)如圖,在矩形ABCD中,對角線AC,BD相交于點O,AE平分∠BAC,交BC于點E.作DF⊥AE于點H,分別交AB,AC于點F,G.(1)判斷△AFG的形狀并說明理由.(2)求證:BF=2OG.(遷移應(yīng)用)(3)記△DGO的面積為S1,△DBF的面積為S2,當(dāng)時,求的值.(拓展延伸)(4)若DF交射線AB于點F,(性質(zhì)探究)中的其余條件不變,連結(jié)EF,當(dāng)△BEF的面積為矩形ABCD面積的時,請直接寫出tan∠BAE的值.解析:(1)等腰三角形,理由見解析;(2)見解析;(3);(4)或【分析】(1)如圖1中,△AFG是等腰三角形,利用全等三角形的性質(zhì)證明即可.(2)如圖2中,過點O作OL∥AB交DF于L,則∠AFG=∠OLG.首先證明OG=OL,再證明BF=2OL即可解決問題.(3)如圖3中,過點D作DK⊥AC于K,則∠DKA=∠CDA=90°,利用相似三角形的性質(zhì)解決問題即可.(4)設(shè)OG=a,AG=k.分兩種情形:①如圖4中,連接EF,當(dāng)點F在線段AB上時,點G在OA上.②如圖5中,當(dāng)點F在AB的延長線上時,點G在線段OC上,連接EF.分別求解即可解決問題.【詳解】(1)解:如圖1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF≌△AHG(ASA),∴AF=AG,∴△AFG是等腰三角形.(2)證明:如圖2中,過點O作OL∥AB交DF于L,則∠AFG=∠OLG.∵AF=AG,∴∠AFG=∠AGF,∵∠AGF=∠OGL,∴∠OGL=∠OLG,∴OG=OL,∵OL∥AB,∴△DLO∽△DFB,∴,∵四邊形ABCD是矩形,∴BD=2OD,∴BF=2OL,∴BF=2OG.(3)解:如圖3中,過點D作DK⊥AC于K,則∠DKA=∠CDA=90°,∵∠DAK=∠CAD,∴△ADK∽△ACD,∴,∵S1=?OG?DK,S2=?BF?AD,又∵BF=2OG,,∴,設(shè)CD=2x,AC=3x,則AD=,∴.(4)解:設(shè)OG=a,AG=k.①如圖4中,連接EF,當(dāng)點F在線段AB上時,點G在OA上.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k+2a,AC=2(k+a),∴AD2=AC2﹣CD2=[2(k+a)]2﹣(k+2a)2=3k2+4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴,∴,∴,由題意:=AD?(k+2a),∴AD2=10ka,即10ka=3k2+4ka,∴k=2a,∴AD=,∴BE==,AB=4a,∴tan∠BAE=.②如圖5中,當(dāng)點F在AB的延長線上時,點G在線段OC上,連接EF.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k﹣2a,AC=2(k﹣a),∴AD2=AC2﹣CD2=[2(k﹣a)]2﹣(k﹣2a)2=3k2﹣4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴,∴,∴,由題意:=AD?(k﹣2a),∴AD2=10ka,即10ka=3k2﹣4ka,∴k=,∴AD=,∴,AB=,∴tan∠BAE=,綜上所述,tan∠BAE的值為或.【點睛】本題是一道綜合題,主要涉及到等腰三角形的判定及其性質(zhì)、全等三角形的判定和性質(zhì)、三角形中位線定理、相似三角形的判定及其性質(zhì)、勾股定理的應(yīng)用等知識點,解題的關(guān)鍵是綜合運用所學(xué)到的相關(guān)知識.14.(1)(閱讀與證明)如圖1,在正的外角內(nèi)引射線,作點C關(guān)于的對稱點E(點E在內(nèi)),連接,、分別交于點F、G.①完成證明:點E是點C關(guān)于的對稱點,,,.正中,,,,得.在中,,______.在中,,______.②求證:.(2)(類比與探究)把(1)中的“正”改為“正方形”,其余條件不變,如圖2.類比探究,可得:①______;②線段、、之間存在數(shù)量關(guān)系___________.(3)(歸納與拓展)如圖3,點A在射線上,,,在內(nèi)引射線,作點C關(guān)于的對稱點E(點E在內(nèi)),連接,、分別交于點F、G.則線段、、之間的數(shù)量關(guān)系為__________.解析:(1)①60°,30°;②證明見解析;(2)①45°;②BF=(AF+FG);(3).【分析】(1)①根據(jù)等量代換和直角三角形的性質(zhì)即可確定答案;②在FB上取AN=AF,連接AN.先證明△AFN是等邊三角形,得到∠BAN=∠2=∠1,然后再證明△ABN≌△AEF,然后利用全等三角形的性質(zhì)以及線段的和差即可證明;(2)類比(1)的方法即可作答;(3)根據(jù)(1)(2)的結(jié)論,即可總結(jié)出答案.【詳解】解:(1)①∵,,∴,即60°;∵∴故答案為60°,30°;②在FB上取FN=AF,連接AN∵∠AFN=∠EFG=60°∴△AFN是等邊三角形∴AF=FN=AN∵FN=AF∴∠BAC=∠NAF=60°∴∠BAN+∠NAC=∠NAC+∠2∴∠BAN=∠2∵點C關(guān)于的對稱點E∴∠2=∠1,AC=AE∴∠BAN=∠2=∠1∵AB=AC∴AB=AE在△ABN和△AEFFN=AF,∠BAN=∠1,AB=AE∴△ABN≌△AEF∴BN=EF∵AG⊥CE,∠FEG=30°∴EF=2FG∴BN=EF=2FG∵BF=BN+NF∴BF=2FG+AF(2)①點E是點C關(guān)于的對稱點,,,.正方形ABCD中,,,,得.在中,,45.在中,,45.故答案為45°;②在FB上取FN=AF,連接AN∵∠AFN=∠EFG=45°∴△AFN是等腰直角三角形∴∠NAF=90°,AF=AN∴∠BAN+∠NAC=∠NAC+∠2=90°,FN=AF∴∠BAN=∠2∵點C關(guān)于的對稱點E∴∠2=∠1,AC=AE∴∠BAN=∠2=∠1∵AB=AC∴AB=AE在△ABN和△AEFFN=AF,∠BAN=∠1,AB=AE∴△ABN≌△AEF∴BN=EF∵AG⊥CE,∠FEG=45°∴EF=FG∴BN=EF=FG∵BF=BN+NF∴BF=FG+AF(3)由(1)得:當(dāng)∠BAC=60°時BF=AF+2FG=;由(2)得:當(dāng)∠BAC=90°時BF=AF+2FG=;以此類推,當(dāng)當(dāng)∠BAC=60°時,.【點睛】本題考查了軸對稱的性質(zhì)、全等三角形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)以及三角函數(shù)的應(yīng)用,靈活應(yīng)用所學(xué)知識是解答本題的關(guān)鍵.15.(感知)(1)如圖①,在四邊形ABCD中,∠C=∠D=90°,點E在邊CD上,∠AEB=90°,求證:=.(探究)(2)如圖②,在四邊形ABCD中,∠C=∠ADC=90°,點E在邊CD上,點F在邊AD的延長線上,∠FEG=∠AEB=90°,且=,連接BG交CD于點H.求證:BH=GH.(拓展)(3)如圖③,點E在四邊形ABCD內(nèi),∠AEB+∠DEC=180°,且=,過E作EF交AD于點F,若∠EFA=∠AEB,延長FE交BC于點G.求證:BG=CG.解析:(1)見解析(2)見解析(3)見解析【分析】(1)證得∠BEC=∠EAD,證明Rt△AED∽Rt△EBC,由相似三角形的性質(zhì)得出,則可得出結(jié)論;(2)過點G作GM⊥CD于點M,由(1)可知,證得BC=GM,證明△BCH≌△GMH(AAS),可得出結(jié)論;(3)在EG上取點M,使∠BME=∠AFE,過點C作CN∥BM,交EG的延長線于點N,則∠N=∠BMG,證明△AEF∽△EBM,由相似三角形的性質(zhì)得出,證明△DEF∽△ECN,則,得出,則BM=CN,證明△BGM≌△CGN(AAS),由全等三角形的性質(zhì)可得出結(jié)論.【詳解】(1)∵∠C=∠D=∠AEB=90°,∴∠BEC+∠AED=∠AED+∠EAD=90°,∴∠BEC=∠EAD,∴Rt△AED∽Rt△EBC,∴;(2)如圖1,過點G作GM⊥CD于點M,同(1)的理由可知:,∵,,∴,∴CB=GM,在△BCH和△GMH中,,∴△BCH≌△GMH(AAS),∴BH=GH;(3)證明:如圖2,在EG上取點M,使∠BME=∠AFE,過點C作CN∥BM,交EG的延長線于點N,則∠N=∠BMG,∵∠EAF+∠AFE+∠AEF=∠AEF+∠AEB+∠BEM=180°,∠EFA=∠AEB,∴∠EAF=∠BEM,∴△AEF∽△EBM,∴,∵∠AEB+∠DEC=180°,∠EFA+∠DFE=180°,而∠EFA=∠AEB,∴∠CED=∠EFD,∵∠BMG+∠BME=180°,∴∠N=∠EFD,∵∠EFD+∠EDF+∠FED=∠FED+∠DEC+∠CEN=180°,∴∠EDF=∠CEN,∴△DEF∽△ECN,∴,又∵,∴,∴BM=CN,在△BGM和△CGN中,,∴△BGM≌△CGN(AAS),∴BG=CG.【點睛】本題考查了直角三角形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),平行線的性質(zhì)等知識,熟練掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.16.實際問題:某商場為鼓勵消費,設(shè)計了投資活動.方案如下:根據(jù)不同的消費金額,每次抽獎時可以從100張面值分別為1元、2元、3元、…、100元的獎券中(面值為整數(shù)),一次任意抽取2張、3張、4張、…等若干張獎券,獎券的面值金額之和即為優(yōu)惠金額.某顧客獲得了一次抽取5張獎券的機(jī)會,小明想知道該顧客共有多少種不同的優(yōu)惠金額?問題建模:從1,2,3,…,(為整數(shù),且)這個整數(shù)中任取個整數(shù),這個整數(shù)之和共有多少種不同的結(jié)果?模型探究:我們采取一般問題特殊化的策略,先從最簡單的情形入手,再逐次遞進(jìn),從中找出解決問題的方法.探究一:(1)從1,2,3這3個整數(shù)中任取2個整數(shù),這2個整數(shù)之和共有多少種不同的結(jié)果?表①所取的2個整數(shù)1,21,3,2,32個整數(shù)之和345如表①,所取的2個整數(shù)之和可以為3,4,5,也就是從3到5的連續(xù)整數(shù),其中最小是3,最大是5,所以共有3種不同的結(jié)果.(2)從1,2,3,4這4個整數(shù)中任取2個整數(shù),這2個整數(shù)之和共有多少種不同的結(jié)果?表②所取的2個整數(shù)1,21,3,1,42,32,43,42個整數(shù)之和345567如表②,所取的2個整數(shù)之和可以為3,4,5,6,7,也就是從3到7的連續(xù)整數(shù),其中最小是3,最大是7,所以共有5種不同的結(jié)果.(3)從1,2,3,4,5這5個整數(shù)中任取2個整數(shù),這2個整數(shù)之和共有______種不同的結(jié)果.(4)從1,2,3,…,(為整數(shù),且)這個整數(shù)中任取2個整數(shù),這2個整數(shù)之和共有______種不同的結(jié)果.探究二:(1)從1,2,3,4這4個整數(shù)中任取3個整數(shù),這3個整數(shù)之和共有______種不同的結(jié)果.(2)從1,2,3,…,(為整數(shù),且)這個整數(shù)中任取3個整數(shù),這3個整數(shù)之和共有______種不同的結(jié)果.探究三:從1,2,3,…,(為整數(shù),且)這個整數(shù)中任取4個整數(shù),這4個整數(shù)之和共有______種不同的結(jié)果.歸納結(jié)論:從1,2,3,…,(為整數(shù),且)這個整數(shù)中任取個整數(shù),這個整數(shù)之和共有______種不同的結(jié)果.問題解決:從100張面值分別為1元、2元、3元、…、100元的獎券中(面值為整數(shù)),一次任意抽取5張獎券,共有______種不同的優(yōu)惠金額.拓展延伸:(1)從1,2,3,…,36這36個整數(shù)中任取多少個整數(shù),使得取出的這些整數(shù)之和共有204種不同的結(jié)果?(寫出解答過程)(2)從3,4,5,…,(為整數(shù),且)這個整數(shù)中任取個整數(shù),這個整數(shù)之和共有______種不同的結(jié)果.解析:探究一:(3);(4)(,為整數(shù));探究二:(1)(2);探究三:歸納結(jié)論:(為整數(shù),且,<<);問題解決:;拓展延伸:(1)個或個;(2).【分析】探究一:(3)根據(jù)(1)(2)的提示列表,可得答案;(4)仔細(xì)觀察(1)(2)(3)的結(jié)果,歸納出規(guī)律,從而可得答案;探究二:(1)仿探究一的方法列表可得答案;(2)由前面的探究概括出規(guī)律即可得到答案;探究三:根據(jù)探究一,探究二,歸納出從1,2,3,…,(為整數(shù),且)這個整數(shù)中任取4個整數(shù)的和的結(jié)果數(shù),再根據(jù)上面探究歸納出從1,2,3,…,(為整數(shù),且)這個整數(shù)中任取個整數(shù),這個整數(shù)之和的結(jié)果數(shù);問題解決:利用前面的探究計算出這5張獎券和的最小值與最大值,從而可得答案;拓展延伸:(1)直接利用前面的探究規(guī)律,列方程求解即可,(2)找到與問題等價的模型,直接利用規(guī)律得到答案.【詳解】解:探究一:(3)如下表:取的2個整數(shù)2個整數(shù)之和所取的2個整數(shù)之和可以為3,4,5,6,7,8,9也就是從3到9的連續(xù)整數(shù),其中最小是3,最大是9,所以共有7種不同的結(jié)果.(4)從1,2,3,…,(為整數(shù),且)這個整數(shù)中任取2個整數(shù),這2個整數(shù)之和的最小值是3,和的最大值是所以一共有種.探究二:(1)從1,2,3,4這4個整數(shù)中任取3個整數(shù),如下表:取的3個整數(shù)1,2,31,2,41,3,42,3,43個整數(shù)之和6789從1,2,3,4這4個整數(shù)中任取3個整數(shù),這3個整數(shù)之和共有4種,(2)從1,2,3,4,5這5個整數(shù)中任取3個整數(shù),這3個整數(shù)之和的最小值是6,和的最大值是12,所以從1,2,3,4,5這5個整數(shù)中任取3個整數(shù),這3個整數(shù)之和共有7種,從而從1,2,3,…,(為整數(shù),且)這個整數(shù)中任取3個整數(shù),這3個整數(shù)之和的最小值是6,和的最大值是所以一共有種,探究三:從1,2,3,4,5這5個整數(shù)中任取4個整數(shù),這4個整數(shù)之和最小是最大是,所以這4個整數(shù)之和一共有5種,從1,2,3,4,5,6這6個整數(shù)中任取4個整數(shù),這4個整數(shù)之和最小是最大是,所以這4個整數(shù)之和一共有9種,從1,2,3,…,(為整數(shù),且)這個整數(shù)中任取4個整數(shù),這4個整數(shù)之和的最小值是10,和的最大值是,所以一共有種不同的結(jié)果.歸納結(jié)論:由探究一,從1,2,3,…,(為整數(shù),且)這個整數(shù)中任取2個整數(shù),這2個整數(shù)之和共有種.探究二,從1,2,3,…,(為整數(shù),且)這個整數(shù)中任取3個整數(shù),這3個整數(shù)之和共有種,探究三,從1,2,3,…,(為整數(shù),且)這個整數(shù)中任取4個整數(shù),這4個整數(shù)之和共有種不同的結(jié)果.從而可得:從1,2,3,…,(為整數(shù),且)這個整數(shù)中任取個整數(shù),這個整數(shù)之和共有種不同的結(jié)果.問題解決:從100張面值分別為1元、2元、3元、…、100元的獎券中(面值為整數(shù)),一次任意抽取5張獎券,這5張獎券和的最小值是15,和的最大值是490,共有種不同的優(yōu)惠金額.拓展延伸:(1)從1,2,3,…,(為整數(shù),且)這個整數(shù)中任取個整數(shù),這個整數(shù)之和共有種不同的結(jié)果.當(dāng)有或或從1,2,3,…,36這36個整數(shù)中任取29個或7個整數(shù),使得取出的這些整數(shù)之和共有204種不同的結(jié)果.(2)由探究可知:從3,4,5,…,(為整數(shù),且)這個整數(shù)中任取個整數(shù),等同于從1,2,3,…,(為整數(shù),且)這個整數(shù)中任取個整數(shù),所以:從3,4,5,…,(為整數(shù),且)這個整數(shù)中任取個整數(shù),這個整數(shù)之和共有種不同的結(jié)果.【點睛】本題考查的是學(xué)生自主探究,自主歸納的能力,同時考查了一元二次方程的解法,掌握自主探究的方法是解題的關(guān)鍵.17.問題提出如圖(1),在和中,,,,點在內(nèi)部,直線與交于點,線段,,之間存在怎樣的數(shù)量關(guān)系?問題探究(1)先將問題特殊化.如圖(2),當(dāng)點,重合時,直接寫出一個等式,表示,,之間的數(shù)量關(guān)系;(2)再探究一般情形.如圖(1),當(dāng)點,不重合時,證明(1)中的結(jié)論仍然成立.問題拓展如圖(3),在和中,,,(是常數(shù)),點在內(nèi)部,直線與交于點,直接寫出一個等式,表示線段,,之間的數(shù)量關(guān)系.解析:(1).(2)見解析;問題拓展:.【分析】(1)先證明△BCE≌△ACD,得到AF=BE,BF-BE=BF-AF=EF=;(2)過點作交于點,證明,,是等腰直角三角形即可;利用前面的方法變?nèi)葹橄嗨谱C明即可.【詳解】問題探究(1).理由如下:如圖(2),∵∠BCA=∠ECF=90°,∴∠BCE=∠ACF,∵BC=AC,EC=CF,△BCE≌△ACF,∴BE=AF,∴BF-BE=BF-AF=EF=;(2)證明:過點作交于點,則,∴.∵,∴.又∵,,∴,∴.∴.∴,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025中國中信金融資產(chǎn)國際控股有限公司社會招聘筆試重點試題及答案解析
- 2025浙江嘉興市海寧市海昌街道社區(qū)衛(wèi)生服務(wù)中心招聘1人考試重點題庫及答案解析
- 2025廣東肇慶市德慶縣教育局所屬公辦幼兒園招聘教師13人考試核心試題及答案解析
- 2025重慶聯(lián)交所集團(tuán)所屬單位招聘1人備考核心題庫及答案解析
- 廣東江門臺山市林業(yè)局招聘2人備考核心題庫及答案解析
- 2025年安徽江淮汽車集團(tuán)股份有限公司公開招聘工作人員1人筆試重點試題及答案解析
- 2026年江蘇省衛(wèi)生健康委員會所屬事業(yè)單位公開招聘工作人員807人備考核心試題附答案解析
- 2025年昆明市尋甸縣衛(wèi)生健康系統(tǒng)第二批招聘編外人員(40人)考試重點題庫及答案解析
- 2025年宣城旌德縣旅發(fā)置業(yè)有限公司招聘2名考試核心題庫及答案解析
- 2025廣東潮州市軍人隨軍家屬招聘15人考試核心題庫及答案解析
- 肝硬化并糖尿病護(hù)理查房
- 初中七年級主題班會:成為自己的主人(課件)
- 鄭伯克段于鄢-2
- TCSUS-智能水表技術(shù)標(biāo)準(zhǔn)
- TSG特種設(shè)備安全技術(shù)規(guī)范TSGD-202工業(yè)管道安全技術(shù)規(guī)程
- 利用EXCEL畫風(fēng)機(jī)特性曲線-模版
- 人體工效評估程序
- 西南大學(xué)PPT 04 實用版答辯模板
- 國家開放大學(xué)電大《政治學(xué)原理》形考任務(wù)1及4網(wǎng)考題庫答案
- 管理百年智慧樹知到答案章節(jié)測試2023年
- 國家開放大學(xué)《刑法學(xué)(1)》形成性考核作業(yè)1-4參考答案
評論
0/150
提交評論