版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Patternsofspeciesrichnessand
endemism
SergeiVolis
TashkentBotanicalGarden
Whypatternsofspeciesrichnessand
endemismareimportant?
?narrowendemicsareusuallyrareandthereforepotentiallythreatened
?speciesrichnessandendemismarestronglyrelated
?However,centresofhighspeciesrichnessandcentresofhighendemicityarenotalways
concordantwhichsuggeststhatbothspeciesrichnessandendemismmustbeconsideredinconservationdecision.
Myersetal.Nature2000
Currentlyrecognizedglobalhotspotsofplantendemism,whicharedefinedashaving>1500endemicplantspecies
Harrison&Noss2017
Huangetal.Biol.Cons.2016
Huangetal.Front.PlSc.2022
Noroozietal.Biol.Cons.2019
ConservationpriorityzonesinMadagascar
Kremenetal.Science2008
?Weightedendemism(WE)isproportionaltotheinverseofaspecies’rangeandsumoftheweightsindicatesthedegreeofendemismamongthespeciesoccurringinacell
?Specieswithmorerestrictedrangesareassignedhighweight,andthosewithlargerrangesareassigneda
progressivelylowerweights
?Correctedweightedendemism(CWE)dividesWEbythespeciesrichnessofacell
?CWEcorrectsforadependenceonspeciesrichness
becausecellswithhighnumberofspeciesareexpectedtohavelargenumberofendemicsbychancealone,thusnotrepresentingtruecentersofendemism
WE=1/6+1/5=0.36
WE=1/1+1/1=2
WE=1/1+1/1+1/1+1/1+1/1+1/1=6
?Weightedendemism(WE)isproportionaltotheinverseofaspecies’rangeandsumoftheweightsindicatesthedegreeofendemismamongthespeciesoccurringinacell
?Specieswithmorerestrictedrangesareassignedhighweight,andthosewithlargerrangesareassigneda
progressivelylowerweights
?Correctedweightedendemism(CWE)dividesWEbythespeciesrichnessofacell
?CWEcorrectsforadependenceonspeciesrichness
becausecellswithhighnumberofspeciesareexpectedtohavelargenumberofendemicsbychancealone,thusnotrepresentingtruecentersofendemism
CWE=(1/1+1/1+1/1+1/1+1/1+1/1)/6=1
CWE=(1/56+1/56+…)/6=0.018
CWE=(1/1+1/1)/2=1
?CWEcanbeinterpretedastheaverageperspeciesrangerestrictiontoacell
?CWEcanbeinterpretedasaproportionofspeciesrangesrestrictedtoacell
?CWE=0.2meansthatonaverage20%ofthespeciesinacellarerestrictedtothatcell,or,alternatively,thata
cellrepresents20%ofthespeciesrange
?CWEisanalogoustobetadiversitydefinedasadegreeofdifferentiationinspeciescompositionbetween
locations/habitats
Laffan&Crisp2003
Thequalityofbiodiversityassessmentsusingtheabovemetricsdependsonthequalityofthedatasetsandthe
methodusedtodeterminethespeciesdistributions
point-to-gridmaps
?assemblespeciesoccurrencerecordswithingridcellsandcountthenumberofspeciesobservedineachcell.Thismethodhasthe
advantageofnotextrapolatingdata,butitusuallysuffersfroma
largenumberoffalseabsences(asituationwhenaspeciesmayincorrectlyappeartobeabsentfromaparticularlocation,whereinfactitdoesoccur,simplybecausethatlocationhasneverbeen
surveyed).
?usefulforcoarse-scaledconservationassessments,wherefalse-absencesarerarelyaproblembecausethespatialunitsintheseassessmentarelargeenoughtocontainsurveydata
?however,lessusefulforfine-scaledregionalplanningbecausewhenspatialunitsaresmall,usuallyonlyasmallproportionofthemare
surveyed.
?almostinevitableinsufficientsamplingeffortcausestheaccuracyofthismethodtodecreasewithanincreaseincellresolution.
Effectofsamplingeffort
Oliveiraetal.Diver.Distr.2016
speciesdistributionmodelling(SDM)
?allowsnotonlyfillinggeographicalgapsininformationonspeciesdistributions,butalsoreducingthefrequencyoffalse-absences
inherentinspeciesoccurrencedatasets
?althoughhasaknowntendencytooverestimatetruespeciesrangesiswidelyacceptedasausefultoolinconservationnotonlyfor
individualspeciesassesments,butalsoforelucidatingspatialpatternsofbiodiversity
DistributionofAntechinusagilis
Amboni&LaffanInt.JGeogr.Inf.Sci.2012
DispersalabilitiesOverestimation
Speciesinteractions
SDM:
9bioclimatic
1topographic
6vegetationvariablesBinarypredictions
Maximizingthesumofspecificity-sensitivity
thresholdofprobability
r
Amboni&LaffanInt.JGeogr.Inf.Sci.2012
?thepredictedspecieshabitatsuitabilitymapsgeneratedbySDMareoverlaid(stacked)toproducediversitymaps.
?suchaggregatingindividual-speciesvaluespercellforspecies
inhabitingthesamegeographicalregion,iscalledstackedspeciesdistributionmodelling(S-SDM)
BuildinganS-SDM
?selectionofanSDMmethod
generaladditivemodels(GAM),
generalizedlinearmodels(GLM),
multivariateadaptiveregressionsplines(MARS),
classificationtreeanalysis(CTA),
generalizedboostedmodels(GBM),
maximumentropy(MAXENT),
artificialneuralnetworks(ANN),
randomforests(RF),
supportvectormachines(SVM)
?conversionofeachsingleSDMfromacontinuoussuitabilitymaptoabinarypresence/absencemapusingathresholdcriterion(or
alternatively,thesumofthecontinuousvalues)
?thechoiceofoneoranotherSDMmethodandthethresholdagainsttheuseofcontinuousvaluessignificantlyaffecttheS-SDMoutcome
Point-to-gridmapsvsS-SDM
?Thechoiceofthetwogeneralapproacheswillinfluencethespeciesrangemapsandresultingbiodiversitymetrics,andthusthe
recommendedconservationpriorities
?AlthoughS-SDMhasbeeninuseformorethanadecade,its
efficiencyasatoolindescribingpatternsofspeciesrichnesshasbeentestedinalimitednumberofstudies
?Graham&Hijmans2006werethefirsttocomparethepoint-to-gridspeciesrichnessmapswiththoseproducedfromSDMpredictions
andshowedthatSDM-basedmapsover-predictedspeciesrichness,butthat”likelythatthepoint-to-gridmethoddoesnotcaptureactualspeciesrichnessunlessaratherlargegridcellsizeisused”.
SpeciesrichnessofamphibianandreptilespeciesinCalifornia
Pearson’sr
Point-to-gridDistributionmodel
0.393
25km
0.622
50km
Graham&HijmansGl.Ecol.Biog.2006
RichnessmapsformarsupialsinAustralia
BiodiverseMaxent
Pearson’sr
0.40
0.45
0.45
Hotspots-top5%cells
Amboni&LaffanInt.JGeogr.Inf.Sci.2012
SpeciesrichnessofoaksinMexico
Hernández-Quirozetal.Biod.&Cons.2018
?SDMoverpredictsspeciesrichnessatallresolutions,whilepoint-to-gridmapsunderpredictit
?Unfortunately,analogouscomparisonsofendemismmapshavenotbeenreportedintheliterature.
?Tofillthisgap,Iconductedastudycomparingthesetwotypesofmapsforthreemonocotgenera(Allium,TulipaandEremurus).
?Separateanalysesconductedforgroupsofcloselyrelatedtaxaareadvantageousoverusageofphylogeneticallyunrelatedspecies
becausetheformerareexpectedtorespondsimilarlyto
environmentalfactors,thusreducingthecomplexityoftheresponse.
Studygoals
?comparisonofmapsofspeciesrichness,WEandCWEusingpoint-to-gridvs.S-SDMmethods(thelatterproducedusingeitherbinaryorcontinuousvaluesof
predictedhabitatsuitability)
?EffectofsamplingdensityonS-SDM-producedmetricsofbiodiversity
?Previousstudiesthatmanipulatedsamplesizesweresingle-speciesSDMs
?Inthepresentstudy,samplesizeswere
manipulatedtoimitatepoorsamplingdensitybythinningspeciesoccurrencesusingrandom
numbersimulatortonomorethan10occurrencesperspecies
?patternsofspeciesrichnessandendemism
producedbyS-SDMfromfullvsreduceddatasetwerecompared
ssdmprogram(Schmittetal.2017)
MAXENTalgorithm
pSSDMandbSSDMstackingalgorithms
S-SDMmapsofspeciesrichness
producedfromoccurrencedatafor63Uzbekendemicplantspeciesby9
SDMalgorithmswithdefaultsettingsandpSSDMstackingalgorithm.
No.ofspecies
60
50
40
30
20
10
0
Allium
05101520304050>50
9
8
7
6
5
4
3
2
1
0
Eremurus
05101520304050>50
Occurrencerecords
8Tulipa
7
6
5
4
3
2
1
0
05101520304050>50
Allium
Eremurus
Tulipa
Results
?ThepatternsofspeciesrichnessandWEin
points-to-gridands-sdmmapswereverysimilarforallthreegenera
?But
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 投資經(jīng)理面試題及答案詳解
- 2025年物流信息化管理系統(tǒng)項目可行性研究報告
- 2025年醫(yī)療健康信息平臺構(gòu)建可行性研究報告
- 2025年智慧校園解決方案開發(fā)項目可行性研究報告
- 2026年福州黎明職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)考試題庫附答案詳解
- 2026年浙江省湖州市單招職業(yè)傾向性考試題庫帶答案詳解
- 2026年黑龍江農(nóng)墾職業(yè)學(xué)院單招職業(yè)傾向性測試題庫含答案詳解
- 2026年寧德師范學(xué)院單招職業(yè)技能測試題庫及參考答案詳解1套
- 2026年桂林山水職業(yè)學(xué)院單招職業(yè)技能測試題庫參考答案詳解
- 2026年上海杉達(dá)學(xué)院單招職業(yè)技能測試題庫帶答案詳解
- 幼兒園每日消毒及安全管理操作規(guī)范
- 11.1黨和人民信賴的英雄軍隊課件-2025-2026學(xué)年統(tǒng)編版道德與法治八年級上冊
- 2025年軍隊文職保管員題庫及答案(可下載)
- 企業(yè)勞動用工風(fēng)險防范操作指南
- DB37-T 5337-2025 建筑隔震減震裝置檢測技術(shù)規(guī)程
- 立德樹人教育教學(xué)課件
- 餐飲宴會服務(wù)標(biāo)準(zhǔn)流程全流程管理方案
- 甲方安全技術(shù)交底
- 化療藥物輸注規(guī)范
- 礦山安裝施工方案
- 化工新材料生產(chǎn)線項目社會穩(wěn)定風(fēng)險評估報告
評論
0/150
提交評論