安徽省安慶市重點達標名校2026屆中考五模數學試題含解析_第1頁
安徽省安慶市重點達標名校2026屆中考五模數學試題含解析_第2頁
安徽省安慶市重點達標名校2026屆中考五模數學試題含解析_第3頁
安徽省安慶市重點達標名校2026屆中考五模數學試題含解析_第4頁
安徽省安慶市重點達標名校2026屆中考五模數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省安慶市重點達標名校2026屆中考五模數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.直線y=x+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)2.-3的倒數是()A.3 B.13 C.-13.已知點為某封閉圖形邊界上一定點,動點從點出發(fā),沿其邊界順時針勻速運動一周.設點運動的時間為,線段的長為.表示與的函數關系的圖象大致如右圖所示,則該封閉圖形可能是()A. B. C. D.4.下列計算正確的是()A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=5.等腰三角形一邊長等于5,一邊長等于10,它的周長是()A.20 B.25 C.20或25 D.156.如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點F,若AB=2,∠ABC=60°,則AE的長為()A. B. C. D.7.在一些美術字中,有的漢字是軸對稱圖形.下面4個漢字中,可以看作是軸對稱圖形的是()A. B. C. D.8.如圖由四個相同的小立方體組成的立體圖像,它的主視圖是().A. B. C. D.9.甲、乙兩班舉行電腦漢字輸入比賽,參賽學生每分鐘輸入漢字個數的統計結果如下表:班級參加人數平均數中位數方差甲55135149191乙55135151110某同學分析上表后得出如下結論:①甲、乙兩班學生的平均成績相同;②乙班優(yōu)秀的人數多于甲班優(yōu)秀的人數(每分鐘輸入漢字≥150個為優(yōu)秀);③甲班成績的波動比乙班大.上述結論中,正確的是()A.①② B.②③ C.①③ D.①②③10.根據《九章算術》的記載中國人最早使用負數,下列負數中最大的是()A.-1 B.-12 C.-二、填空題(本大題共6個小題,每小題3分,共18分)11.已知AD、BE是△ABC的中線,AD、BE相交于點F,如果AD=6,那么AF的長是_____.12.如圖,正方形ABCD中,E為AB的中點,AF⊥DE于點O,那么等于()A.; B.; C.; D..13.已知方程的一個根為1,則的值為__________.14.已知圓錐的底面圓半徑為3cm,高為4cm,則圓錐的側面積是________cm2.15.如圖放置的正方形,正方形,正方形,…都是邊長為的正方形,點在軸上,點,…,都在直線上,則的坐標是__________,的坐標是______.16.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,將△ABC以點B為中心順時針旋轉,使點C旋轉到AB邊延長線上的點D處,則AC邊掃過的圖形(陰影部分)的面積是_____cm1.(結果保留π).三、解答題(共8題,共72分)17.(8分)解方程.18.(8分)某商店準備購進甲、乙兩種商品.已知甲商品每件進價15元,售價20元;乙商品每件進價35元,售價45元.(1)若該商店同時購進甲、乙兩種商品共100件,恰好用去2700元,求購進甲、乙兩種商品各多少件?(2)若該商店準備用不超過3100元購進甲、乙兩種商品共100件,且這兩種商品全部售出后獲利不少于890元,問應該怎樣進貨,才能使總利潤最大,最大利潤是多少?(利潤=售價﹣進價)19.(8分)如圖,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),B(4,0),與y軸交于點C(0,2)(1)求拋物線的表達式;(2)拋物線的對稱軸與x軸交于點M,點D與點C關于點M對稱,試問在該拋物線的對稱軸上是否存在點P,使△BMP與△ABD相似?若存在,請求出所有滿足條件的P點的坐標;若不存在,請說明理由.20.(8分)如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結AC,過上一點E作EG∥AC交CD的延長線于點G,連結AE交CD于點F,且EG=FG,連結CE.(1)求證:∠G=∠CEF;(2)求證:EG是⊙O的切線;(3)延長AB交GE的延長線于點M,若tanG=,AH=3,求EM的值.21.(8分)為了貫徹“減負增效”精神,掌握九年級600名學生每天的自主學習情況,某校學生會隨機抽查了九年級的部分學生,并調查他們每天自主學習的時間.根據調查結果,制作了兩幅不完整的統計圖(圖1,圖2),請根據統計圖中的信息回答下列問題:(1)本次調查的學生人數是人;(2)圖2中α是度,并將圖1條形統計圖補充完整;(3)請估算該校九年級學生自主學習時間不少于1.5小時有人;(4)老師想從學習效果較好的4位同學(分別記為A、B、C、D,其中A為小亮)隨機選擇兩位進行學習經驗交流,用列表法或樹狀圖的方法求出選中小亮A的概率.22.(10分)如圖,的頂點是方格紙中的三個格點,請按要求完成下列作圖,①僅用無刻度直尺,且不能用直尺中的直角;②保留作圖痕跡.在圖1中畫出邊上的中線;在圖2中畫出,使得.23.(12分)先化簡,再求值,,其中x=1.24.中華文明,源遠流長;中華漢字,寓意深廣,為了傳承優(yōu)秀傳統文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽,賽后發(fā)現所有參賽學生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機抽取了其中200名學生的成績(成績x取整數,總分100分)作為樣本進行整理,得到下列不完整的統計圖表:成績x/分頻數頻率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25請根據所給信息,解答下列問題:m=,n=;請補全頻數分布直方圖;若成績在90分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學生中成績“優(yōu)”等約有多少人?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

作點D關于x軸的對稱點D′,連接CD′交x軸于點P,此時PC+PD值最小,如圖所示.直線y=x+4與x軸、y軸的交點坐標為A(﹣6,0)和點B(0,4),因點C、D分別為線段AB、OB的中點,可得點C(﹣3,1),點D(0,1).再由點D′和點D關于x軸對稱,可知點D′的坐標為(0,﹣1).設直線CD′的解析式為y=kx+b,直線CD′過點C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直線CD′的解析式為y=﹣x﹣1.令y=﹣x﹣1中y=0,則0=﹣x﹣1,解得:x=﹣,所以點P的坐標為(﹣,0).故答案選C.考點:一次函數圖象上點的坐標特征;軸對稱-最短路線問題.2、C【解析】

由互為倒數的兩數之積為1,即可求解.【詳解】∵-3×-13=1,∴故選C3、A【解析】

解:分析題中所給函數圖像,段,隨的增大而增大,長度與點的運動時間成正比.段,逐漸減小,到達最小值時又逐漸增大,排除、選項,段,逐漸減小直至為,排除選項.故選.【點睛】本題考查了動點問題的函數圖象,函數圖象是典型的數形結合,圖象應用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時,要理清圖象的含義即會識圖.4、D【解析】

各項中每項計算得到結果,即可作出判斷.【詳解】解:A.原式=8,錯誤;B.原式=2+4,錯誤;C.原式=1,錯誤;D.原式=x6y﹣3=,正確.故選D.【點睛】此題考查了實數的運算,熟練掌握運算法則是解本題的關鍵.5、B【解析】

題目中沒有明確腰和底,故要分情況討論,再結合三角形的三邊關系分析即可.【詳解】當5為腰時,三邊長為5、5、10,而,此時無法構成三角形;當5為底時,三邊長為5、10、10,此時可以構成三角形,它的周長故選B.6、C【解析】在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四邊形OCED是平行四邊形,∵AC⊥BD,∴平行四邊形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC為等邊三角形,∴AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在Rt△ACE中,由勾股定理得:AE=;故選C.點睛:本題考查了菱形的性質,先求出四邊形OCED是平行四邊形,再根據菱形的對角線互相垂直求出∠COD=90°,證明四邊形OCED是矩形,再根據菱形的性質得出AC=AB,再根據勾股定理得出AE的長度即可.7、A【解析】

根據軸對稱圖形的概念判斷即可.【詳解】A、是軸對稱圖形;B、不是軸對稱圖形;C、不是軸對稱圖形;D、不是軸對稱圖形.故選:A.【點睛】本題考查的是軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.8、D【解析】從正面看,共2列,左邊是1個正方形,右邊是2個正方形,且下齊.故選D.9、D【解析】分析:根據平均數、中位數、方差的定義即可判斷;詳解:由表格可知,甲、乙兩班學生的成績平均成績相同;根據中位數可以確定,乙班優(yōu)秀的人數多于甲班優(yōu)秀的人數;根據方差可知,甲班成績的波動比乙班大.故①②③正確,故選D.點睛:本題考查平均數、中位數、方差等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.10、B【解析】

根據兩個負數,絕對值大的反而小比較.【詳解】解:∵?12>?1>?2∴負數中最大的是?12故選:B.【點睛】本題考查了實數大小的比較,解題的關鍵是知道正數大于0,0大于負數,兩個負數,絕對值大的反而?。?、填空題(本大題共6個小題,每小題3分,共18分)11、4【解析】由三角形的重心的概念和性質,由AD、BE為△ABC的中線,且AD與BE相交于點F,可知F點是三角形ABC的重心,可得AF=AD=×6=4.故答案為4.點睛:此題考查了重心的概念和性質:三角形的重心是三角形三條中線的交點,且重心到頂點的距離是它到對邊中點的距離的2倍.12、D【解析】

利用△DAO與△DEA相似,對應邊成比例即可求解.【詳解】∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA∴△DAO∽△DEA∴即∵AE=AD∴故選D.13、1【解析】

欲求m,可將該方程的已知根1代入兩根之積公式和兩根之和公式列出方程組,解方程組即可求出m值.【詳解】設方程的另一根為x1,又∵x=1,∴,解得m=1.故答案為1.【點睛】本題的考點是一元二次方程的根的分布與系數的關系,主要考查利用韋達定理解題.此題也可將x=1直接代入方程3x2-9x+m=0中求出m的值.14、15π【解析】【分析】設圓錐母線長為l,根據勾股定理求出母線長,再根據圓錐側面積公式即可得出答案.【詳解】設圓錐母線長為l,∵r=3,h=4,∴母線l=,∴S側=×2πr×5=×2π×3×5=15π,故答案為15π.【點睛】本題考查了圓錐的側面積,熟知圓錐的母線長、底面半徑、圓錐的高以及圓錐的側面積公式是解題的關鍵.15、【解析】

先求出OA的長度,然后利用含30°的直角三角形的性質得到點D的坐標,探索規(guī)律,從而得到的坐標即可.【詳解】分別過點作y軸的垂線交y軸于點,∵點B在上設∴同理,都是含30°的直角三角形∵,∴同理,點的橫坐標為縱坐標為故點的坐標為故答案為:;.【點睛】本題主要考查含30°的直角三角形的性質,找到點的坐標規(guī)律是解題的關鍵.16、9π【解析】

根據直角三角形兩銳角互余求出∠BAC=30°,再根據直角三角形30°角所對的直角邊等于斜邊的一半可得BC=AB,然后求出陰影部分的面積=S扇形ABE﹣S扇形BCD,列計算即可得解.【詳解】∵∠C是直角,∠ABC=60°,∴∠BAC=90°﹣60°=30°,∴BC=AB=×6=3(cm),∵△ABC以點B為中心順時針旋轉得到△BDE,∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=110°,∴陰影部分的面積=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC=S扇形ABE﹣S扇形BCD=﹣=11π﹣3π=9π(cm1).故答案為9π.【點睛】本題考查了旋轉的性質,扇形的面積計算,直角三角形30°角所對的直角邊等于斜邊的一半的性質,求出陰影部分的面積等于兩個扇形的面積的差是解題的關鍵.三、解答題(共8題,共72分)17、原分式方程無解.【解析】

根據解分式方程的方法可以解答本方程,去分母將分式方程化為整式方程,解整式方程,驗證.【詳解】方程兩邊乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3即:x2+2x﹣x2﹣x+2=3整理,得x=1檢驗:當x=1時,(x﹣1)(x+2)=0,∴原方程無解.【點睛】本題考查解分式方程,解題的關鍵是明確解放式方程的計算方法.18、(1)商店購進甲種商品40件,購進乙種商品60件;(2)應購進甲種商品20件,乙種商品80件,才能使總利潤最大,最大利潤為900元.【解析】

(1)設購進甲、乙兩種商品分別為x件與y件,根據甲種商品件數+乙種商品件數=100,甲商品的總進價+乙種商品的總進價=2700,列出關于x與y的方程組,求出方程組的解即可得到x與y的值,得到購進甲、乙兩種商品的件數;(2)設商店購進甲種商品a件,則購進乙種商品(100-a)件,根據甲商品的總進價+乙種商品的總進價小于等于3100,甲商品的總利潤+乙商品的總利潤大于等于890列出關于a的不等式組,求出不等式組的解集,得到a的取值范圍,根據a為正整數得出a的值,再表示總利潤W,發(fā)現W與a成一次函數關系式,且為減函數,故a取最小值時,W最大,即可求出所求的進貨方案與最大利潤.【詳解】(1)設購進甲種商品x件,購進乙商品y件,根據題意得:,解得:,答:商店購進甲種商品40件,購進乙種商品60件;(2)設商店購進甲種商品a件,則購進乙種商品(100﹣a)件,根據題意列得:,解得:20≤a≤22,∵總利潤W=5a+10(100﹣a)=﹣5a+1000,W是關于a的一次函數,W隨a的增大而減小,∴當a=20時,W有最大值,此時W=900,且100﹣20=80,答:應購進甲種商品20件,乙種商品80件,才能使總利潤最大,最大利潤為900元.【點睛】此題考查了二元一次方程組的應用,一次函數的性質,以及一元一次不等式組的應用,弄清題中的等量關系及不等關系是解本題的關鍵.19、(1)y=﹣x2+x+2;(2)滿足條件的點P的坐標為(,)或(,﹣)或(,5)或(,﹣5).【解析】

(1)利用待定系數法求拋物線的表達式;(2)使△BMP與△ABD相似的有三種情況,分別求出這三個點的坐標.【詳解】(1)∵拋物線與x軸交于點A(﹣1,0),B(4,0),∴設拋物線的解析式為y=a(x+1)(x﹣4),∵拋物線與y軸交于點C(0,2),∴a×1×(﹣4)=2,∴a=﹣,∴拋物線的解析式為y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)如圖1,連接CD,∵拋物線的解析式為y=﹣x2+x+2,∴拋物線的對稱軸為直線x=,∴M(,0),∵點D與點C關于點M對稱,且C(0,2),∴D(3,﹣2),∵MA=MB,MC=MD,∴四邊形ACBD是平行四邊形,∵A(﹣1,0),B(4,0),C(3,﹣22),∴AB2=25,BD2=(4﹣1)2+22=5,AD2=(3+1)2+22=20,∴AD2+BD2=AB2,∴△ABD是直角三角形,∴∠ADB=90°,設點P(,m),∴MP=|m|,∵M(,0),B(4,0),∴BM=,∵△BMP與△ABD相似,∴①當△BMP∽ADB時,∴,∴,∴m=±,∴P(,)或(,﹣),②當△BMP∽△BDA時,,∴,∴m=±5,∴P(,5)或(,﹣5),即:滿足條件的點P的坐標為P(,)或(,﹣)或(,5)或(,﹣5).【點睛】本題考查了二次函數的應用,解題的關鍵是熟練的掌握二次函數的應用.20、(1)證明見解析;(2)證明見解析;(3).【解析】試題分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可證明;(2)欲證明EG是⊙O的切線只要證明EG⊥OE即可;(3)連接OC.設⊙O的半徑為r.在Rt△OCH中,利用勾股定理求出r,證明△AHC∽△MEO,可得,由此即可解決問題;試題解析:(1)證明:如圖1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)證明:如圖2中,連接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切線.(3)解:如圖3中,連接OC.設⊙O的半徑為r.在Rt△AHC中,tan∠ACH=tan∠G==,∵AH=,∴HC=,在Rt△HOC中,∵OC=r,OH=r﹣,HC=,∴,∴r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴EM=.點睛:本題考查圓綜合題、垂徑定理、相似三角形的判定和性質、銳角三角函數、勾股定理等知識,解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題,正確尋找相似三角形,構建方程解決問題嗎,屬于中考壓軸題.21、(1)40;(2)54,補圖見解析;(3)330;(4).【解析】

(1)根據由自主學習的時間是1小時的人數占30%,可求得本次調查的學生人數;(2),由自主學習的時間是0.5小時的人數為40×35%=14;(3)求出這

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論