深圳坪地街道坪地中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第1頁(yè)
深圳坪地街道坪地中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第2頁(yè)
深圳坪地街道坪地中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第3頁(yè)
深圳坪地街道坪地中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第4頁(yè)
深圳坪地街道坪地中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第5頁(yè)
已閱讀5頁(yè),還剩34頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

深圳坪地街道坪地中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案一、壓軸題1.(1)探索發(fā)現(xiàn):如圖1,已知Rt△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,過點(diǎn)A作AD⊥l,過點(diǎn)B作BE⊥l,垂足分別為D、E.求證:AD=CE,CD=BE.(2)遷移應(yīng)用:如圖2,將一塊等腰直角的三角板MON放在平面直角坐標(biāo)系內(nèi),三角板的一個(gè)銳角的頂點(diǎn)與坐標(biāo)原點(diǎn)O重合,另兩個(gè)頂點(diǎn)均落在第一象限內(nèi),已知點(diǎn)M的坐標(biāo)為(1,3),求點(diǎn)N的坐標(biāo).(3)拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系內(nèi),已知直線y=﹣3x+3與y軸交于點(diǎn)P,與x軸交于點(diǎn)Q,將直線PQ繞P點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)45°后,所得的直線交x軸于點(diǎn)R.求點(diǎn)R的坐標(biāo).解析:(1)見解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判斷出∠ACB=∠ADC,再判斷出∠CAD=∠BCE,進(jìn)而判斷出△ACD≌△CBE,即可得出結(jié)論;(2)先判斷出MF=NG,OF=MG,進(jìn)而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出結(jié)論;(3)先求出OP=3,由y=0得x=1,進(jìn)而得出Q(1,0),OQ=1,再判斷出PQ=SQ,即可判斷出OH=4,SH=0Q=1,進(jìn)而求出直線PR的解析式,即可得出結(jié)論.【詳解】證明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如圖2,過點(diǎn)M作MF⊥y軸,垂足為F,過點(diǎn)N作NG⊥MF,交FM的延長(zhǎng)線于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(jìn)(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴點(diǎn)N的坐標(biāo)為(4,2),(3)如圖3,過點(diǎn)Q作QS⊥PQ,交PR于S,過點(diǎn)S作SH⊥x軸于H,對(duì)于直線y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),設(shè)直線PR為y=kx+b,則,解得∴直線PR為y=﹣x+3由y=0得,x=6∴R(6,0).【點(diǎn)睛】本題是一次函數(shù)綜合題,主要考查了待定系數(shù)法,全等三角形的判定和性質(zhì),構(gòu)造出全等三角形是解本題的關(guān)鍵.2.探究發(fā)現(xiàn):如圖①,在中,內(nèi)角的平分線與外角的平分線相交于點(diǎn).(1)若,則;若,則;(2)由此猜想:與的關(guān)系為(不必說明理由).拓展延伸:如圖②,四邊形的內(nèi)角與外角的平分線相交于點(diǎn),.(3)若,,求的度數(shù),由此猜想與,之間的關(guān)系,并說明理由.解析:(1)40°25°;(2)(或)(3)=【解析】【分析】(1)先根據(jù)兩角平分線寫出對(duì)應(yīng)的等式關(guān)系,再分別寫出兩個(gè)三角形內(nèi)角和的等式關(guān)系,最后聯(lián)立兩等式化解,將的角度帶入即可求解;(2)由(1)可得,即可求解;(3)在與的平分線相交于點(diǎn),可知,又因?yàn)?,兩直線平行內(nèi)錯(cuò)角相等,得出,再根據(jù)三角形一外角等于不相鄰的兩個(gè)內(nèi)角的和,得出,再由四邊形的內(nèi)角和定理得出,最后在中:,代入整理即可得出結(jié)論.【詳解】解:(1)由題可知:BE為的角平分線,CE為的角平分線,=2=2,=2,,三角形內(nèi)角和等于,在中:,即:,①,在中:,即:,②,綜上所述聯(lián)立①②,由①-②×2可得:,,,,當(dāng),則;當(dāng),則;故答案為,;(2)由(1)知:(或);(3)∵與的平分線相交于點(diǎn),∴,,又∵,∴(兩直線平行,內(nèi)錯(cuò)角相等),∵是的一個(gè)外角,∴(三角形一外角等于不相鄰的兩個(gè)內(nèi)角的和),在四邊形中,四邊形內(nèi)角和為,,,∴,∴①,∴,即,在中:,,由上可得:,②,又∵,∴,,,由①②可得,,,.【點(diǎn)睛】本題主要考查了三角形的外角性質(zhì)的應(yīng)用和角平分線的定義,能正確運(yùn)用性質(zhì)進(jìn)行推理和計(jì)算是解此題的關(guān)鍵,注意三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和.3.如圖,在中,為的中點(diǎn),,.動(dòng)點(diǎn)從點(diǎn)出發(fā),沿方向以的速度向點(diǎn)運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿方向以的速度向點(diǎn)運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間是.(1)在運(yùn)動(dòng)過程中,當(dāng)點(diǎn)位于線段的垂直平分線上時(shí),求出的值;(2)在運(yùn)動(dòng)過程中,當(dāng)時(shí),求出的值;(3)是否存在某一時(shí)刻,使?若存在,求出的值;若不存在,請(qǐng)說明理由.解析:(1)時(shí),點(diǎn)位于線段的垂直平分線上;(2);(3)不存在,理由見解析.【解析】【分析】(1)根據(jù)題意求出BP,CQ,結(jié)合圖形用含t的代數(shù)式表示CP的長(zhǎng)度,根據(jù)線段垂直平分線的性質(zhì)得到CP=CQ,列式計(jì)算即可;(2)根據(jù)全等三角形的對(duì)應(yīng)邊相等列式計(jì)算;(3)根據(jù)全等三角形的對(duì)應(yīng)邊相等列式計(jì)算,判斷即可.【詳解】解:(1)由題意得,則,當(dāng)點(diǎn)位于線段的垂直平分線上時(shí),,∴,解得,,則當(dāng)時(shí),點(diǎn)位于線段的垂直平分線上;(2)∵為的中點(diǎn),,∴,∵,∴,∴,解得,,則當(dāng)時(shí),;(3)不存在,∵,∴,則解得,,,∴不存在某一時(shí)刻,使.【點(diǎn)睛】本題考查的是幾何動(dòng)點(diǎn)運(yùn)動(dòng)問題、全等三角形的性質(zhì)、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì),掌握全等三角形的對(duì)應(yīng)邊相等是解題的關(guān)鍵.4.已知,如圖1,直線l2⊥l1,垂足為A,點(diǎn)B在A點(diǎn)下方,點(diǎn)C在射線AM上,點(diǎn)B、C不與點(diǎn)A重合,點(diǎn)D在直線11上,點(diǎn)A的右側(cè),過D作l3⊥l1,點(diǎn)E在直線l3上,點(diǎn)D的下方.(1)l2與l3的位置關(guān)系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點(diǎn)C在射線AM上運(yùn)動(dòng),∠BDC的角平分線交EB的延長(zhǎng)線于點(diǎn)N,在點(diǎn)C的運(yùn)動(dòng)過程中,探索∠N:∠BCD的值是否變化,若變化,請(qǐng)說明理由;若不變化,請(qǐng)直接寫出比值.解析:(1)互相平行;(2)35,20;(3)見解析;(4)不變,【解析】【分析】(1)根據(jù)平行線的判定定理即可得到結(jié)論;(2)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(3)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(4)根據(jù)角平分線的定義,平行線的性質(zhì),三角形外角的性質(zhì)即可得到結(jié)論.【詳解】解:(1)直線l2⊥l1,l3⊥l1,∴l(xiāng)2∥l3,即l2與l3的位置關(guān)系是互相平行,故答案為:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案為:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不會(huì)變化,等于;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=.【點(diǎn)睛】本題考查了三角形的綜合題,三角形的內(nèi)角和定理,三角形外角的性質(zhì),平行線的判定和性質(zhì),角平分線的定義,正確的識(shí)別圖形進(jìn)行推理是解題的關(guān)鍵.5.如圖1,在平面直角坐標(biāo)系中,點(diǎn)的坐為,點(diǎn)的坐標(biāo)為,在中,軸交軸于點(diǎn).(1)求和的度數(shù);(2)如圖,在圖的基礎(chǔ)上,以點(diǎn)為一銳角頂點(diǎn)作,,交于點(diǎn),求證:;(3)在第()問的條件下,若點(diǎn)的標(biāo)為,求四邊形的面積.解析:(1)∠OAD=∠ODA=45°;(2)證明見解析;(3)18.【解析】【分析】(1)由等腰直角三角形的性質(zhì)可求解;(2)通過“ASA”可證得△ODB≌△OAP,進(jìn)而可得BO=OP;(3)過點(diǎn)P作PF⊥x軸于點(diǎn)F,延長(zhǎng)FP交BC于N,過點(diǎn)A作AQ⊥BC于Q,由“AAS”可證△OBM≌△OPF,可得PF=BM=2,OF=OM=4,由面積和差關(guān)系可求四邊形BOPC的面積.【詳解】(1)∵點(diǎn)A的坐為(2,0),點(diǎn)D的坐標(biāo)為(0,-2),∴OA=OD,∵∠AOD=90°,∴∠OAD=∠ODA=45°;(2)∵∠BOE=∠AOD=90°,∴∠BOD=∠AOP,∵∠ABC=∠ACB=45°,∴∠BAC=90°,AB=AC,∵∠OAD=∠ODA=45°,∴∠ODB=135°=∠OAP,在△ODB和△OAP中,,∴△ODB≌△OAP(ASA),∴BO=OP;(3)如圖,過點(diǎn)P作PF⊥x軸于點(diǎn)F,延長(zhǎng)FP交BC于N,過點(diǎn)A作AQ⊥BC于Q,∵BC∥x軸,AQ⊥BC,PF⊥x軸,∴AQ⊥x軸,PN⊥BC,∠AOM=∠BMO=90°,∴點(diǎn)Q橫坐標(biāo)為2,∵∠BAC=90°,AB=AC,AQ⊥BC,∴BQ=QC,∵點(diǎn)B的標(biāo)為(-2,-4),∴BM=2,OM=4,BQ=4=QC,∵PF⊥x軸,∴∠OFP=∠OMB=90°,在△OBM和△OPF中,,∴△OBM≌△OPF(AAS),∴PF=BM=2,OF=OM=4,∵BC∥x軸,AQ⊥x軸,NF⊥x軸,∴OM=AQ=FN=4,∴PN=2,∵∠PNC=90°,∠ACB=45°,∴∠ACB=∠CPN=45°,∴CN=PN=2,∵四邊形BOPC的面積=S△OBM+S梯形OMNP+S△PNC,∴四邊形BOPC的面積=×2×4+×4×(2+4)+×2×2=18.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)、三角形的面積公式等知識(shí),難度較大,添加恰當(dāng)?shù)妮o助線構(gòu)造全等三角形是解本題的關(guān)鍵.6.在等邊△ABC的頂點(diǎn)A、C處各有一只蝸牛,它們同時(shí)出發(fā),分別以每分鐘1米的速度由A向B和由C向A爬行,其中一只蝸牛爬到終點(diǎn)時(shí),另一只也停止運(yùn)動(dòng),經(jīng)過t分鐘后,它們分別爬行到D、E處,請(qǐng)問:(1)如圖1,在爬行過程中,CD和BE始終相等嗎,請(qǐng)證明?(2)如果將原題中的“由A向B和由C向A爬行”,改為“沿著AB和CA的延長(zhǎng)線爬行”,EB與CD交于點(diǎn)Q,其他條件不變,蝸牛爬行過程中∠CQE的大小保持不變,請(qǐng)利用圖2說明:∠CQE=60°;(3)如果將原題中“由C向A爬行”改為“沿著BC的延長(zhǎng)線爬行,連接DE交AC于F”,其他條件不變,如圖3,則爬行過程中,證明:DF=EF解析:(1)相等,證明見解析;(2)證明見解析;(3)證明見解析.【解析】【分析】(1)先證明△ACD≌△CBE,再由全等三角形的性質(zhì)即可證得CD=BE;(2)先證明△BCD≌△ABE,得到∠BCD=∠ABE,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如圖3,過點(diǎn)D作DG∥BC交AC于點(diǎn)G,根據(jù)等邊三角形的三邊相等,可以證得AD=DG=CE;進(jìn)而證明△DGF和△ECF全等,最后根據(jù)全等三角形的性質(zhì)即可證明.【詳解】(1)解:CD和BE始終相等,理由如下:如圖1,AB=BC=CA,兩只蝸牛速度相同,且同時(shí)出發(fā),∴CE=AD,∠A=∠BCE=60°在△ACD與△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始終相等;(2)證明:根據(jù)題意得:CE=AD,∵AB=AC,∴AE=BD,∴△ABC是等邊三角形,∴AB=BC,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC,在△BCD和△ABE中,BC=AB,∠DBC=∠EAB,BD=AE∴△BCD≌△ABE(SAS),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行過程中,DF始終等于EF是正確的,理由如下:如圖,過點(diǎn)D作DG∥BC交AC于點(diǎn)G,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E,∴△ADG為等邊三角形,∴AD=DG=CE,在△DGF和△ECF中,∠GFD=∠CFE,∠GDF=∠E,DG=EC∴△DGF≌△EDF(AAS),∴DF=EF.【點(diǎn)睛】本題主要考查了全等三角形的判定與性質(zhì)和等邊三角形的性質(zhì);題弄懂題中所給的信息,再根據(jù)所提供的思路尋找證明條件是解答本題的關(guān)鍵.7.在中,若存在一個(gè)內(nèi)角角度,是另外一個(gè)內(nèi)角角度的倍(為大于1的正整數(shù)),則稱為倍角三角形.例如,在中,,,,可知,所以為3倍角三角形.(1)在中,,,則為________倍角三角形;(2)若是3倍角三角形,且其中一個(gè)內(nèi)角的度數(shù)是另外一個(gè)內(nèi)角的余角的度數(shù)的,求的最小內(nèi)角.(3)若是2倍角三角形,且,請(qǐng)直接寫出的最小內(nèi)角的取值范圍.解析:(1)4;(2)的最小內(nèi)角為15°或9°或;(3)30°<x<45°.【解析】【分析】(1)根據(jù)三角形內(nèi)角和定理求出∠C的度數(shù),再根據(jù)倍角三角形的定義判斷即可得到答案;(2)根據(jù)△DEF是3倍角三角形,必定有一個(gè)內(nèi)角是另一個(gè)內(nèi)角的3倍,然后根據(jù)這兩個(gè)角之間的關(guān)系,分情況進(jìn)行解答即可得到答案;(3)可設(shè)未知數(shù)表示2倍角三角形的各個(gè)內(nèi)角,然后列不等式組確定最小內(nèi)角的取值范圍.【詳解】解:(1)∵在中,,,∴∠C=180°-55°-25°=100°,∴∠C=4∠B,故為4倍角三角形;(2)設(shè)其中一個(gè)內(nèi)角為x°,3倍角為3x°,則另外一個(gè)內(nèi)角為:①當(dāng)小的內(nèi)角的度數(shù)是3倍內(nèi)角的余角的度數(shù)的時(shí),即:x=(90°-3x),解得:x=15°,②3倍內(nèi)角的度數(shù)是小內(nèi)角的余角的度數(shù)的時(shí),即:3x=(90°-x),解得:x=9°,③當(dāng)時(shí),解得:,此時(shí):=,因此為最小內(nèi)角,因此,△DEF的最小內(nèi)角是9°或15°或.(3)設(shè)最小內(nèi)角為x,則2倍內(nèi)角為2x,第三個(gè)內(nèi)角為(180°-3x),由題意得:2x<90°且180°-3x<90°,∴30°<x<45°,答:△MNP的最小內(nèi)角的取值范圍是30°<x<45°.8.在等腰中,,為邊上的高,點(diǎn)在的外部且,,連接交直線于點(diǎn),連接.(1)如圖①,當(dāng)時(shí),求證:;(2)如圖②,當(dāng)時(shí),求的度數(shù);(3)如圖③,當(dāng)時(shí),求證:.解析:(1)見解析;(2);(3)見解析【解析】【分析】(1)根據(jù)等腰三角形三線合一的性質(zhì),可得AE垂直平分BC,F(xiàn)為垂直平分線AE上點(diǎn),即可得出結(jié)論;(2)根據(jù)(1)的結(jié)論可得AE平分∠BAC,∠BAF=20°,由AB=AC=AD,推出,根據(jù)外角性質(zhì)可得計(jì)算即可;(3)在CF上截取CM=DF,連接AM,證明△ACM≌△ADF(SAS),進(jìn)而證得△AFM為等邊三角形即可.【詳解】(1)證明:∵AE為等腰△ABC底邊BC上的高線,AB=AC,,∠AEB=∠AEC=90°,BE=CE,∴AE垂直平分BE,F(xiàn)在AE上,;(2),,,,由(1)知,AE平分∠BAC,,,故答案為:60°;(3)在CF上截取CM=DF,連接AM,由(1)可知,∠ABC=∠ACB,∠FBC=∠FCB,,,,,在△ACM和△ADF中,∴△ACM≌△ADF(SAS),,,∴△AFM為等邊三角形,,.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì),垂直平分線的性質(zhì),三角形全等的判定和性質(zhì),等邊三角形的判定和性質(zhì),掌握三角形全等的判定和性質(zhì)是解題的關(guān)鍵.9.已知和都是等腰三角形,,,.(初步感知)(1)特殊情形:如圖①,若點(diǎn),分別在邊,上,則__________.(填>、<或=)(2)發(fā)現(xiàn)證明:如圖②,將圖①中的繞點(diǎn)旋轉(zhuǎn),當(dāng)點(diǎn)在外部,點(diǎn)在內(nèi)部時(shí),求證:.(深入研究)(3)如圖③,和都是等邊三角形,點(diǎn),,在同一條直線上,則的度數(shù)為__________;線段,之間的數(shù)量關(guān)系為__________.(4)如圖④,和都是等腰直角三角形,,點(diǎn)、、在同一直線上,為中邊上的高,則的度數(shù)為__________;線段,,之間的數(shù)量關(guān)系為__________.(拓展提升)(5)如圖⑤,和都是等腰直角三角形,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),連結(jié)、.當(dāng),時(shí),在旋轉(zhuǎn)過程中,與的面積和的最大值為__________.解析:(1)=;(2)證明見解析;(3)60°,BD=CE;(4)90°,AM+BD=CM;(5)7【解析】【分析】(1)由DE∥BC,得到,結(jié)合AB=AC,得到DB=EC;(2)由旋轉(zhuǎn)得到的結(jié)論判斷出△DAB≌△EAC,得到DB=CE;(3)根據(jù)等邊三角形的性質(zhì)和全等三角形的判定定理證明△DAB≌△EAC,根據(jù)全等三角形的性質(zhì)求出結(jié)論;(4)根據(jù)全等三角形的判定和性質(zhì)和等腰直角三角形的性質(zhì)即可得到結(jié)論;(5)根據(jù)旋轉(zhuǎn)的過程中△ADE的面積始終保持不變,而在旋轉(zhuǎn)的過程中,△ADC的AC始終保持不變,即可.【詳解】[初步感知](1)∵DE∥BC,∴,∵AB=AC,∴DB=EC,故答案為:=,(2)成立.理由:由旋轉(zhuǎn)性質(zhì)可知∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如圖③,設(shè)AB,CD交于O,∵△ABC和△ADE都是等邊三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴∠ADB=∠AEC=135°,BD=CE,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE都是等腰直角三角形,AM為△ADE中DE邊上的高,∴AM=EM=MD,∴AM+BD=CM;故答案為:90°,AM+BD=CM;【拓展提升】(5)如圖,由旋轉(zhuǎn)可知,在旋轉(zhuǎn)的過程中△ADE的面積始終保持不變,△ADE與△ADC面積的和達(dá)到最大,∴△ADC面積最大,∵在旋轉(zhuǎn)的過程中,AC始終保持不變,∴要△ADC面積最大,∴點(diǎn)D到AC的距離最大,∴DA⊥AC,∴△ADE與△ADC面積的和達(dá)到的最大為2+×AC×AD=5+2=7,故答案為7.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了旋轉(zhuǎn)和全等三角形的性質(zhì)和判定,旋轉(zhuǎn)過程中面積變化分析,解本題的關(guān)鍵是三角形全等的判定.10.(閱讀材科)小明同學(xué)發(fā)現(xiàn)這樣一個(gè)規(guī)律:兩個(gè)頂角相等的等腰三角形,如果具有公共的項(xiàng)角的頂點(diǎn),并把它們的底角頂點(diǎn)連接起來則形成一組全等的三角形,小明把具有這個(gè)規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小明發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則△ABD≌△ACE.(材料理解)(1)在圖1中證明小明的發(fā)現(xiàn).(深入探究)(2)如圖2,△ABC和△AED是等邊三角形,連接BD,EC交于點(diǎn)O,連接AO,下列結(jié)論:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正確的有.(將所有正確的序號(hào)填在橫線上).(延伸應(yīng)用)(3)如圖3,AB=BC,∠ABC=∠BDC=60°,試探究∠A與∠C的數(shù)量關(guān)系.解析:(1)證明見解析;(2)①②③;(3)∠A+∠C=180°.【解析】【分析】(1)利用等式的性質(zhì)得出∠BAD=∠CAE,即可得出結(jié)論;(2)同(1)的方法判斷出△ABD≌△ACE,得出BD=CE,再利用對(duì)頂角和三角形的內(nèi)角和定理判斷出∠BOC=60°,再判斷出△BCF≌△ACO,得出∠AOC=120°,進(jìn)而得出∠AOE=60°,再判斷出BF<CF,進(jìn)而判斷出∠OBC>30°,即可得出結(jié)論;(3)先判斷出△BDP是等邊三角形,得出BD=BP,∠DBP=60°,進(jìn)而判斷出△ABD≌△CBP(SAS),即可得出結(jié)論.【詳解】(1)證明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE;(2)如圖2,∵△ABC和△ADE是等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE,①正確,∠ADB=∠AEC,記AD與CE的交點(diǎn)為G,∵∠AGE=∠DGO,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正確,在OB上取一點(diǎn)F,使OF=OC,∴△OCF是等邊三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正確,連接AF,要使OC=OE,則有OC=CE,∵BD=CE,∴CF=OF=BD,∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而沒辦法判斷∠OBC大于30度,所以,④不一定正確,即:正確的有①②③,故答案為①②③;(3)如圖3,延長(zhǎng)DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等邊三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【點(diǎn)睛】此題考查三角形綜合題,等腰三角形的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定和性質(zhì),構(gòu)造等邊三角形是解題的關(guān)鍵.11.已知在△ABC中,AB=AC,射線BM、BN在∠ABC內(nèi)部,分別交線段AC于點(diǎn)G、H.(1)如圖1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于點(diǎn)D,分別交BC、BM于點(diǎn)E、F.①求證:∠1=∠2;②如圖2,若BF=2AF,連接CF,求證:BF⊥CF;(2)如圖3,點(diǎn)E為BC上一點(diǎn),AE交BM于點(diǎn)F,連接CF,若∠BFE=∠BAC=2∠CFE,求的值.解析:(1)①見解析;②見解析;(2)2【解析】【分析】(1)①只要證明∠2+∠BAF=∠1+∠BAF=60°即可解決問題;②只要證明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,連接AK.只要證明△ABK≌CAF,可得S△ABK=S△AFC,再證明AF=FK=BK,可得S△ABK=S△AFK,即可解決問題;【詳解】(1)①證明:如圖1中,∵AB=AC,∠ABC=60°∴△ABC是等邊三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②證明:如圖2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,連接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴.【點(diǎn)睛】本題考查全等三角形的判定和性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的判定和性質(zhì)、直角三角形30度角性質(zhì)等知識(shí),解題的關(guān)鍵是能夠正確添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考?jí)狠S題.12.在中,,是直線上一點(diǎn),在直線上,且.(1)如圖1,當(dāng)D在上,在延長(zhǎng)線上時(shí),求證:;(2)如圖2,當(dāng)為等邊三角形時(shí),是的延長(zhǎng)線上一點(diǎn),在上時(shí),作,求證:;(3)在(2)的條件下,的平分線交于點(diǎn),連,過點(diǎn)作于點(diǎn),當(dāng),時(shí),求的長(zhǎng)度.解析:(1)見解析;(2)見解析;(3)3【解析】【分析】(1)根據(jù)等腰三角形的性質(zhì)和外角的性質(zhì)即可得到結(jié)論;(2)過E作EF∥AC交AB于F,根據(jù)已知條件得到△ABC是等邊三角形,推出△BEF是等邊三角形,得到BE=EF,∠BFE=60°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;(3)連接AF,證明△ABF≌△CBF,得AF=CF,再證明DH=AH=CF=3.【詳解】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE=DC,∴∠E=∠DCE,∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;(2)∵△ABC是等邊三角形,∴∠B=60°,∴△BEF是等邊三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF與△CAD中,,∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)連接AF,如圖3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,,△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=AF=CF=3,∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),等腰三角形和直角三角形的性質(zhì),三角形的外角的性質(zhì),等邊三角形的判定和性質(zhì),證明三角形全等是解決問題的關(guān)鍵.13.在中,,,是的角平分線,于點(diǎn).(1)如圖1,連接,求證:是等邊三角形;(2)如圖2,點(diǎn)是線段上的一點(diǎn)(不與點(diǎn)重合),以為一邊,在下方作,交延長(zhǎng)線于點(diǎn).求證:;(3)如圖3,點(diǎn)是線段上的點(diǎn),以為一邊,在的下方作,交延長(zhǎng)線于點(diǎn).直接寫出,與數(shù)量之間的關(guān)系.解析:(1)證明見解析;(2)證明見解析;(3)結(jié)論:,證明見解析.【解析】【分析】(1)先根據(jù)直角三角形的性質(zhì)得出,再根據(jù)角平分線的性質(zhì)可得,然后根據(jù)三角形的判定定理與性質(zhì)可得,最后根據(jù)等邊三角形的判定即可得證;(2)如圖(見解析),延長(zhǎng)ED使得,連接MF,先根據(jù)直角三角形的性質(zhì)、等邊三角形的判定得出是等邊三角形,再根據(jù)等邊三角形的性質(zhì)、角的和差得出,然后根據(jù)三角形全等的判定與性質(zhì)、等量代換即可得證;(3)如圖(見解析),參照題(2),先證是等邊三角形,再根據(jù)等邊三角形的性質(zhì)、角的和差得出,然后根據(jù)三角形全等的判定與性質(zhì)、等量代換即可得證.【詳解】(1)是的角平分線,在和中,是等邊三角形;(2)如圖,延長(zhǎng)ED使得,連接MF,是的角平分線,是等邊三角形,即在和中,,即即;(3)結(jié)論:,證明過程如下:如圖,延長(zhǎng)BD使得,連接NH由(2)可知,是等邊三角形,即在和中,,即即.【點(diǎn)睛】本題考查了直角三角形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),較難的是題(2)和(3),通過作輔助線,構(gòu)造一個(gè)等邊三角形是解題關(guān)鍵.14.如圖,在平面直角坐標(biāo)系中,,,,點(diǎn)、在軸上且關(guān)于軸對(duì)稱.(1)求點(diǎn)的坐標(biāo);(2)動(dòng)點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)出發(fā)沿軸正方向向終點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,點(diǎn)到直線的距離的長(zhǎng)為,求與的關(guān)系式;(3)在(2)的條件下,當(dāng)點(diǎn)到的距離為時(shí),連接,作的平分線分別交、于點(diǎn)、,求的長(zhǎng).解析:(1)C(4,0);(2);(3).【解析】【分析】(1)根據(jù)對(duì)稱的性質(zhì)知為等邊三角形,利用直角三角形中30度角的性質(zhì)即可求得答案;(2)利用面積法可求得,再利用坐標(biāo)系中點(diǎn)的特征即可求得答案;(3)利用(2)的結(jié)論求得,利用角平分線的性質(zhì)證得,求得,利用面積法求得,再利用直角三角形中30度角的性質(zhì)即可求得答案.【詳解】(1)∵點(diǎn)、關(guān)于軸對(duì)稱,∴,∴,∵,∴為等邊三角形,∴,∴,∴點(diǎn)C的坐標(biāo)為:;(2)連接,∵,∴,∵,∴,∵,∴,∵,∴,即:;(3)∵點(diǎn)到的距離為,∴,∴,∴,延長(zhǎng)交于點(diǎn),過點(diǎn)作軸于點(diǎn),連接、,∵為的角平分線,為等邊三角形,∴,,∵,,∴,∴,設(shè),在中,,∴,∵,∴,∴,∴,∴,∵,,∴,∵,∴,在中,,,∴,∴,,∴,∴.【點(diǎn)睛】本題是三角形綜合題,涉及的知識(shí)有:含30度直角三角形的性質(zhì),全等三角形的判定與性質(zhì),外角性質(zhì),角平分線的性質(zhì),等邊三角形的判定和性質(zhì),坐標(biāo)與圖形性質(zhì),熟練掌握性質(zhì)及定理、靈活運(yùn)用面積法求線段的長(zhǎng)是解本題的關(guān)鍵.15.在△ABC中,∠BAC=45°,CD⊥AB,垂足為點(diǎn)D,M為線段DB上一動(dòng)點(diǎn)(不包括端點(diǎn)),點(diǎn)N在直線AC左上方且∠NCM=135°,CN=CM,如圖①.(1)求證:∠ACN=∠AMC;(2)記△ANC得面積為5,記△ABC得面積為5.求證:;(3)延長(zhǎng)線段AB到點(diǎn)P,使BP=BM,如圖②.探究線段AC與線段DB滿足什么數(shù)量關(guān)系時(shí)對(duì)于滿足條件的任意點(diǎn)M,AN=CP始終成立?(寫出探究過程)解析:(1)證明見解析;(2)證明見解析;(3)當(dāng)AC=2BD時(shí),對(duì)于滿足條件的任意點(diǎn)N,AN=CP始終成立,證明見解析.【解析】【分析】(1)由三角形的內(nèi)角和定理可求∠ACN=∠AMC=135°-∠ACM;(2)過點(diǎn)N作NE⊥AC于E,由“AAS”可證△NEC≌△CDM,可得NE=CD,由三角形面積公式可求解;(3)過點(diǎn)N作NE⊥AC于E,由“SAS”可證△NEA≌△CDP,可得AN=CP.【詳解】(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM.∵∠NCM=135°,∴∠ACN=135°﹣∠ACM,∴∠ACN=∠AMC;(2)過點(diǎn)N作NE⊥AC于E,∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,∴△NEC≌△CDM(AAS),∴NE=CD,CE=DM;∵S1AC?NE,S2AB?CD,∴;(3)當(dāng)AC=2BD時(shí),對(duì)于滿足條件的任意點(diǎn)N,AN=CP始終成立,理由如下:過點(diǎn)N作NE⊥AC于E,由(2)可得NE=CD,CE=DM.∵AC=2BD,BP=BM,CE=DM,∴AC﹣CE=BD+BD﹣DM,∴AE=BD+BP=DP.∵NE=CD,∠NEA=∠CDP=90°,AE=DP,∴△NEA≌△CDP(SAS),∴AN=PC.【點(diǎn)睛】本題三角形綜合題,考查了全等三角形的判定和性質(zhì),三角形內(nèi)角和定理,三角形面積公式等知識(shí),添加恰當(dāng)輔助線構(gòu)造全等三角形是本題的關(guān)鍵.二、選擇題16.如圖,實(shí)數(shù)﹣3、x、3、y在數(shù)軸上的對(duì)應(yīng)點(diǎn)分別為M、N、P、Q,這四個(gè)數(shù)中絕對(duì)值最小的數(shù)對(duì)應(yīng)的點(diǎn)是()A.點(diǎn)M B.點(diǎn)N C.點(diǎn)P D.點(diǎn)Q解析:B【解析】【分析】【詳解】∵實(shí)數(shù)-3,x,3,y在數(shù)軸上的對(duì)應(yīng)點(diǎn)分別為M、N、P、Q,∴原點(diǎn)在點(diǎn)P與N之間,∴這四個(gè)數(shù)中絕對(duì)值最小的數(shù)對(duì)應(yīng)的點(diǎn)是點(diǎn)N.故選B.17.下列判斷正確的是()A.3a2bc與bca2不是同類項(xiàng)B.的系數(shù)是2C.單項(xiàng)式﹣x3yz的次數(shù)是5D.3x2﹣y+5xy5是二次三項(xiàng)式解析:C【解析】【分析】根據(jù)同類項(xiàng)的定義,單項(xiàng)式和多項(xiàng)式的定義解答.【詳解】A.3d2bc與bca2所含有的字母以及相同字母的指數(shù)相同,是同類項(xiàng),故本選項(xiàng)錯(cuò)誤.B.的系數(shù)是,故本選項(xiàng)錯(cuò)誤.C.單項(xiàng)式﹣x3yz的次數(shù)是5,故本選項(xiàng)正確.D.3x2﹣y+5xy5是六次三項(xiàng)式,故本選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】本題考查了同類項(xiàng),多項(xiàng)式以及單項(xiàng)式的概念及性質(zhì).需要學(xué)生對(duì)概念的記憶,屬于基礎(chǔ)題.18.當(dāng)x取2時(shí),代數(shù)式的值是()A.0 B.1 C.2 D.3解析:B【解析】【分析】把x等于2代入代數(shù)式即可得出答案.【詳解】解:根據(jù)題意可得:把代入中得:,故答案為:B.【點(diǎn)睛】本題考查的是代入求值問題,解題關(guān)鍵就是把x的值代入進(jìn)去即可.19.下列方程中,以為解的是()A. B. C. D.解析:A【解析】【分析】把代入方程,只要是方程的左右兩邊相等就是方程的解,否則就不是.【詳解】解:A中、把代入方程得左邊等于右邊,故A對(duì);B中、把代入方程得左邊不等于右邊,故B錯(cuò);C中、把代入方程得左邊不等于右邊,故C錯(cuò);D中、把代入方程得左邊不等于右邊,故D錯(cuò).故答案為:A.【點(diǎn)睛】本題考查方程的解的知識(shí),解題關(guān)鍵在于把x值分別代入方程進(jìn)行驗(yàn)證即可.20.如圖,直線AB直線CD,垂足為O,直線EF經(jīng)過點(diǎn)O,若,則()A.35° B.45° C.55° D.125°解析:C【解析】【分析】根據(jù)對(duì)頂角相等可得:,進(jìn)而可得的度數(shù).【詳解】解:根據(jù)題意可得:,.故答案為:C.【點(diǎn)睛】本題考查的是對(duì)頂角和互余的知識(shí),解題關(guān)鍵在于等量代換.21.如圖,一副三角尺按不同的位置擺放,擺放位置中∠α與∠β不相等的圖形是()A. B. C. D.解析:C【解析】【分析】根據(jù)余角與補(bǔ)角的性質(zhì)進(jìn)行一一判斷可得答案..【詳解】解:A,根據(jù)角的和差關(guān)系可得∠α=∠β=45;B,根據(jù)同角的余角相等可得∠α=∠β;C,由圖可得∠α不一定與∠β相等;D,根據(jù)等角的補(bǔ)角相等可得∠α=∠β.故選C.【點(diǎn)睛】本題主要考查角度的計(jì)算及余角、補(bǔ)角的性質(zhì),其中等角的余角相等,等角的補(bǔ)角相等.22.若關(guān)于的方程與的解相同,則的值為()A. B. C. D.解析:D【解析】【分析】根據(jù)同解方程的定義,先求出x-2=0的解,再將它的解代入方程2k-3x=4,求得k的值.【詳解】解:∵方程2k-3x=4與x-2=0的解相同,∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.故選:D.【點(diǎn)睛】本題考查了同解方程的概念和方程的解法,關(guān)鍵是根據(jù)同解方程的定義,先求出x-2=0的解.23.將方程去分母得()A. B.C. D.解析:C【解析】【分析】方程兩邊都乘以2,再去括號(hào)即可得解.【詳解】方程兩邊都乘以2得:6-(3x-5)=2x,去括號(hào)得:6-3x+5=2x,故選:C.【點(diǎn)睛】本題主要考查了解一元一次方程,注意在去分母時(shí),方程兩端同乘各分母的最小公倍數(shù)時(shí),不要漏乘沒有分母的項(xiàng).24.如圖,數(shù)軸的單位長(zhǎng)度為1,點(diǎn)A、B表示的數(shù)互為相反數(shù),若數(shù)軸上有一點(diǎn)C到點(diǎn)B的距離為2個(gè)單位,則點(diǎn)C表示的數(shù)是()A.-1或2 B.-1或5 C.1或2 D.1或5解析:D【解析】【分析】如圖,根據(jù)點(diǎn)A、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論