版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
重慶市九龍坡區(qū)7年級數(shù)學下冊第四章三角形單元測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、三根小木棒擺成一個三角形,其中兩根木棒的長度分別是和,那么第三根小木棒的長度不可能是()A. B. C. D.2、有一個三角形的兩邊長分別為2和5,則第三邊的長可能是()A.2 B.2.5 C.3 D.53、BP是∠ABC的平分線,CP是∠ACB的鄰補角的平分線,∠ABP=20°,∠ACP=50°,則∠P=()A.30° B.40° C.50° D.60°4、以下列各組線段為邊,能組成三角形的是()A.3cm,3cm,6cm B.2cm,5cm,8cmC.25cm,24cm,7cm D.1cm,2cm,3cm5、如圖,在△ABC中,BC邊上的高為()A.AD B.BE C.BF D.CG6、有兩根長度分別為7cm,11cm的木棒,下面為第三根的長度,則可圍成一個三角形框架的是()A.3cm B.4cm C.9cm D.19cm7、如圖,點A在DE上,點F在AB上,△ABC≌△EDC,若∠ACE=50°,則∠DAB=()A.40° B.45° C.50° D.55°8、如圖是5×5的正方形網(wǎng)格中,以D,E為頂點作位置不同的格點的三角形與△ABC全等,這樣格點三角形最多可以畫出()A.2個 B.3個 C.4個 D.5個9、如圖,D為∠BAC的外角平分線上一點,過D作DE⊥AC于E,DF⊥AB交BA的延長線于F,且滿足∠FDE=∠BDC,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個10、下列長度的三條線段能組成三角形的是()A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,7第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,在Rt△ABC中,∠C=90°,兩銳角的角平分線交于點P,點E、F分別在邊BC、AC上,且都不與點C重合,若∠EPF=45°,連接EF,當AC=6,BC=8,AB=10時,則△CEF的周長為_____.2、如圖,已知AB=12m,CA⊥AB于點A,DB⊥AB于點B,且AC=4m,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m.若P,Q兩點同時出發(fā),運動_____分鐘后,△CAP與△PQB全等.3、如圖,在△ABC中,點D,E,F(xiàn)分別為BC,AD,CE的中點,且S△BEF=2cm2,則S△ABC=__________.4、如圖,為等腰的高,其中分別為線段上的動點,且,當取最小值時,的度數(shù)為_____.5、如圖,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=50°,連接AC、BD交于點M,連接OM.下列結(jié)論:①AC=BD,②∠AMB=50°;③OM平分∠AOD;④MO平分∠AMD.其中正確的結(jié)論是_____.(填序號)6、如圖,在中,D、E分別為AC、BC邊上一點,AE與BD交于點F.已知,,且的面積為60平方厘米,則的面積為______平方厘米;如果把“”改為“”其余條件不變,則的面積為______平方厘米(用含n的代數(shù)式表示).7、已知三角形的三邊分別為n,5,7,則n的范圍是_____.8、如圖,AB=CD,若要判定△ABD≌△CDB,則需要添加的一個條件是____________.9、如圖,在中,已知點,,分別為,,的中點,且,則陰影部分的面積______.10、如圖,三角形ABC的面積為1,,E為AC的中點,AD與BE相交于P,那么四邊形PDCE的面積為______.三、解答題(6小題,每小題10分,共計60分)1、李華同學用11塊高度都是1cm的相同長方體小木塊,壘了兩堵與地面垂直的木墻,木墻之間剛好可以放進一個正方形ABCD(∠ABC=90°,AB=BC),點B在EF上,點A和C分別與木墻的頂端重合,求兩堵木墻之間的距離EF.2、如圖,已知AB=AD,AC=AE,BC=DE,延長BC分別交邊AD、DE于點F、G.(1)∠B與∠D相等嗎?為什么?(2)若∠CAE=49°,求∠BGD的度數(shù).3、如圖,已知點E、C在線段BF上,,,.求證:ΔABC?ΔDEF.4、如圖1,AE與BD相交于點C,AC=EC,BC=DC.(1)求證:ABDE;(2)如圖2,過點C作PQ交AB于P,交DE于Q,求證:CP=CQ.(3)如圖3,若AB=4cm,點P從點A出發(fā),沿A→B→A方向以3cm/s的速度運動,點Q從點D出發(fā),沿D→E方向以1cm/s的速度運動,P、Q兩點同時出發(fā).當點P到達點A時,P、Q兩點同時停止運動.設(shè)點P的運動時間為t(s).連接PQ,當線段PQ經(jīng)過點C時,直接寫出t的值為.5、已知∠ACD=90°,MN是過點A的直線,AC=DC,且DB⊥MN于點B,如圖易證BD+ABCB,過程如下:解:過點C作CE⊥CB于點C,與MN交于點E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵DB⊥MN,∴∠ABC+∠CBD=90°,CE⊥CB,∴∠ABC+∠CEA=90°,∴∠CBD=∠CEA.又∵AC=DC,∴△ACE≌△DCB(AAS),∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BECB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+ABCB.(1)當MN繞A旋轉(zhuǎn)到如圖(2)位置時,BD、AB、CB滿足什么樣關(guān)系式,請寫出你的猜想,并給予證明.(2)當MN繞A旋轉(zhuǎn)到如圖(3)位置時,BD、AB、CB滿足什么樣關(guān)系式,請直接寫出你的結(jié)論.6、如圖,四邊形中,,,于點.(1)如圖1,求證:;(2)如圖2,延長交的延長線于點,點在上,連接,且,求證:;(3)如圖3,在(2)的條件下,點在的延長線上,連接,交于點,連接,且,當,時,求的長.-參考答案-一、單選題1、D【分析】設(shè)第三根木棒長為x厘米,根據(jù)三角形的三邊關(guān)系可得8﹣5<x<8+5,確定x的范圍即可得到答案.【詳解】解:設(shè)第三根木棒長為x厘米,由題意得:8﹣5<x<8+5,即3<x<13,故選:D.【點睛】此題主要考查了三角形的三邊關(guān)系,要注意三角形形成的條件:任意兩邊之和>第三邊,任意兩邊之差<第三邊.2、D【分析】根據(jù)三角形三邊關(guān)系,兩邊之和第三邊,兩邊之差小于第三邊即可判斷.【詳解】解:設(shè)第三邊為x,則5?2<x<5+2,即3<x<7,所以選項D符合題意.故選:D.【點睛】本題考查三角形三邊關(guān)系定理,記住兩邊之和第三邊,兩邊之差小于第三邊,屬于基礎(chǔ)題,中考??碱}型.3、A【分析】根據(jù)角平分線的定義以及一個三角形的外角等于與它不相鄰的兩個內(nèi)角和,可求出∠P的度數(shù).【詳解】∵BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM?∠CBP=50°?20°=30°,故選:A.【點睛】本題考查三角形外角性質(zhì)以及角平分線的定義,解題時注意:一個三角形的外角等于與它不相鄰的兩個內(nèi)角的和.4、C【分析】根據(jù)三角形三邊關(guān)系求解即可.【詳解】解:A、∵,∴3cm,3cm,6cm不能組成三角形,故選項錯誤,不符合題意;B、∵,∴2cm,5cm,8cm不能組成三角形,故選項錯誤,不符合題意;C、∵,∴25cm,24cm,7cm能組成三角形,故選項正確,符合題意;D、∵,∴1cm,2cm,3cm不能組成三角形,故選項錯誤,不符合題意.故選:C.【點睛】此題考查了三角形三邊關(guān)系,解題的關(guān)鍵是熟練掌握三角形三邊關(guān)系.三角形兩邊之和大于第三邊,兩邊之差小于第三邊.5、A【分析】根據(jù)三角形的高線的定義解答.【詳解】解:根據(jù)三角形的高的定義,AD為△ABC中BC邊上的高.故選:A.【點睛】本題主要考查了三角形的高的定義:從三角形的一個頂點向它的對邊作垂線,垂足與頂點之間的線段叫做三角形的高,熟記概念是解題的關(guān)鍵.6、C【分析】已知兩邊,則第三邊的長度應(yīng)是大于兩邊的差且小于兩邊的和,這樣就可求出第三邊長的范圍.【詳解】解:依題意得:11﹣7<x<7+11,即4<x<18,9cm適合.故選:C.【點睛】本題考查三角形三邊關(guān)系,是重要考點,掌握相關(guān)知識是解題關(guān)鍵.7、C【分析】首先根據(jù)△ABC≌△EDC得到∠E=∠BAC,然后由三角形外角的性質(zhì)求解即可.【詳解】解:∵△ABC≌△EDC,∴∠E=∠BAC,∵∠DAC=∠E+∠ACE,∴∠DAB+∠BAC=∠E+∠ACE,∴∠DAB=∠ACE=50°,故選:C.【點睛】此題考查了三角形全等的性質(zhì),三角形外角的性質(zhì),解題的關(guān)鍵是熟練掌握三角形全等的性質(zhì),三角形外角的性質(zhì).8、C【分析】觀察圖形可知:DE與AC是對應(yīng)邊,B點的對應(yīng)點在DE上方兩個,在DE下方兩個共有4個滿足要求的點,也就有四個全等三角形.【詳解】根據(jù)題意,運用“SSS”可得與△ABC全等的三角形有4個,線段DE的上方有兩個點,下方也有兩個點,如圖.故選C.【點睛】本題考查三角形全等的判定方法,解答本題的關(guān)鍵是按照順序分析,要做到不重不漏.9、D【分析】利用AAS證明△CDE≌△BDF,可判斷①④正確;再利用HL證明Rt△ADE≌Rt△ADF,可判斷②正確;由∠BAC=∠EDF,∠FDE=∠BDC,可判斷③正確.【詳解】解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,∠DFB=∠DEC=90°,∵∠FDE=∠BDC,∴∠FDB=∠EDC,在△CDE與△BDF中,,∴△CDE≌△BDF(AAS),故①正確;∴CE=BF,在Rt△ADE與Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正確;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正確;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正確故選:D.【點睛】本題主要考查了全等三角形的判定及性質(zhì),外角的性質(zhì)等,熟悉掌握全等三角形的判定方法,靈活尋找條件是解題的關(guān)鍵.10、C【分析】根據(jù)組成三角形的三邊關(guān)系依次判斷即可.【詳解】A、3,4,7中3+4=7,故不能組成三角形,與題意不符,選項錯誤.B、3,4,8中3+4<8,故不能組成三角形,與題意不符,選項錯誤.C、3,4,5中任意兩邊之和都大于第三邊,任意兩邊之差都小于第三邊,故能組成三角形,符合題意,選項正確.D、3,3,7中3+3<7,故不能組成三角形,與題意不符,選項錯誤.故選:C.【點睛】本題考查了三角形的三邊關(guān)系,在一個三角形中,任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.二、填空題1、4【分析】根據(jù)題意過點P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點J,使得MJ=FN,連接PJ,進而利用全等三角形的性質(zhì)證明EF=EM+EN,即可得出結(jié)論.【詳解】解:如圖,過點P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點J,使得MJ=FN,連接PJ.∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,∴PM=PK,PK=PN,∴PM=PN,∵∠C=∠PMC=∠PNC=90°,∴四邊形PMCN是矩形,∴四邊形PMCN是正方形,∴CM=PM,∴∠MPN=90°,在△PMJ和△PNF中,,∴△PMJ≌△PNF(SAS),∴∠MPJ=∠FPN,PJ=PF,∴∠JPF=∠MPN=90°,∵∠EPF=45°,∴∠EPF=∠EPJ=45°,在△PEF和△PEJ中,,∴△PEF≌△PEJ(SAS),∴EF=EJ,∴EF=EM+FN,∴△CEF的周長=CE+EF+CF=CE+EM+CF+FN=2EM=2PM,∵S△ABC=?BC?AC=(AC+BC+AB)?PM,∴PM=2,∴△ECF的周長為4,故答案為:4.【點睛】本題考查角平分線的性質(zhì)定理,正方形的判定,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造全等三角形解決問.2、4【分析】根據(jù)題意CA⊥AB,DB⊥AB,則,則分或兩種情況討論,根據(jù)路程等于速度乘以時間求得的長,根據(jù)全等列出一元一次方程解方程求解即可【詳解】解:CA⊥AB,DB⊥AB,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m,設(shè)運動時間為,且AC=4m,,當時則,即,解得當時,則,即,解得且不符合題意,故舍去綜上所述即分鐘后,△CAP與△PQB全等.故答案為:【點睛】本題考查了三角形全等的性質(zhì),根據(jù)全等的性質(zhì)列出方程是解題的關(guān)鍵.3、8cm2【分析】由于三角形的中線將三角形分成面積相等的兩部分,則S△CFB=S△EFB=2cm2,于是得到S△CEB=4cm2,再求出S△BDE=2cm2,利用E點為AD的中點得到S△ABD=2S△BDE=4cm2,然后利用S△ABC=2S△ABD求解.【詳解】解:∵F點為CE的中點,∴S△CFB=S△EFB=2cm2,∴S△CEB=4cm2,∵D點為BC的中點,∴S△BDE=S△BCE=2cm2,∵E點為AD的中點,∴S△ABD=2S△BDE=4cm2,∴S△ABC=2S△ABD=8cm2.故答案為:8cm2.【點睛】本題考查了三角形的中線,根據(jù)三角形的中線等分三角形的面積是解本題的關(guān)鍵.4、【分析】作,且,連接交于M,連接,證明,得到,,當F為與的交點時,即可求出最小值;【詳解】解:如圖1,作,且,連接交于M,連接,是等腰三角形,,,,,,,,在與中,,,∴當F為與的交點時,如圖2,的值最小,此時,,故答案為:.【點睛】本題主要考查了全等三角形的判定與性質(zhì),準確計算是解題的關(guān)鍵.5、①②④【分析】由證明得出,,①正確;由全等三角形的性質(zhì)得出,由三角形的外角性質(zhì)得:,得出,②正確;作于,于,如圖所示:則,利用全等三角形對應(yīng)邊上的高相等,得出,由角平分線的判定方法得出平分,④正確;假設(shè)平分,則,由全等三角形的判定定理可得,得,而,所以,而,故③錯誤;即可得出結(jié)論.【詳解】解:,,即,在和中,,,,,故①正確;,由三角形的外角性質(zhì)得:,,故②正確;作于,于,如圖所示,則,,,平分,故④正確;假設(shè)平分,則,在與中,,,,,,而,故③錯誤;所以其中正確的結(jié)論是①②④.故答案為:①②④.【點睛】本題考查了全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)、角平分線的判定等知識;證明三角形全等是解題的關(guān)鍵.6、6【分析】連接CF,依據(jù)AD=CD,BE=2CE,且△ABC的面積為60平方厘米,即可得到S△BCD=S△ABC=30,S△ACE=S△ABC=20,設(shè)S△ADF=S△CDF=x,依據(jù)S△ACE=S△FEC+S△AFC,可得,解得x=6,即可得出△ADF的面積為6平方厘米;當BE=nCE時,運用同樣的方法即可得到△ADF的面積.【詳解】如圖,連接CF,∵AD=CD,BE=2CE,且△ABC的面積為60平方厘米,∴S△BCD=S△ABC=30,S△ACE=S△ABC=20,設(shè)S△ADF=S△CDF=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x)=,∵S△ACE=S△FEC+S△AFC,∴,解得x=6,即△ADF的面積為6平方厘米;當BE=nCE時,S△AEC=,設(shè)S△AFD=S△CFD=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x),∵S△ACE=S△FEC+S△AFC,∴,解得,即△ADF的面積為平方厘米;故答案為:【點睛】本題主要考查了三角形的面積的計算,解決問題的關(guān)鍵是作輔助線,根據(jù)三角形之間的面積關(guān)系得出結(jié)論.解題時注意:三角形的中線將三角形分成面積相等的兩部分.7、2<n<12【分析】根據(jù)在三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,即可求第三邊長的范圍.【詳解】解:由三角形三邊關(guān)系定理得:7﹣5<n<7+5,即2<n<12故n的范圍是2<n<12.故答案為:2<n<12.【點睛】本題考查的是三角形三邊關(guān)系,熟知三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答此題的關(guān)鍵.8、∠1=∠2(或填A(yù)D=CB)【分析】根據(jù)題意知,在△ABD與△CDB中,AB=CD,BD=DB,所以由三角形判定定理SAS可以推知,只需添加∠1=∠2即可.由三角形判定定理SSS可以推知,只需要添加AD=CB即可.【詳解】解:∵在△ABD與△CDB中,AB=CD,BD=DB,∴添加∠1=∠2時,可以根據(jù)SAS判定△ABD≌△CDB,添加AD=CB時,可以根據(jù)SSS判定△ABD≌△CDB,,故答案為∠1=∠2(或填A(yù)D=CB).【點睛】本題考查了全等三角形的判定,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.9、【分析】根據(jù)三角形中線性質(zhì),平分三角形面積,先利用AD為△ABC中線可得S△ABD=S△ACD,根據(jù)E為AD中點,,根據(jù)BF為△BEC中線,即可.【詳解】解:∵AD為△ABC中線∴S△ABD=S△ACD,又∵E為AD中點,故,∴,∵BF為△BEC中線,∴cm2.故答案為:1cm2.【點撥】本題考查了三角形中線的性質(zhì),牢固掌握并會運用是解題關(guān)鍵.10、【分析】連接CP.設(shè)△CPE的面積是x,△CDP的面積是y.根據(jù)BD:DC=2:1,E為AC的中點,得△BDP的面積是2y,△APE的面積是x,進而得到△ABP的面積是4x.再根據(jù)△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據(jù)△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設(shè)△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點,∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點睛】本題能夠根據(jù)三角形的面積公式求得三角形的面積之間的關(guān)系.等高的兩個三角形的面積比等于它們的底的比;等底的兩個三角形的面積比等于它們的高的比.三、解答題1、11cm【分析】根據(jù)∠ABE的余角相等求出∠EAB=∠CBF,然后利用“角角邊”證明△ABE和△BCF全等,根據(jù)全等三角形對應(yīng)邊相等可得AE=BF,BE=CF,于是得到結(jié)論.【詳解】解:∵AE⊥EF,CF⊥EF,∴∠AEB=∠BFC=90°,∴∠EAB+∠ABE=90°,∵∠ABC=90°,∴∠ABE+∠CBF=90°,∴∠EAB=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴AE=BF=5cm,BE=CF=6cm,∴EF=5+6=11(cm).【點睛】本題考查了全等三角形的判定和性質(zhì),掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(zhì)(即全等三角形的對應(yīng)邊相等、對應(yīng)角相等)是解題的關(guān)鍵.2、(1)相等,理由見解析;(2).【分析】(1)根據(jù)SSS證明,然后由全等三角形對應(yīng)邊相等即可證明;(2)由可得,進而可求出,然后根據(jù)三角形外角的性質(zhì)即可求出∠BGD的度數(shù).【詳解】解:(1)相等,理由如下:在和中,∴,∴;(2)∵,∴,∴,∵,,∴.【點睛】此題考查了全等三角形的性質(zhì)和判定,三角形外角的性質(zhì),解題的關(guān)鍵是熟練掌握根據(jù)題意證明.3、見解析【分析】由平行線的性質(zhì)可證明.再由,可推出.最后即可利用“ASA”直接證明.【詳解】證明:,即.∴在和中,.【點睛】本題考查三角形全等的判定,平行線的性質(zhì),線段的和與差.掌握三角形全等的判定條件是解答本題的關(guān)鍵.4、(1)見詳解;(2)見詳解;(3)1或2【分析】(1)由“SAS”可證△ABC≌△EDC,可得∠A=∠E,可證AB∥DE;(2)由“ASA”可證△DCQ≌△BCP,可得CP=CQ;(3)由全等三角形的性質(zhì)可得DQ=BP,列出方程可求解.【詳解】解:(1)證明:在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),∴∠A=∠E,∴AB∥DE;(2)證明:∵AB∥DE,∴∠B=∠D,在△DCQ和△BCP中,,∴△DCQ≌△BCP(ASA),∴CP=CQ;(3)解:由(2)可知:當線段PQ經(jīng)過點C時,△DCQ≌△BCP,可得DQ=BP,∴4﹣3t=t或3t﹣4=t,∴t=1或2.故答案為:1或2.【點睛】本題考查了全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解本題的關(guān)鍵.5、(1)AB-BD=CB,證明見解析.(2)BD-AB=CB,證明見解析.【分析】(1)仿照圖(1)的解題過程即可解答.過點C作CE⊥CB于點C,與MN交于點E,根據(jù)同角(等角)的余角相等可證∠BCD=∠ACE及∠CAE=∠D,由ASA可證△ACE≌△DCB,然后由全等三角形的對應(yīng)邊相等可得:AE=DB,CE=CB,從而確定△ECB為等腰直角三角形,由勾股定理可得:BE=CB,由BE=AB-AE,可得BE=AB-BD,即AB-BD=CB;(2)解題思路同(1),過點C作CE⊥CB于點C,與MN交于點E,根據(jù)等角的余角相等及等式的性質(zhì)可證∠BCD=∠ACE及∠CAE=∠D,由ASA可證△ACE≌△DCB,然后由全等三角形的對應(yīng)邊相等可得:AE=DB,CE=CB,從而確定△ECB為等腰直角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職移動機器人技術(shù)(多機器人協(xié)作)試題及答案
- 2025年中職幼兒教育學(教育理念)試題及答案
- 2025年中職(船舶機械裝置安裝與維修)機械維修階段測試題及答案
- 2025年高職眼視光技術(shù)(眼鏡加工)試題及答案
- 2025年中職人工智能技術(shù)應(yīng)用(AI技術(shù)文檔撰寫)試題及答案
- 2025年大學管理學(成本管理)試題及答案
- 道路危險貨物運輸安全標準化制度匯編
- 湖南省長沙2025年八年級上學期期末物理試題附答案
- 河北省滄州市2025-2026學年高二上學期期末語文試題(含答案)
- 中國冶金地質(zhì)總局礦產(chǎn)資源研究院2026年高校畢業(yè)生招聘備考題庫含答案詳解
- 2026年浙江省公務(wù)員考試《行測》真題(A類)
- 2025年黨務(wù)干部考試題目及答案
- 2025上海開放大學(上海市電視中等專業(yè)學校)工作人員招聘3人(二)考試筆試參考題庫附答案解析
- 海外安保培訓核心科目
- 2024-2025學年安徽省合肥市蜀山區(qū)七年級上學期期末考試數(shù)學試卷
- 統(tǒng)編版 2025-2026學年 語文三年級上冊 第六單元 綜合過關(guān)驗收卷 (有答案)
- 九年級語文議論文寫作教學設(shè)計
- 食用菌產(chǎn)業(yè)標準化體系建設(shè)方案
- 中小學、幼兒園食堂大宗食材采購服務(wù)方案投標文件(技術(shù)方案)
- 金融行業(yè)量化投資策略與風險控制的理論基礎(chǔ)研究報告
- 2025年山東省棗莊市八中高考英語模擬試卷(4月份)
評論
0/150
提交評論