黑龍江工程學(xué)院《展示空間設(shè)計》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁
黑龍江工程學(xué)院《展示空間設(shè)計》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁
黑龍江工程學(xué)院《展示空間設(shè)計》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁
黑龍江工程學(xué)院《展示空間設(shè)計》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁
黑龍江工程學(xué)院《展示空間設(shè)計》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共2頁黑龍江工程學(xué)院《展示空間設(shè)計》2024-2025學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺中,以下哪種方法常用于圖像的顯著目標(biāo)檢測中的高層語義信息利用?()A.深度學(xué)習(xí)B.圖模型C.注意力機制D.以上都是2、在計算機視覺中,圖像增強技術(shù)用于改善圖像的質(zhì)量。以下關(guān)于圖像增強的描述,不正確的是()A.圖像增強可以包括對比度增強、銳化、去噪等操作B.圖像增強的目的是使圖像更適合人類視覺觀察或后續(xù)的處理任務(wù)C.過度的圖像增強可能會導(dǎo)致圖像失真或引入噪聲D.圖像增強只對低質(zhì)量的圖像有效果,對于高質(zhì)量的圖像沒有必要進行增強3、在計算機視覺中,圖像分割旨在將圖像劃分為不同的區(qū)域,每個區(qū)域具有相似的特征。以下關(guān)于圖像分割的敘述,不正確的是()A.圖像分割可以基于像素的顏色、紋理等特征進行B.深度學(xué)習(xí)方法在圖像分割中取得了顯著的成果,如全卷積網(wǎng)絡(luò)(FCN)C.圖像分割在醫(yī)學(xué)影像分析、自動駕駛場景理解等方面具有重要作用D.圖像分割的結(jié)果總是完美的,能夠準(zhǔn)確地將圖像中的所有物體都分割出來4、圖像檢索是計算機視覺的一個重要應(yīng)用。假設(shè)我們要在一個大型圖像數(shù)據(jù)庫中快速找到與給定查詢圖像相似的圖像,以下哪種圖像表示方法可能對提高檢索效率有幫助?()A.全局特征表示B.局部特征表示C.基于深度學(xué)習(xí)的特征表示D.基于顏色直方圖的特征表示5、計算機視覺在自動駕駛領(lǐng)域有廣泛的應(yīng)用。假設(shè)一輛自動駕駛汽車需要識別道路上的交通標(biāo)志,以下關(guān)于自動駕駛中的計算機視覺應(yīng)用的描述,哪一項是不正確的?()A.多攝像頭融合可以提供更全面的道路信息,提高交通標(biāo)志識別的準(zhǔn)確性B.深度學(xué)習(xí)模型可以實時處理攝像頭采集的圖像,快速準(zhǔn)確地識別交通標(biāo)志C.除了交通標(biāo)志識別,計算機視覺還可以用于車道檢測、行人檢測和障礙物檢測等任務(wù)D.自動駕駛中的計算機視覺系統(tǒng)完全不需要其他傳感器(如雷達、激光雷達)的輔助,僅依靠圖像信息就能實現(xiàn)安全可靠的駕駛6、在計算機視覺的圖像超分辨率重建中,假設(shè)我們要將低分辨率的圖像重建為高分辨率圖像,同時保持圖像的細(xì)節(jié)和紋理。以下哪種深度學(xué)習(xí)架構(gòu)可能在這方面表現(xiàn)較好?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.生成對抗網(wǎng)絡(luò)(GAN)D.自動編碼器(Autoencoder)7、在計算機視覺的圖像檢索任務(wù)中,假設(shè)要從一個大型圖像數(shù)據(jù)庫中快速找到與給定查詢圖像相似的圖像。這些圖像可能在內(nèi)容、風(fēng)格和主題上存在差異。為了提高檢索的效率和準(zhǔn)確性,以下哪種方法通常被采用?()A.基于全局特征的圖像表示和相似性度量B.只對圖像的標(biāo)簽進行文本匹配,忽略圖像內(nèi)容C.隨機選擇數(shù)據(jù)庫中的圖像作為檢索結(jié)果D.不進行任何預(yù)處理,直接在原始圖像上進行檢索8、在計算機視覺的圖像分割任務(wù)中,假設(shè)要對細(xì)胞圖像進行精細(xì)分割。以下關(guān)于模型選擇的考慮因素,哪一項是不準(zhǔn)確的?()A.模型對細(xì)胞邊界的捕捉能力B.模型在小樣本數(shù)據(jù)上的泛化能力C.模型的訓(xùn)練時間和計算資源需求D.模型的知名度和在學(xué)術(shù)圈的引用次數(shù)9、對于視頻中的目標(biāo)跟蹤任務(wù),假設(shè)目標(biāo)在視頻中經(jīng)歷了快速的外觀變化和嚴(yán)重的遮擋。以下哪種策略有助于保持跟蹤的準(zhǔn)確性和穩(wěn)定性?()A.結(jié)合目標(biāo)的運動模型和外觀模型進行預(yù)測B.僅依賴目標(biāo)的初始外觀特征進行跟蹤C.當(dāng)出現(xiàn)遮擋時,停止跟蹤并等待目標(biāo)重新出現(xiàn)D.隨機調(diào)整跟蹤算法的參數(shù)10、在計算機視覺的三維重建任務(wù)中,我們需要從多幅二維圖像中恢復(fù)物體的三維結(jié)構(gòu)。假設(shè)我們只有少量的、視角有限的圖像,以下哪種重建方法可能面臨較大挑戰(zhàn)?()A.基于立體視覺的重建方法B.基于運動恢復(fù)結(jié)構(gòu)(StructurefromMotion)的方法C.利用激光掃描數(shù)據(jù)進行重建D.基于模型擬合的重建方法11、計算機視覺中的場景理解需要從圖像中推斷出物體之間的關(guān)系和場景的語義信息。假設(shè)要理解一張室內(nèi)辦公室場景的圖像,包括家具的布局、人員的活動等。以下哪種方法在進行場景理解時最為有效?()A.基于對象檢測和分類的方法B.基于圖模型的場景表示C.基于深度學(xué)習(xí)的場景解析D.基于規(guī)則推理的方法12、假設(shè)要構(gòu)建一個能夠?qū)Ψb進行款式和顏色識別的計算機視覺系統(tǒng),用于時尚推薦和庫存管理。在處理服裝圖像時,由于服裝的款式和顏色變化多樣,以下哪種特征表示方法可能更適合?()A.手工設(shè)計的特征B.基于深度學(xué)習(xí)的自動特征C.顏色直方圖D.以上都是13、計算機視覺中的動作識別是一個具有挑戰(zhàn)性的任務(wù)。假設(shè)要識別一段體育比賽視頻中的運動員動作,以下關(guān)于特征選擇的方法,哪一項是不太可行的?()A.提取運動員的身體輪廓和關(guān)節(jié)位置作為特征B.僅使用視頻的音頻信息來判斷運動員的動作C.計算視頻幀之間的光流變化作為動作特征D.結(jié)合空間和時間維度的特征來描述動作14、計算機視覺中的特征提取是非常關(guān)鍵的步驟。假設(shè)要從一組圖像中提取具有代表性的特征,以下關(guān)于特征提取方法的描述,正確的是:()A.手工設(shè)計的特征,如SIFT和HOG,在任何情況下都比深度學(xué)習(xí)自動學(xué)習(xí)的特征更有效B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動學(xué)習(xí)到圖像的多層次特征,具有很強的表達能力C.特征提取的結(jié)果對后續(xù)的圖像分類和目標(biāo)檢測任務(wù)沒有影響D.特征提取只需要考慮圖像的局部信息,全局信息不重要15、計算機視覺中的視頻目標(biāo)跟蹤中,假設(shè)目標(biāo)在跟蹤過程中發(fā)生了嚴(yán)重的形變。以下關(guān)于處理目標(biāo)形變的方法描述,正確的是:()A.基于模板匹配的跟蹤方法能夠自適應(yīng)地處理目標(biāo)形變,保持跟蹤的準(zhǔn)確性B.特征點跟蹤方法對目標(biāo)形變不敏感,在這種情況下仍然能夠可靠跟蹤C.深度學(xué)習(xí)中的孿生網(wǎng)絡(luò)在目標(biāo)形變時容易丟失目標(biāo),無法繼續(xù)跟蹤D.結(jié)合多種特征和模型更新策略可以提高對目標(biāo)形變的跟蹤魯棒性16、計算機視覺中的全景圖像拼接是將多個視角的圖像組合成一個全景圖像。假設(shè)我們有一組用普通相機拍攝的場景照片,要拼接成一個無縫的全景圖,以下哪個步驟對于拼接的質(zhì)量影響最大?()A.特征點提取和匹配B.圖像融合和過渡處理C.相機參數(shù)估計和校正D.圖像的裁剪和縮放17、計算機視覺中的圖像增強旨在改善圖像的質(zhì)量和視覺效果。假設(shè)一張低對比度、有噪聲的醫(yī)學(xué)圖像需要進行增強處理,以突出病變區(qū)域并減少噪聲的影響。以下哪種圖像增強技術(shù)最為適合?()A.直方圖均衡化B.中值濾波C.高斯濾波D.銳化濾波18、在計算機視覺的圖像去霧任務(wù)中,假設(shè)要去除一張有霧圖像中的霧氣,恢復(fù)清晰的場景。以下關(guān)于圖像去霧方法的描述,正確的是:()A.基于物理模型的去霧方法需要準(zhǔn)確估計霧的濃度和傳播參數(shù),否則效果不佳B.基于深度學(xué)習(xí)的去霧方法能夠自動學(xué)習(xí)霧的特征,但對濃霧的處理能力有限C.圖像去霧后,顏色和對比度會發(fā)生嚴(yán)重失真,影響視覺效果D.所有的圖像去霧方法都能夠在各種復(fù)雜的霧天條件下取得理想的效果19、在計算機視覺的圖像生成任務(wù)中,假設(shè)要生成具有真實感的自然圖像。以下關(guān)于圖像生成方法的描述,正確的是:()A.生成對抗網(wǎng)絡(luò)(GAN)能夠生成逼真的圖像,但訓(xùn)練過程不穩(wěn)定,容易模式崩潰B.變分自編碼器(VAE)生成的圖像多樣性好,但真實感不如GAN生成的圖像C.自回歸模型在圖像生成中效率高,能夠快速生成高質(zhì)量的圖像D.所有的圖像生成方法都能夠生成與真實世界完全一致的圖像20、在計算機視覺的實際應(yīng)用中,模型的實時性是一個重要的考慮因素。以下關(guān)于實時性的描述,不正確的是()A.對于一些需要實時響應(yīng)的應(yīng)用,如自動駕駛和工業(yè)檢測,模型的處理速度至關(guān)重要B.模型的復(fù)雜度、計算資源和算法效率都會影響實時性C.可以通過模型壓縮、硬件加速和優(yōu)化算法等方法來提高模型的實時性D.實時性只與模型本身有關(guān),與硬件設(shè)備和系統(tǒng)架構(gòu)無關(guān)二、簡答題(本大題共3個小題,共15分)1、(本題5分)描述計算機視覺在旱災(zāi)監(jiān)測中的應(yīng)用。2、(本題5分)解釋計算機視覺中的圖像分類中的數(shù)據(jù)增強方法。3、(本題5分)簡述計算機視覺在志愿者服務(wù)中的應(yīng)用。三、分析題(本大題共5個小題,共25分)1、(本題5分)分析某城市的地鐵線路圖設(shè)計,探討其簡潔性、易讀性、色彩區(qū)分等方面如何方便乘客出行。2、(本題5分)觀察某藝術(shù)培訓(xùn)機構(gòu)的宣傳海報設(shè)計,分析其如何展示教學(xué)成果、師資力量和課程特色,吸引學(xué)員報名。3、(本題5分)某音樂演出的舞臺背景設(shè)計配合音樂主題,運用多媒體技術(shù)營造出震撼的視覺效果。請分析舞臺背景設(shè)計在增強演出感染力、提升觀眾體驗、突出演出特色方面的手法和成效,以及如何與音樂表演完美

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論