版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
滬科版9年級(jí)下冊(cè)期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、擲一枚質(zhì)地均勻的骰子,向上一面的點(diǎn)數(shù)大于2且小于5的概率是()A. B. C. D.2、已知菱形ABCD的對(duì)角線交于原點(diǎn)O,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,則點(diǎn)D的坐標(biāo)是()A. B. C. D.3、圖2是由圖1經(jīng)過(guò)某一種圖形的運(yùn)動(dòng)得到的,這種圖形的運(yùn)動(dòng)是()A.平移 B.翻折 C.旋轉(zhuǎn) D.以上三種都不對(duì)4、如圖,為正六邊形邊上一動(dòng)點(diǎn),點(diǎn)從點(diǎn)出發(fā),沿六邊形的邊以1cm/s的速度按逆時(shí)針?lè)较蜻\(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)停止.設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為,以點(diǎn)、、為頂點(diǎn)的三角形的面積是,則下列圖像能大致反映與的函數(shù)關(guān)系的是()A. B.C. D.5、如圖是下列哪個(gè)立體圖形的主視圖()A. B.C. D.6、一個(gè)黑色布袋中裝有3個(gè)紅球和2個(gè)白球,這些球除顏色外其它都相同,從袋子中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率是()A. B. C. D.7、如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),且PA=3,PB=4,PC=5,則∠APB的度數(shù)是().A.90° B.100° C.120° D.150°8、下列各點(diǎn)中,關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn)是()A.(﹣5,0)與(0,5) B.(0,2)與(2,0)C.(﹣2,﹣1)與(﹣2,1) D.(2,﹣1)與(﹣2,1)第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,在中,,分別以、、邊為直徑作半圓,圖中陰影部分在數(shù)學(xué)史上稱為“希波克拉底月牙”.當(dāng),時(shí),則陰影部分的面積為_(kāi)_________.2、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如圖所示,將△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°后得到△AB′C′.則圖中陰影部分的面積為_(kāi)____.3、一個(gè)五邊形共有__________條對(duì)角線.4、如圖,正方形ABCD的邊長(zhǎng)為1,⊙O經(jīng)過(guò)點(diǎn)C,CM為⊙O的直徑,且CM=1.過(guò)點(diǎn)M作⊙O的切線分別交邊AB,AD于點(diǎn)G,H.BD與CG,CH分別交于點(diǎn)E,F(xiàn),⊙O繞點(diǎn)C在平面內(nèi)旋轉(zhuǎn)(始終保持圓心O在正方形ABCD內(nèi)部).給出下列四個(gè)結(jié)論:①HD=2BG;②∠GCH=45°;③H,F(xiàn),E,G四點(diǎn)在同一個(gè)圓上;④四邊形CGAH面積的最大值為2.其中正確的結(jié)論有_____(填寫所有正確結(jié)論的序號(hào)).5、在一個(gè)不透明的袋子里,有2個(gè)白球和2個(gè)紅球,它們只有顏色上的區(qū)別,從袋子里隨機(jī)摸出兩個(gè)球,則摸到兩個(gè)都是紅球的概率是_______.6、數(shù)學(xué)興趣活動(dòng)課上,小方將等腰的底邊BC與直線l重合,問(wèn):(1)如圖(1)已知,,點(diǎn)P在BC邊所在的直線l上移動(dòng),小方發(fā)現(xiàn)AP的最小值是______;(2)如圖(2)在直角中,,,,點(diǎn)D是CB邊上的動(dòng)點(diǎn),連接AD,將線段AD順時(shí)針旋轉(zhuǎn)60°,得到線段AP,連接CP,線段CP的最小值是______.7、在Rt△ABC中,∠ACB=90°,AC=AB,點(diǎn)E、F分別是邊CA、CB的中點(diǎn),已知點(diǎn)P在線段EF上,聯(lián)結(jié)AP,將線段AP繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段DP,如果點(diǎn)P、D、C在同一直線上,那么tan∠CAP=_______.三、解答題(7小題,每小題0分,共計(jì)0分)1、如圖,是的弦,是上的一點(diǎn),且,于點(diǎn),交于點(diǎn).若的半徑為6,求弦的長(zhǎng).2、定理:一條弧所對(duì)的圓周角等于這條弧所對(duì)的圓心角的一半.如圖1,∠A=∠O.已知:如圖2,AC是⊙O的一條弦,點(diǎn)D在⊙O上(與A、C不重合),聯(lián)結(jié)DE交射線AO于點(diǎn)E,聯(lián)結(jié)OD,⊙O的半徑為5,tan∠OAC=.(1)求弦AC的長(zhǎng).(2)當(dāng)點(diǎn)E在線段OA上時(shí),若△DOE與△AEC相似,求∠DCA的正切值.(3)當(dāng)OE=1時(shí),求點(diǎn)A與點(diǎn)D之間的距離(直接寫出答案).3、為了引導(dǎo)青少年學(xué)黨史,某中學(xué)舉行了“獻(xiàn)禮建黨百年”黨史知識(shí)競(jìng)賽活動(dòng),將成績(jī)劃分為四個(gè)等級(jí):A(優(yōu)秀)、B(優(yōu)良)、C(合格)、D(不合格).小李隨機(jī)調(diào)查了部分同學(xué)的競(jìng)賽成績(jī),繪制成了如下統(tǒng)計(jì)圖(部分信息未給出):(1)小李共抽取了名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,扇形統(tǒng)計(jì)圖中“優(yōu)秀”等級(jí)對(duì)應(yīng)的扇形圓心角度數(shù)為,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;(2)該校共有2000名學(xué)生,請(qǐng)你估計(jì)該校競(jìng)賽成績(jī)“優(yōu)秀”的學(xué)生人數(shù);(3)已知調(diào)查對(duì)象中只有兩位女生競(jìng)賽成績(jī)不合格,小李準(zhǔn)備隨機(jī)回訪兩位競(jìng)賽成績(jī)不合格的同學(xué),請(qǐng)用樹(shù)狀圖或列表法求出恰好回訪到一男一女的概率.4、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點(diǎn)G,且,過(guò)點(diǎn)C作的垂線交的延長(zhǎng)線于點(diǎn)H.(1)判斷與⊙的位置關(guān)系并說(shuō)明理由;(2)若,求弧的長(zhǎng).5、如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),連接BC,半徑OD弦BC.(1)求證:弧AD=弧CD;(2)連接AC、BD相交于點(diǎn)F,AC與OD相交于點(diǎn)E,連接CD,若⊙O的半徑為5,BC=6,求CD和EF的長(zhǎng).6、隨著“新冠肺炎”疫情防控形勢(shì)日漸好轉(zhuǎn),各地開(kāi)始復(fù)工復(fù)學(xué),某校復(fù)學(xué)后成立“防疫志愿者服務(wù)隊(duì)”,設(shè)立四個(gè)“服務(wù)監(jiān)督崗”:①洗手監(jiān)督崗,②戴口罩監(jiān)督崗,③就餐監(jiān)督崗,④操場(chǎng)活動(dòng)監(jiān)督崗.李老師和王老師報(bào)名參加了志愿者服務(wù)工作,學(xué)校將報(bào)名的志愿者隨機(jī)分配到四個(gè)監(jiān)督崗.(1)王老師被分配到“就餐監(jiān)督崗”的概率為;(2)用列表法或畫樹(shù)狀圖法,求李老師和王老師被分配到同一個(gè)監(jiān)督崗的概率.7、為堅(jiān)持“五育并舉”,落實(shí)立德樹(shù)人根本任務(wù),教育部出臺(tái)了“五項(xiàng)管理”舉措.我校對(duì)九年級(jí)部分家長(zhǎng)就“五項(xiàng)管理”知曉情況作調(diào)查,A:完全知曉,B:知曉,C:基本知曉,D:不知曉.九年級(jí)組長(zhǎng)將調(diào)查情況制成了如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,回答下列問(wèn)題:(1)共調(diào)查了多少名家長(zhǎng)?寫出圖2中選項(xiàng)所對(duì)應(yīng)的圓心角,并補(bǔ)齊條形統(tǒng)計(jì)圖;(2)我校九年級(jí)共有450名家長(zhǎng),估計(jì)九年級(jí)“不知曉五項(xiàng)管理”舉措的家長(zhǎng)有多少人;(3)已知選項(xiàng)中男女家長(zhǎng)數(shù)相同,若從選項(xiàng)家長(zhǎng)中隨機(jī)抽取2名家長(zhǎng)參加“家校共育”座談會(huì),請(qǐng)用列表或畫樹(shù)狀圖的方法,求抽取家長(zhǎng)都是男家長(zhǎng)的概率.-參考答案-一、單選題1、C【分析】根據(jù)骰子各面上的數(shù)字得到向上一面的點(diǎn)數(shù)可能是3或4,利用概率公式計(jì)算即可.【詳解】解:一枚質(zhì)地均勻的骰子共有六個(gè)面,點(diǎn)數(shù)分別為1,2,3,4,5,6,∴點(diǎn)數(shù)大于2且小于5的有3或4,∴向上一面的點(diǎn)數(shù)大于2且小于5的概率是=,故選:C.【點(diǎn)睛】此題考查了求簡(jiǎn)單事件的概率,正確掌握概率的計(jì)算公式是解題的關(guān)鍵.2、A【分析】根據(jù)菱形是中心對(duì)稱圖形,菱形ABCD的對(duì)角線交于原點(diǎn)O,則點(diǎn)與點(diǎn)關(guān)于原點(diǎn)中心對(duì)稱,根據(jù)中心對(duì)稱的點(diǎn)的坐標(biāo)特征進(jìn)行求解即可【詳解】解:∵菱形是中心對(duì)稱圖形,菱形ABCD的對(duì)角線交于原點(diǎn)O,∴與點(diǎn)關(guān)于原點(diǎn)中心對(duì)稱,點(diǎn)B的坐標(biāo)為,點(diǎn)D的坐標(biāo)是故選A【點(diǎn)睛】本題考查了菱形的性質(zhì),求關(guān)于原點(diǎn)中心對(duì)稱的點(diǎn)的坐標(biāo),掌握菱形的性質(zhì)是解題的關(guān)鍵.3、C【詳解】解:根據(jù)圖形可知,這種圖形的運(yùn)動(dòng)是旋轉(zhuǎn)而得到的,故選:C.【點(diǎn)睛】本題考查了圖形的旋轉(zhuǎn),熟記圖形的旋轉(zhuǎn)的定義(把一個(gè)平面圖形繞平面內(nèi)某一點(diǎn)轉(zhuǎn)動(dòng)一個(gè)角度,叫做圖形的旋轉(zhuǎn))是解題關(guān)鍵.4、A【分析】設(shè)正六邊形的邊長(zhǎng)為1,當(dāng)在上時(shí),過(guò)作于而求解此時(shí)的函數(shù)解析式,當(dāng)在上時(shí),延長(zhǎng)交于點(diǎn)過(guò)作于并求解此時(shí)的函數(shù)解析式,當(dāng)在上時(shí),連接并求解此時(shí)的函數(shù)解析式,由正六邊形的對(duì)稱性可得:在上的圖象與在上的圖象是對(duì)稱的,在上的圖象與在上的圖象是對(duì)稱的,從而可得答案.【詳解】解:設(shè)正六邊形的邊長(zhǎng)為1,當(dāng)在上時(shí),過(guò)作于而當(dāng)在上時(shí),延長(zhǎng)交于點(diǎn)過(guò)作于同理:則為等邊三角形,當(dāng)在上時(shí),連接由正六邊形的性質(zhì)可得:由正六邊形的對(duì)稱性可得:而由正六邊形的對(duì)稱性可得:在上的圖象與在上的圖象是對(duì)稱的,在上的圖象與在上的圖象是對(duì)稱的,所以符合題意的是A,故選A【點(diǎn)睛】本題考查的是動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象,銳角三角函數(shù)的應(yīng)用,正多邊形的性質(zhì),清晰的分類討論是解本題的關(guān)鍵.5、B【分析】根據(jù)主視圖即從物體正面觀察所得的視圖求解即可.【詳解】解:的主視圖為,故選:B.【點(diǎn)睛】本題主要考查由三視圖判斷幾何體,解題的關(guān)鍵是掌握由三視圖想象幾何體的形狀,首先,應(yīng)分別根據(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側(cè)面的形狀,然后綜合起來(lái)考慮整體形狀.6、D【分析】根據(jù)隨機(jī)事件概率的求法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A),進(jìn)行計(jì)算即可.【詳解】解:∵一個(gè)黑色布袋中裝有3個(gè)紅球和2個(gè)白球,這些球除顏色外其它都相同,∴抽到每個(gè)球的可能性相同,∴布袋中任意摸出1個(gè)球,共有5種可能,摸到白球可能的次數(shù)為2次,摸到白球的概率是,∴P(白球).故選:D.【點(diǎn)睛】本題考查了隨機(jī)事件概率的求法,熟練掌握隨機(jī)事件概率公式是解題關(guān)鍵.7、D【分析】將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得,根據(jù)旋轉(zhuǎn)的性質(zhì)得,,,則為等邊三角形,得到,,在中,,,,根據(jù)勾股定理的逆定理可得到為直角三角形,且,即可得到的度數(shù).【詳解】解:為等邊三角形,,可將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得,如圖,連接,,,,為等邊三角形,,,在中,,,,,為直角三角形,且,.故選:D.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形,解題的關(guān)鍵是掌握旋轉(zhuǎn)前后的兩個(gè)圖形全等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.8、D【分析】根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù),可得答案.【詳解】解:A、(﹣5,0)與(0,5)橫、縱坐標(biāo)不滿足關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù)的特征,故A錯(cuò)誤;B、(0,2)與(2,0)橫、縱坐標(biāo)不滿足關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù)的特征,故B錯(cuò)誤;C、(﹣2,﹣1)與(﹣2,1)關(guān)于x軸對(duì)稱,故C錯(cuò)誤;D、關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù),故D正確;故選:D.【點(diǎn)睛】本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo),關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù).二、填空題1、【分析】根據(jù)陰影部分面積等于以為直徑的2個(gè)半圓的面積加上減去為半徑的半圓面積即.【詳解】解:在中,,,.故答案為:【點(diǎn)睛】本題考查了勾股定理,求扇形面積,直徑所對(duì)的圓周角是直角,掌握?qǐng)A周角定理是解題的關(guān)鍵.2、【分析】利用勾股定理求出AC及AB的長(zhǎng),根據(jù)陰影面積等于求出答案.【詳解】解:由旋轉(zhuǎn)得,,=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,∴AC=2BC=2,AB=,,∴陰影部分的面積==,故答案為:..【點(diǎn)睛】此題考查了求不規(guī)則圖形的面積,正確掌握勾股定理、30度角直角三角形的性質(zhì)、扇形面積計(jì)算公式及分析出陰影面積的構(gòu)成特點(diǎn)是解題的關(guān)鍵.3、5【分析】由n邊形的對(duì)角線有:條,再把代入計(jì)算即可得.【詳解】解:邊形共有條對(duì)角線,五邊形共有條對(duì)角線.故答案為:5【點(diǎn)睛】本題考查的是多邊形的對(duì)角線的條數(shù),掌握n邊形的對(duì)角線的條數(shù)是解題的關(guān)鍵.4、②③④【分析】根據(jù)切線的性質(zhì),正方形的性質(zhì),通過(guò)三角形全等,證明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判斷前兩個(gè)結(jié)論;運(yùn)用對(duì)角互補(bǔ)的四邊形內(nèi)接于圓,證明∠GHF+∠GEF=180°,取GH的中點(diǎn)P,連接PA,則PA+PC≥AC,當(dāng)PC最大時(shí),PA最小,根據(jù)直徑是圓中最大的弦,故PC=1時(shí),PA最小,計(jì)算即可.【詳解】∵GH是⊙O的切線,M為切點(diǎn),且CM是⊙O的直徑,∴∠CMH=90°,∵四邊形ABCD是正方形,∴∠CMH=∠CDH=90°,∵CM=CD,CH=CH,∴△CMH≌△CDH,∴HD=HM,∠HCM=∠HCD,同理可證,∴GM=GB,∠GCB=∠GCM,∴GB+DH=GH,無(wú)法確定HD=2BG,故①錯(cuò)誤;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正確;∵△CMH≌△CDH,BD是正方形的對(duì)角線,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF+∠GCH+∠EFC=∠DHF+∠HDF+∠HFD=180°,根據(jù)對(duì)角互補(bǔ)的四邊形內(nèi)接于圓,∴H,F(xiàn),E,G四點(diǎn)在同一個(gè)圓上,故③正確;∵正方形ABCD的邊長(zhǎng)為1,∴=1=,∠GAH=90°,AC=取GH的中點(diǎn)P,連接PA,∴GH=2PA,∴=,∴當(dāng)PA取最小值時(shí),有最大值,連接PC,AC,則PA+PC≥AC,∴PA≥AC-PC,∴當(dāng)PC最大時(shí),PA最小,∵直徑是圓中最大的弦,∴PC=1時(shí),PA最小,∴當(dāng)A,P,C三點(diǎn)共線時(shí),且PC最大時(shí),PA最小,∴PA=-1,∴最大值為:1-(-1)=2-,∴四邊形CGAH面積的最大值為2,∴④正確;故答案為:②③④.【點(diǎn)睛】本題考查了切線的性質(zhì),直徑是最大的弦,三角形的全等,直角三角形斜邊上的中線,四點(diǎn)共圓,正方形的性質(zhì),熟練掌握?qǐng)A的性質(zhì),靈活運(yùn)用直角三角形的性質(zhì),線段最短原理是解題的關(guān)鍵.5、【分析】先用列表法分析所有等可能的結(jié)果和摸到兩個(gè)都是紅球的結(jié)果數(shù),然后根據(jù)概率公式求解即可.【詳解】解:記紅球?yàn)?,白球?yàn)椋斜淼茫骸咭还灿?2種情況,摸到兩個(gè)都是紅球有2種,∴P(兩個(gè)球都是紅球),故答案是.【點(diǎn)睛】本題主要考查了用列表法或畫樹(shù)狀圖法求概率,列表法或畫樹(shù)狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.6、105【分析】(1)如圖,作AH⊥BC于H.根據(jù)垂線段最短,求出AH即可解決問(wèn)題.(2)如圖,在AB上取一點(diǎn)K,使得AK=AC,連接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC時(shí),KD的值最小,求出KD的最小值即可解決問(wèn)題.【詳解】解:如圖作AH⊥BC于H,∵AB=AC=20,,∴,∵,∴,根據(jù)垂線段最短可知,當(dāng)AP與AH重合時(shí),PA的值最小,最小值為10.∴AP的最小值是10;(2)如圖,在AB上取一點(diǎn)K,使得AK=AC,連接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC時(shí),KD的值最小,∵,是等邊三角形,∴,∴PC的最小值為5.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),垂線段最短,全等三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題.7、【分析】①如圖1所示,由題意知,EF為△ABC的中位線,∠EFC=∠ABC=45°,∠PAO=45°,∠PAO=∠OFH,∠POA=∠FOH,∠H=∠APO,在Rt△APC中,EA=EC,有PE=EA=EC,∠EPA=∠EAP=∠BAH,∠H=∠BAH,BH=BA,∠ADP=∠BDC=45°,∠ADB=90°,知BD⊥AH,∠DBA=∠DBC=22.5°,∠ADB=∠ACB=90°,有A,D,C,B四點(diǎn)共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∠DAC=∠DCA=22.5°,知DA=DC,設(shè)AD=a,則DC=AD=a,PD=a=AP,tan∠CAP==計(jì)算求解即可;②如圖2所示,當(dāng)點(diǎn)P在線段CD上時(shí),同理可證:DA=DC,設(shè)AD=a,則CD=AD=a,PD=,PC=a﹣a,tan∠CAP=,計(jì)算求解即可,而情形2滿足要求.【詳解】解:①如圖1,當(dāng)點(diǎn)D在線段PC上時(shí),延長(zhǎng)AD交BC的延長(zhǎng)線于H.∵CE=EA,CF=FB,∴EF∥AB,∴∠EFC=∠ABC=45°,∵∠PAO=45°,∴∠PAO=∠OFH,∵∠POA=∠FOH,∴∠H=∠APO,∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EPA=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA,∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°,∵∠ADB=∠ACB=90°,∴A,D,C,B四點(diǎn)共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC,設(shè)AD=a,則DC=AD=a,PD=a=AP,∴tan∠CAP===+1;②如圖2中,當(dāng)點(diǎn)P在線段CD上時(shí),同理可證:DA=DC,設(shè)AD=a,則CD=AD=a,PD=∴PC=a﹣a,∴tan∠CAP===,∵點(diǎn)P在線段EF上,∴情形1不滿足條件,情形2滿足條件;故答案為:﹣1.【點(diǎn)睛】本題考查了中位線,等腰三角形的判定與性質(zhì),旋轉(zhuǎn),直角三角形斜邊上中線的性質(zhì),正切函數(shù)等知識(shí)點(diǎn).解題的關(guān)鍵在于表示出正切中線段的長(zhǎng)度.三、解答題1、【分析】連接OB,由圓周角定理得出∠AOB=2∠ACB=120°,再由垂徑定理得出∠AOE=∠AOB=60°、AB=2AE,在Rt△AOE中,由OA=2OE求解可得答案.【詳解】如圖,連接OB,則∠AOB=2∠ACB=120°,∵OD⊥AB,∴∠AOE=∠AOB=60°,∵AO=6,∴在Rt△AOE中,,∴AB=2AE,故答案為:.【點(diǎn)睛】本題主要考查圓周角定理,解題的關(guān)鍵是掌握?qǐng)A周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條?。?、(1)8(2)(3)或.【分析】(1)過(guò)點(diǎn)O作OH⊥AC于點(diǎn)H,由垂徑定理可得AH=CH=AC,由銳角三角函數(shù)和勾股定理可求解;(2)分兩種情況討論,由相似三角形的性質(zhì)可求AG,EG,CG的長(zhǎng),即可求解;(3)分兩種情況討論,由相似三角形和勾股定理可求解.(1)如圖2,過(guò)點(diǎn)O作OH⊥AC于點(diǎn)H,由垂徑定理得:AH=CH=AC,在Rt△OAH中,,∴設(shè)OH=3x,AH=4x,∵OH2+AH2=OA2,∴(3x)2+(4x)2=52,解得:x=±1,(x=﹣1舍去),∴OH=3,AH=4,∴AC=2AH=8;(2)如圖2,過(guò)點(diǎn)O作OH⊥AC于H,過(guò)E作EG⊥AC于G,∵∠DEO=∠AEC,∴當(dāng)△DOE與△AEC相似時(shí)可得:∠DOE=∠A或者∠DOE=∠ACD;,∴∠ACD≠∠DOE∴當(dāng)△DOE與△AEC相似時(shí),不存在∠DOE=∠ACD情況,∴當(dāng)△DOE與△AEC相似時(shí),∠DOE=∠A,∴OD∥AC,∴,∵OD=OA=5,AC=8,∴,∴,∵∠AGE=∠AHO=90°,∴GE∥OH,∴△AEG∽△AOH,∴,∴,∴,∴,,在Rt△CEG中,;(3)當(dāng)點(diǎn)E在線段OA上時(shí),如圖3,過(guò)點(diǎn)E作EG⊥AC于G,過(guò)點(diǎn)O作OH⊥AC于H,延長(zhǎng)AO交⊙O于M,連接AD,DM,由(1)可得OH=3,AH=4,AC=8,∵OE=1,∴AE=4,ME=6,∵EG∥OH,∴△AEG∽△AOH,∴,∴AG=,EG=,∴GC=,∴EC===,∵AM是直徑,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=2;當(dāng)點(diǎn)E在線段AO的延長(zhǎng)線上時(shí),如圖4,延長(zhǎng)AO交⊙O于M,連接AD,DM,過(guò)點(diǎn)E作EG⊥AC于G,同理可求EG=,AG=,AE=6,GC=,∴EC===,∵AM是直徑,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=,綜上所述:AD的長(zhǎng)是或【點(diǎn)睛】本題考查了垂徑定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性質(zhì)與判定,圓周角定理,正切的作出輔助線是解題的關(guān)鍵.3、(1)100,126°,條形統(tǒng)計(jì)圖見(jiàn)解析;(2)700;(3)【分析】(1)根據(jù)C等級(jí)的人數(shù)和所占比可求出抽取的總?cè)藬?shù),用A等級(jí)的人數(shù)除以抽取的總?cè)藬?shù)乘以360°可得A等級(jí)對(duì)應(yīng)扇形圓心角的度數(shù),用抽取的總?cè)藬?shù)乘以B等級(jí)所占的百分比得B等級(jí)的人數(shù),用抽取的總?cè)藬?shù)減去A、B、C等級(jí)的人數(shù)得出D等級(jí)人數(shù),即可補(bǔ)全條形統(tǒng)計(jì)圖;(2)用2000乘以A等級(jí)所占的百分比即可估計(jì)出成績(jī)“優(yōu)秀”的學(xué)生人數(shù);(3)由(1)得不合格有5人,故由3男2女,用列表法即可求回訪到一男一女的概率.【詳解】(1)C等級(jí)的人數(shù)和所占比可得抽取的總?cè)藬?shù)為:(名),∴“優(yōu)秀”等級(jí)對(duì)應(yīng)的扇形圓心角度數(shù)為:,B等級(jí)的人數(shù)為:(名),D等級(jí)的人數(shù)為:(名),∴補(bǔ)全條形統(tǒng)計(jì)圖如下所示:(2)(名),∴該校競(jìng)賽成績(jī)“優(yōu)秀”的學(xué)生人數(shù)為700名;(3)∵抽取不及格的人數(shù)有5名,其中有2名女生,∴有3名男生,設(shè)3名男生分別為,,,2名女生分別為,,列表格如下所示:∴總的結(jié)果有20種,一男一女的有12種,∴回訪到一男一女的概率為.【點(diǎn)睛】本題考查統(tǒng)計(jì)與概率,其中涉及到條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖相關(guān)聯(lián)問(wèn)題,用樣本估計(jì)總體以及用列舉法求概率,讀懂條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖所給出的條件是解題的關(guān)鍵.4、(1)相切,見(jiàn)解析(2)【分析】(1)連接OC、OD、AC,OC交AF于點(diǎn)M,根據(jù)AG=CG,CD⊥AB,可得,從而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求證;(2)先證明四邊形CMFH為矩形,可得OC⊥AF,CM=HF=2,從而得到AM=FM,進(jìn)而得到OM=BF=2,可得到CM=OM,進(jìn)而得到OC=4,AM垂直平分OC,可證得△AOC為等邊三角形,即可求解.(1)解:CH與⊙O相切.理由如下:如圖,連接OC、OD、AC,OC交AF于點(diǎn)M,∵AG=CG,∴∠ACG=∠CAG,∴,∵CD⊥AB,∴,∴,∴OC⊥AF,∵AB為直徑,∴∠AFB=90°,∵BH⊥CH,∴CH∥AF,∴OC⊥CH,∵OC為半徑,∴CH為⊙O的切線;(2)解:由(1)得:BH⊥CH,OC⊥CH,∴OC∥BH,∵CH∥AF,∴四邊形CMFH為平行四邊形,∵OC⊥CH,∴∠OCH=90°,∴四邊形CMFH為矩形,∴OC⊥AF,CM=HF=2,∴AM=FM,∵點(diǎn)O為AB的中點(diǎn),∴OM=BF=2,∴CM=OM,∴OC=4,AM垂直平分OC,∴AC=AO,而AO=OC,∴AC=OC=OA,,∴△AOC為等邊三角形,∴∠AOC=60°,∵,∴∠AOD=∠AOC=60°,∴∠COD=120°,∴弧CD的長(zhǎng)度為.【點(diǎn)睛】本題主要考查了圓的基本性質(zhì),垂徑定理,切線的判定,等邊三角形的判定和性質(zhì),熟練掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.5、(1)見(jiàn)解析;(2)CD=,EF=1.【分析】(1)連接OC,根據(jù)圓的性質(zhì),得到OB=OC;根據(jù)等腰三角形的性質(zhì),得到;根據(jù)平行線的性質(zhì),得到;在同圓和等圓中,根據(jù)相等的圓心解所對(duì)的弧等即得證.(2)根據(jù)直徑所對(duì)的圓周角是直角求出∠ACB=90°,根據(jù)平行線的性質(zhì)求得∠AEO=∠ACB=90°,利用勾股定理求出AC=8,根據(jù)垂徑定理求得EC=AE=4,根據(jù)中位線定理求出OE,在Rt△CDE中,根據(jù)勾股定理求出CD,因?yàn)椋浴鱁DF∽△BCF,最后根據(jù)似的性質(zhì),列方程求解即可.【詳解】(1)解:連結(jié)OC.∵∴∠1=∠B∠2=∠C∵OB=OC∴∠B=∠C∴∠1=∠2∴弧AD=弧CD(2)∵AB是的直徑∴∠ACB=90°∵∴∠AEO=∠ACB=90°Rt△ABC中,∠ACB=90°,∵BC=6,AB=10∴AC=8∵半徑OD⊥AC于E∴
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年農(nóng)業(yè)技術(shù)員操作手冊(cè)
- 學(xué)校志愿者培訓(xùn)管理制度
- 2025年特種設(shè)備安全使用管理指南
- 血透室崗前培訓(xùn)制度
- 醫(yī)師培訓(xùn)方式制度
- 護(hù)理培訓(xùn)與考核制度
- 家政服務(wù)內(nèi)部培訓(xùn)制度
- 家庭教育培訓(xùn)交流制度
- 粉塵涉爆教育培訓(xùn)制度
- 職業(yè)培訓(xùn)學(xué)校制度
- 離婚協(xié)議標(biāo)準(zhǔn)版(有兩小孩)
- 浙江省臺(tái)州市路橋區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期1月期末考試語(yǔ)文試題(含答案)
- 假體隆胸后查房課件
- 2023年互聯(lián)網(wǎng)新興設(shè)計(jì)人才白皮書
- DB52-T 785-2023 長(zhǎng)順綠殼蛋雞
- c語(yǔ)言知識(shí)點(diǎn)思維導(dǎo)圖
- 關(guān)于地方儲(chǔ)備糧輪換業(yè)務(wù)會(huì)計(jì)核算處理辦法的探討
- GB/T 29319-2012光伏發(fā)電系統(tǒng)接入配電網(wǎng)技術(shù)規(guī)定
- GB/T 1773-2008片狀銀粉
- GB/T 12007.4-1989環(huán)氧樹(shù)脂粘度測(cè)定方法
- (完整版)北京全套安全資料表格
評(píng)論
0/150
提交評(píng)論