版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北師大版9年級數(shù)學(xué)上冊期中測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在平行四邊形中,,.連接AC,過點B作,交DC的延長線于點E,連接AE,交BC于點F.若,則四邊形ABEC的面積為(
)A. B. C.6 D.2、若m、n是一元二次方程x2+3x﹣9=0的兩個根,則的值是(
)A.4 B.5 C.6 D.123、如圖,在矩形ABCD中,AB=5,AD=3,點E為BC上一點,把△CDE沿DE翻折,點C恰好落在AB邊上的F處,則CE的長是(
)A.1 B. C. D.4、如圖,在中,,動點P,Q分別從點A,B同時開始移動(移動方向如圖所示),點P的速度為,點Q的速度為,點Q移動到C點后停止,點P也隨之停止運動,當?shù)拿娣e為時,則點P運動的時間是(
)A. B.或 C. D.5、已知關(guān)于x的一元二次方程x2﹣3x+1=0有兩個不相等的實數(shù)根x1,x2,則x12+x22的值是()A.﹣7 B.7 C.2 D.﹣26、如圖,將圖1中的菱形紙片沿對角線剪成4個直角三角形,拼成如圖2的四邊形(相鄰紙片之間不重疊,無縫隙).若四邊形的面積為13,中間空白處的四邊形的面積為1,直角三角形的兩條直角邊分別為和,則(
)A.12 B.13 C.24 D.257、如圖,為△的中位線,點在上,且;若,則的長為(
)A.2 B.1 C.4 D.3二、多選題(3小題,每小題2分,共計6分)1、(多選)如圖,正方形ABCD的對角線AC,BD相交于D于點O,點P為線段AC上一點,連接BP,過點P作交AD于點E,連接BE,若,,下列說法正確的有(
)A. B. C. D.2、矩形一定具有的性質(zhì)是().A.對角線相等 B.內(nèi)角和為180° C.鄰邊相等 D.對角互補3、下列說法正確的是(
).A.對角線相等的菱形是正方形B.順次連接對角線互相垂直的四邊形的四邊中點,所得到的四邊形是菱形C.成軸對稱的兩個圖形全等D.有三個角相等的四邊形是矩形第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、在四邊形ABCD中,ABCD,ADBC,添加一個條件________,即可判定該四邊形是菱形.2、設(shè)分別為一元二次方程的兩個實數(shù)根,則____.3、一個小球在如圖所示的方格地磚上任意滾動,并隨機停留在某塊地磚上.每塊地磚的大小、質(zhì)地完全相同,那么該小球停留在黑色區(qū)域的概率是___________.4、若m,n是關(guān)于x的方程x2-3x-3=0的兩根,則代數(shù)式m2+n2-2mn=_____.5、如圖,在四邊形ABCD中,AC=BD=8,E、F、G、H分別是邊AB、BC、CD、DA的中點,則EG2+FH2的值為_____.6、已知一元二次方程ax2+bx+c=0(a≠0),下列結(jié)論:①若方程兩根為-1和2,則2a+c=0;②若b>a+c,則方程有兩個不相等的實數(shù)根;③若b=2a+3c,則方程有兩個不相等的實數(shù)根;④若m是方程的一個根,則一定有b2-4ac=(2am+b)2成立.其中結(jié)論正確的序號是__________.7、如圖,在一塊長為22m,寬為14m的矩形空地內(nèi)修建三條寬度相等的小路(陰影部分),其余部分種植花草.若花草的種植面積為240m2,則小路的寬為________m.8、若正方形的對角線的長為4,則該正方形的面積為_________.9、從分別標有A、B、C的3根紙簽中隨機抽取一根,然后放回,再隨機抽取一根,兩次抽簽的所有可能結(jié)果的樹形圖如下:那么抽出的兩根簽中,一根標有A,一根標有C的概率是__________.10、一個不透明的口袋中有三個完全相同的小球,小球上分別寫有數(shù)字4、5、6,隨機摸取1個小球然后放回,再隨機摸取一個小球(1)用畫樹狀圖或列表的方法表示出可能出現(xiàn)的所有結(jié)果;(1)求兩次抽出數(shù)字之和為奇數(shù)的概率.四、解答題(6小題,每小題10分,共計60分)1、如圖1,正方形ABCD中,AB=5,點E為BC邊上一動點,連接AE,以AE為邊,在線段AE右側(cè)作正方形,連接CF、DF.設(shè).(當點E與點B重合時,x的值為0),.小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)隨自變量x的變化而變化的規(guī)律進行了探究.下面是小明的探究過程,請補充完整:(1)通過取點、畫圖、測量、觀察、計算,得到了x與y1、y2的幾組對應(yīng)值;x0123455.004.123.614.125.0001.412.834.245.657.07(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)值所對應(yīng)的點,并畫出函數(shù)y1,y2的圖象;(3)結(jié)合函數(shù)圖象2,解決問題:當△CDF為等腰三角形時,BE的長度約為cm.2、某水果店標價為10元/kg的某種水果經(jīng)過兩次降價后價格為8.1元/kg,并且兩次降價的百分率相同.時間/天x銷量/kg120-x儲藏和損耗費用/元3x2-64x+400(1)求該水果每次降價的百分率;(2)從第二次降價的第1天算起,第x天(x為整數(shù))的銷量及儲藏和損耗費用的相關(guān)信息如下表所示,已知該水果的進價為4.1元/kg,設(shè)銷售該水果第x天(1≤x<10)的利潤為377元,求x的值.3、在正方形ABCD中,對角線BD所在的直線上有兩點E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示.(1)求證:△ABE≌△ADF;(2)試判斷四邊形AECF的形狀,并說明理由.4、如圖,在?ABCD中,各內(nèi)角的平分線相交于點E,F(xiàn),G,H.(1)求證:四邊形EFGH是矩形;(2)若AB=6,BC=4,∠DAB=60°,求四邊形EFGH的面積.5、定義:有一組對邊相等且這一組對邊所在直線互相垂直的凸四邊形叫做“等垂四邊形”.(1)如圖①,四邊形ABCD與四邊形AEFG都是正方形,135°<∠AEB<180°,求證:四邊形BEGD是“等垂四邊形”;(2)如圖②,四邊形ABCD是“等垂四邊形”,AD≠BC,連接BD,點E,F(xiàn),G分別是AD,BD,BC的中點,連接EG,F(xiàn)G,EF.試判定△EFG的形狀,并證明你的結(jié)論;(3)如圖③,四邊形ABCD是“等垂四邊形”,AD=4,BC=8,請直接寫出邊AB長的最小值.
6、(1)解方程:.(2)解方程:.-參考答案-一、單選題1、B【解析】【分析】先證明四邊形ABEC為矩形,再求出AC,即可求出四邊形ABEC的面積.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD=2,BC=AD=3,∠D=∠ABC,∵,∴四邊形ABEC為平行四邊形,∵,∴,∵∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF,∴AF=BF,∴2AF=2BF,即BC=AE,∴平行四邊形ABEC是矩形,∴∠BAC=90°,∴,∴矩形ABEC的面積為.故選:B【考點】本題考查了平行四邊形的性質(zhì),矩形的判定與性質(zhì),勾股定理等知識,熟知相關(guān)定理,證明四邊形ABEC為矩形是解題關(guān)鍵.2、C【解析】【分析】由于m、n是一元二次方程x2+3x?9=0的兩個根,根據(jù)根與系數(shù)的關(guān)系可得m+n=?3,mn=?9,而m是方程的一個根,可得m2+3m?9=0,即m2+3m=9,那么m2+4m+n=m2+3m+m+n,再把m2+3m、m+n的值整體代入計算即可.【詳解】解:∵m、n是一元二次方程x2+3x?9=0的兩個根,∴m+n=?3,mn=?9,∵m是x2+3x?9=0的一個根,∴m2+3m?9=0,∴m2+3m=9,∴m2+4m+n=m2+3m+m+n=9+(m+n)=9?3=6.故選:C.【考點】本題考查了根與系數(shù)的關(guān)系,解題的關(guān)鍵是熟練掌握一元二次方程ax2+bx+c=0(a≠0)兩根x1、x2之間的關(guān)系:x1+x2=?,x1?x2=.3、D【解析】【分析】設(shè)CE=x,則BE=3-x由折疊性質(zhì)可知,EF=CE=x,DF=CD=AB=5,所以AF=4,BF=AB-AF=5-4=1,在Rt△BEF中,由勾股定理得(3-x)2+12=x2,解得x的值即可.【詳解】解:設(shè)CE=x,則BE=3-x,由折疊性質(zhì)可知,EF=CE=x,DF=CD=AB=5在Rt△DAF中,AD=3,DF=5,∴AF=,∴BF=AB-AF=5-4=1,在Rt△BEF中,BE2+BF2=EF2,即(3-x)2+12=x2,解得x=,故選:D.【考點】本題考查了與矩形有關(guān)的折疊問題,熟練掌握矩形的性質(zhì)以及勾股定理是解題的關(guān)鍵.4、A【解析】【分析】設(shè)出動點P,Q運動t秒,能使的面積為,用t分別表示出BP和BQ的長,利用三角形的面積計算公式即可解答.【詳解】解:設(shè)動點P,Q運動t秒,能使的面積為,則BP為(8-t)cm,BQ為2tcm,由三角形的面積公式列方程得(8-t)×2t=15,解得t1=3,t2=5(當t2=5,BQ=10,不合題意,舍去)∴動點P,Q運動3秒,能使的面積為.故選A.【考點】本題考查了一元二次方程的應(yīng)用.借助三角形的面積計算公式來研究圖形中的動點問題.5、B【解析】【分析】根據(jù)一元二次方程的根與系數(shù)的關(guān)系可得x1+x2=3,x1x2=1,再把代數(shù)式x12+x22化為,再整體代入求值即可.【詳解】解:根據(jù)根與系數(shù)的關(guān)系得x1+x2=3,x1x2=1,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×1=7.故選:B.【考點】本題考查的是一元二次方程的根與系數(shù)的關(guān)系,熟練的利用根與系數(shù)的關(guān)系求解代數(shù)式的值是解本題的關(guān)鍵.6、D【解析】【分析】根據(jù)菱形的性質(zhì)可得對角線互相垂直平分,進而可得4個直角三角形全等,結(jié)合已知條件和勾股定理求得,進而根據(jù)面積差以及三角形面積公式求得,最后根據(jù)完全平方公式即可求得.【詳解】菱形的對角線互相垂直平分,個直角三角形全等;,,,四邊形是正方形,又正方形的面積為13,正方形的邊長為,根據(jù)勾股定理,則,中間空白處的四邊形的面積為1,個直角三角形的面積為,,,,.故選D.【考點】本題考查了正方形的性質(zhì)與判定,菱形的性質(zhì),勾股定理,完全平方公式,求得是解題的關(guān)鍵.7、A【解析】【分析】根據(jù)三角形中位線定理求出DE,根據(jù)直角三角形的性質(zhì)求出DF,計算即可.【詳解】∵DE為△ABC的中位線,∴DE=BC=5,∵∠AFB=90°,D是AB的中點,∴DF=AB=3,∴EF=DE-DF=2,故選A.【考點】本題考查的是三角形中位線定理、直角三角形的性質(zhì),掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關(guān)鍵.二、多選題1、ABC【解析】【分析】由∠DBP+∠BPO=90°,∠APE+∠BPO=90°,可判斷結(jié)論A正確;過P作PK⊥AD于K,PT⊥AB于T,證明△PKE≌△PTB(ASA),可判定結(jié)論B正確;延長KP交BC于M,可得△CPM是等腰直角三角形,CP=PM=CP=1,即可得AE=AD-DK-KE=4,判斷結(jié)論C正確;在Rt△BPM中,BP=,可得S△PBE=BP?PE=13,可判斷結(jié)論D錯誤.【詳解】解:∵四邊形ABCD是正方形,∴∠BOP=90°,∴∠DBP+∠BPO=90°,∵PE⊥PB,∴∠APE+∠BPO=90°,∴∠APE=∠DBP,故結(jié)論A正確;過P作PK⊥AD于K,PT⊥AB于T,如圖:∵四邊形ABCD是正方形,∴∠DAC=∠BAC,又PK⊥AD,PT⊥AB∴PK=PT,∵∠KPT=90°=∠EPB,∴∠KPE=∠BPT,∵∠PKE=90°=∠PTB,∴△PKE≌△PTB(ASA),∴PE=PB,故結(jié)論B正確;延長KP交BC于M,如圖:∵四邊形ABCD是正方形,∴AD∥BC,∠ACB=45°,∴PM⊥BC,∴△CPM是等腰直角三角形,∴CP=PM=CP=1,∴DK=CM=1,KE=PM=1,∴AE=AD-DK-KE=4,故結(jié)論C正確;∵BC=6,CM=1,∴BM=5,在Rt△BPM中,BP==,∴PE=BP=,∴S△PBE=BP?PE=13,故結(jié)論D錯誤,故選:ABC.【考點】本題考查正方形的性質(zhì)及應(yīng)用,涉及全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì)及應(yīng)用等知識,解題的關(guān)鍵是作輔助線,證明△PKE≌△PTB.2、AD【解析】【分析】根據(jù)矩形的性質(zhì)依次進行判斷即可.【詳解】解:A、矩形的對角線相等,正確;B、矩形的內(nèi)角和為360°,選項錯誤;C、矩形的鄰邊不一定相等,選項錯誤;D、矩形的對角相等均為90°,所以對角互補,正確;故選:AD.【考點】題目主要考查矩形的性質(zhì),理解矩形的性質(zhì)是解題關(guān)鍵.3、AC【解析】【分析】根據(jù)正方形,矩形的判定,成軸對稱圖形的關(guān)系,對各選項進行判斷即可;【詳解】解:對角線相等的菱形是正方形,正確,符合題意;B順次連接對角線互相垂直的四邊形的四邊中點,所得到的四邊形是矩形,故原命題錯誤,不符合題意;C成軸對稱的兩個圖形全等,正確,符合題意;D有四個角相等的四邊形是矩形,錯誤,不符合題意.故答案為:A、C.【考點】本題考查了正方形,矩形的判定,成軸對稱圖形的關(guān)系.解題的關(guān)鍵在于對知識的靈活運用.三、填空題1、AB=AD(答案不唯一)【解析】【分析】根據(jù)平行四邊形的判定證出四邊形ABCD是平行四邊形,根據(jù)菱形的判定證出即可.【詳解】解:添加的條件是AB=AD.理由如下:∵ABCD,ADBC,∴四邊形ABCD是平行四邊形,若AB=AD,∴四邊形ABCD是菱形.【考點】本題主要考查了菱形的判定、平行四邊形的判定等,能根據(jù)菱形的判定定理正確地添加條件是解此題的關(guān)鍵.2、2020【解析】【分析】根據(jù)一元二次方程的解結(jié)合根與系數(shù)的關(guān)系即可得出m2+2m=2022,m+n=?2,將其代入m2+3m+n=m2+2m+(m+n)中即可求出結(jié)論.【詳解】解:∵m,n分別為一元二次方程x2+2x?2022=0的兩個實數(shù)根,∴m2+2m=2022,m+n=?2,∴m2+3m+n=m2+2m+(m+n)=2022+(?2)=2020.故答案為:2020.【考點】本題考查了根與系數(shù)的關(guān)系以及一元二次方程的解,根據(jù)一元二次方程的解結(jié)合根與系數(shù)的關(guān)系得出m2+2m=2022,m+n=?2是解題的關(guān)鍵.3、【解析】【分析】先求出黑色方磚在整個地面中所占的比值,再根據(jù)其比值即可得出結(jié)論.【詳解】解:∵由圖可知,黑色方磚6塊,共有16塊方磚,∴黑色方磚在整個區(qū)域中所占的比值=,∴小球停在黑色區(qū)域的概率是;故答案為:【考點】本題考查的是幾何概率,用到的知識點為:幾何概率=相應(yīng)的面積與總面積之比.4、21【解析】【分析】先根據(jù)根與系數(shù)的關(guān)系得到m+n=3,mn=﹣3,再根據(jù)完全平方公式變形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整體代入的方法計算.【詳解】解:∵m,n是關(guān)于x的方程x2-3x-3=0的兩根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案為:21.【考點】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2,x1x2.5、64【解析】【分析】連接HE、EF、FG、GH,根據(jù)三角形中位線定理、菱形的判定定理得到平行四邊形HEFG是菱形,根據(jù)菱形的性質(zhì)、勾股定理計算即可.【詳解】解:連接HE、EF、FG、GH,∵E、F分別是邊AB、BC的中點,∴EF=AC=4,EF∥AC,同理可得,HG=AC=4,HG∥AC,EH=BD=4,∴HG=EF,HG∥EF,∴四邊形HEFG為平行四邊形,∵AC=BD,∴EH=EF,∴平行四邊形HEFG是菱形,∴HF⊥EG,HF=2OH,EG=2OE,∴OE2+OH2=EH2=16∴EG2+FH2=(2OE)2+(2OH)2=4(OE2+OH2)=64,故答案為64.【考點】本題考查的是中點四邊形,掌握三角形中位線定理、菱形的判定和性質(zhì)定理是解題的關(guān)鍵.6、①③④【解析】【分析】利用根與系數(shù)的關(guān)系判斷①;由Δ=b2-4ac判斷②;由判別式可判斷③;將x=m代入方程得am2=-(bm+c),再代入=(2am+b)2變形可判斷④.【詳解】解:若方程兩根為-1和2,則=-1×2=-2,即c=-2a,2a+c=2a-2a=0,故①正確;由b>a+c不能判斷Δ=b2-4ac值的大小情況,故②錯誤;若b=2a+3c,則Δ=b2-4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根,故③正確.若m是方程ax2+bx+c=0的一個根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.故④正確;故答案為:①③④.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系及根的判別式Δ=b2-4ac:當Δ>0,方程有兩個不相等的實數(shù)根;當Δ=0,方程有兩個相等的實數(shù)根;當Δ<0,方程沒有實數(shù)根.7、2【解析】【分析】設(shè)小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,根據(jù)花草的種植面積為240m2,即可得出關(guān)于x的一元二次方程,解之取其符合題意的值即可得出結(jié)論.【詳解】解:設(shè)小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,依題意得:(22-x)(14-x)=240,整理得:x2-36x+68=0,解得:x1=2,x2=34(不合題意,舍去).故答案為:2.【考點】本題考查了一元二次方程的應(yīng)用,找準等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.8、8【解析】【分析】根據(jù)正方形的面積等于對角線乘積的一半列式計算即可得解.【詳解】解:∵正方形的一條對角線的長為4,∴這個正方形的面積=×42=8.故答案為:8.【考點】本題考查了正方形的性質(zhì),熟練掌握正方形的面積的兩種求法是解題的關(guān)鍵.9、【解析】【分析】依據(jù)樹狀圖分析所有等可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式求出該事件的概率.【詳解】解:由樹狀圖得:兩次抽簽的所有可能結(jié)果一共有9種情況,一根標有,一根標有的有,與,兩種情況,一根標有,一根標有的概率是.故答案為:.【考點】本題考查的是用畫樹狀圖法求概率.畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步或兩步以上完成的事件.用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.10、【解析】【分析】(1)此題需要兩步完成,所以采用樹狀圖法或者采用列表法都比較簡單;使用樹狀圖分析時,一定要做到不重不漏.(2)根據(jù)概率的求法,找準兩點:第一點,全部情況的總數(shù);第二點,符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】(1)根據(jù)題意,畫樹狀圖如下:數(shù)字之和為
8,9,10,9,10,11,10,11,12由樹狀圖可知,共有9種可能的結(jié)果.(2)共有9種可能的結(jié)果,其中兩次抽出數(shù)字之和為奇數(shù)(記為事件A)的情況有4種,P(A)=故答案為:【考點】此題考查用列表法或樹狀圖法求概率,概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果那么事件A的概率P(A)=四、解答題1、(1)見解析;(2)見解析;(3)2.59.【解析】【分析】(1)畫圖、測量可得;(2)依據(jù)表中的數(shù)據(jù),描點、連線即可得;(3)由題意得出△CDF是等腰三角形時BE的長度即為y1與y2交點的橫坐標,據(jù)此可得答案.【詳解】(1)補全表格如下:x012345y15.04.123.613.614.125.00y201.412.834.245.657.07(2)函數(shù)圖象如下:(3)結(jié)合函數(shù)圖象2,解決問題:當△CDF為等腰三角形時,BE的長度約為2.5906,故答案為2.59.【考點】本題是四邊形的綜合問題,解題的關(guān)鍵是掌握函數(shù)思想的運用及函數(shù)圖象的畫法、數(shù)形結(jié)合思想的運用.2、(1)10%(2)9【解析】【分析】(1)設(shè)該水果每次降價的百分率為y,根據(jù)題意列出一元二次方程即可求解;(2)根據(jù)題意列出一元二次方程即可求解.(1)設(shè)該水果每次降價的百分率為y,依題意,得10(1-y)2=8.1,解得y1=0.1=10%,y2=1.9(不合題意,舍去).答:該水果每次降價的百分率為10%.(2)依題意,得,解得x1=9,x2=11(舍去).答:x的值為9.【考點】本題考查了一元二次方程的應(yīng)用,準確理解題意列出一元二次方程是解答本題的關(guān)鍵.3、(1)證明見解析(2)菱形【解析】【詳解】分析:(1)根據(jù)正方形的性質(zhì)和全等三角形的判定證明即可;(2)四邊形AECF是菱形,根據(jù)對角線垂直的平行四邊形是菱形即可判斷;詳證明:(1)∵四邊形ABCD是正方形,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE與△ADF中,∴△ABE≌△ADF(SAS)(2)如圖,連接AC,四邊形AECF是菱形.理由:在正方形ABCD中,OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四邊形AECF是平行四邊形,∵AC⊥EF,∴四邊形AECF是菱形.點睛:本題考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)、菱形的判定等知識,解題的關(guān)鍵是熟練掌握基本知識.4、(1)證明見解析;(2)矩形EFGH的面積=.【解析】【分析】(1)根據(jù)角平分線的定義以及平行四邊形的性質(zhì),即可得出∠AGB=90°,∠DEC=90°,∠AHD=90°=∠EHG,進而判定四邊形EFGH是矩形;(2)根據(jù)含30°角的直角三角形的性質(zhì),得到BGAB=3,AG=3CE,BFBC=2,CF=2,進而得出EF和GF的長,可得四邊形EFGH的面積.【詳解】(1)∵GA平分∠BAD,GB平分∠ABC,∴∠GAB∠BAD,∠GBA∠ABC.∵?ABCD中,∠DAB+∠ABC=180°,∴∠GAB+∠GBA(∠DAB+∠ABC)=90°,即∠AGB=90°,同理可得:∠DEC=90°,∠AHD=90°=∠EHG,∴四邊形EFGH是矩形;(2)依題意得:∠BAG∠BAD=30°.∵AB=6,∴BGAB=3,AG=3CE.∵BC=4,∠BCF∠BCD=30°,∴BFBC=2,CF=2,∴EF=3,GF=3﹣2=1,∴矩形EFGH的面積=EF×GF.【考點】本題考查了平行四邊形的性質(zhì),矩形的判定以及全等三角形的判定與性質(zhì)的運用,解題時注意:有三個角是直角的四邊形是矩形.在判定三角形全等時,關(guān)鍵是選擇恰當?shù)呐卸l件.5、(1)證明見解析;(2)△EFG是等腰直角三角形;證明見解析;(3)AB最小值為.【解析】【分析】延長BE,DG交于點H,先證△ABE≌△ADG,得BE=DG,∠ABE=∠ADG.結(jié)合∠ABD+∠ADB=90°,知∠ABE+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 我國上市公司管理層股權(quán)激勵與企業(yè)績效的實證研究:基于多維度視角的分析
- 我國上市公司環(huán)境會計信息披露與財務(wù)績效的相關(guān)性:理論、實證與啟示
- 我國上市公司換股并購的深度剖析與策略優(yōu)化
- 我國上市公司再融資制度的市場績效:理論、實證與優(yōu)化策略
- 芳香保健師崗前安全風(fēng)險考核試卷含答案
- 鏈板沖壓工崗前基礎(chǔ)實操考核試卷含答案
- 制漿廢液回收利用工崗前理論評估考核試卷含答案
- 坯布縫接工創(chuàng)新實踐能力考核試卷含答案
- 老年甲狀腺功能減退癥患者用藥依從性方案
- 臨保食品安全管理制度
- 人教版三年級上冊豎式計算練習(xí)300題及答案
- GB/T 6974.5-2023起重機術(shù)語第5部分:橋式和門式起重機
- 心臟血管檢查課件
- 運用PDCA循環(huán)管理提高手衛(wèi)生依從性課件
- 二手房定金合同(2023版)正規(guī)范本(通用版)1
- 《高職應(yīng)用數(shù)學(xué)》(教案)
- 點因素法崗位評估體系詳解
- 漢堡規(guī)則中英文
- DB63T 1933-2021無人機航空磁測技術(shù)規(guī)范
- GB/T 5231-2022加工銅及銅合金牌號和化學(xué)成分
- GB/T 26480-2011閥門的檢驗和試驗
評論
0/150
提交評論