版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
(完整版)蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)專(zhuān)題資料試題答案一、解答題1.在中,射線平分交于點(diǎn),點(diǎn)在邊上運(yùn)動(dòng)(不與點(diǎn)重合),過(guò)點(diǎn)作交于點(diǎn).(1)如圖1,點(diǎn)在線段上運(yùn)動(dòng)時(shí),平分.①若,,則_____;若,則_____;②試探究與之間的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;(2)點(diǎn)在線段上運(yùn)動(dòng)時(shí),的角平分線所在直線與射線交于點(diǎn).試探究與之間的數(shù)量關(guān)系,并說(shuō)明理由.2.如圖,已知直線a∥b,∠ABC=100°,BD平分∠ABC交直線a于點(diǎn)D,線段EF在線段AB的左側(cè),線段EF沿射線AD的方向平移,在平移的過(guò)程中BD所在的直線與EF所在的直線交于點(diǎn)P.問(wèn)∠1的度數(shù)與∠EPB的度數(shù)又怎樣的關(guān)系?(特殊化)(1)當(dāng)∠1=40°,交點(diǎn)P在直線a、直線b之間,求∠EPB的度數(shù);(2)當(dāng)∠1=70°,求∠EPB的度數(shù);(一般化)(3)當(dāng)∠1=n°,求∠EPB的度數(shù)(直接用含n的代數(shù)式表示).3.如果三角形的兩個(gè)內(nèi)角與滿(mǎn)足,那么我們稱(chēng)這樣的三角形是“準(zhǔn)互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準(zhǔn)互余三角形”;(2)關(guān)于“準(zhǔn)互余三角形”,有下列說(shuō)法:①在中,若,,,則是“準(zhǔn)互余三角形”;②若是“準(zhǔn)互余三角形”,,,則;③“準(zhǔn)互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫(xiě)所有正確說(shuō)法的序號(hào));(3)如圖2,,為直線上兩點(diǎn),點(diǎn)在直線外,且.若是直線上一點(diǎn),且是“準(zhǔn)互余三角形”,請(qǐng)直接寫(xiě)出的度數(shù).4.已知在中,,點(diǎn)在上,邊在上,在中,邊在直線上,;(1)如圖1,求的度數(shù);(2)如圖2,將沿射線的方向平移,當(dāng)點(diǎn)在上時(shí),求度數(shù);(3)將在直線上平移,當(dāng)以為頂點(diǎn)的三角形是直角三角形時(shí),直接寫(xiě)出度數(shù).5.已知ABCD,點(diǎn)E是平面內(nèi)一點(diǎn),∠CDE的角平分線與∠ABE的角平分線交于點(diǎn)F.(1)若點(diǎn)E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數(shù)量關(guān)系并證明你的結(jié)論;(2)若點(diǎn)E的位置如圖2所示,∠F與∠BED滿(mǎn)足的數(shù)量關(guān)系式是.(3)若點(diǎn)E的位置如圖3所示,∠CDE為銳角,且,設(shè)∠F=α,則α的取值范圍為.6.已知,如圖1,射線PE分別與直線AB、CD相交于E、F兩點(diǎn),∠PFD的平分線與直線AB相交于點(diǎn)M,射線PM交CD于點(diǎn)N,設(shè)∠PFM=,∠EMF=,且.(1)=____°,=______°;直線AB與CD的位置關(guān)系是_______;(2)如圖2,若點(diǎn)G是射線MA上任意一點(diǎn),且∠MGH=∠PNF,試找出∠FMN與∠GHF之間存在的數(shù)量關(guān)系,并證明你的結(jié)論:(3)若將圖中的射線PM繞著端點(diǎn)P逆時(shí)針?lè)较蛐D(zhuǎn)(如圖3),分別與AB、CD相交于點(diǎn)M和點(diǎn)N,時(shí),作∠PMB的角平分線MQ與射線FM相交于點(diǎn)Q,問(wèn)在旋轉(zhuǎn)的過(guò)程中的值變不變?若不變,請(qǐng)求出其值;若變化,請(qǐng)說(shuō)明理由.7.如圖,,點(diǎn)在直線上,點(diǎn)在直線和之間,,平分.(1)求的度數(shù)(用含的式子表示);(2)過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),作的平分線交于點(diǎn),請(qǐng)?jiān)趥溆脠D中補(bǔ)全圖形,猜想與的位置關(guān)系,并證明;(3)將(2)中的“作的平分線交于點(diǎn)”改為“作射線將分為兩個(gè)部分,交于點(diǎn)”,其余條件不變,連接,若恰好平分,請(qǐng)直接寫(xiě)出__________(用含的式子表示).8.我們知道:光線反射時(shí),反射光線、入射光線分別在法線兩側(cè),反射角等于入射角.如圖1,為一鏡面,為入射光線,入射點(diǎn)為點(diǎn)O,為法線(過(guò)入射點(diǎn)O且垂直于鏡面的直線),為反射光線,此時(shí)反射角等于入射角,由此可知等于.(1)兩平面鏡、相交于點(diǎn)O,一束光線從點(diǎn)A出發(fā),經(jīng)過(guò)平面鏡兩次反射后,恰好經(jīng)過(guò)點(diǎn)B.①如圖2,當(dāng)為多少度時(shí),光線?請(qǐng)說(shuō)明理由.②如圖3,若兩條光線、所在的直線相交于點(diǎn)E,延長(zhǎng)發(fā)現(xiàn)和分別為一個(gè)內(nèi)角和一個(gè)外角的平分線,則與之間滿(mǎn)足的等量關(guān)系是_______.(直接寫(xiě)出結(jié)果)(2)三個(gè)平面鏡、、相交于點(diǎn)M、N,一束光線從點(diǎn)A出發(fā),經(jīng)過(guò)平面鏡三次反射后,恰好經(jīng)過(guò)點(diǎn)E,請(qǐng)直接寫(xiě)出、、與之間滿(mǎn)足的等量關(guān)系.9.直線與直線垂直相交于點(diǎn)O,點(diǎn)A在直線上運(yùn)動(dòng),點(diǎn)B在直線上運(yùn)動(dòng).(1)如圖1,已知分別是和角的平分線,點(diǎn)在運(yùn)動(dòng)的過(guò)程中,的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明變化的情況;若不發(fā)生變化,試求出的大?。?)如圖2,已知不平行分別是和的角平分線,又分別是和的角平分線,點(diǎn)在運(yùn)動(dòng)的過(guò)程中,的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明理由;若不發(fā)生變化,試求出的度數(shù).(3)如圖3,延長(zhǎng)至G,已知的角平分線與的角平分線及反向延長(zhǎng)線相交于,在中,如果有一個(gè)角是另一個(gè)角的3倍,則的度數(shù)為_(kāi)___(直接寫(xiě)答案)10.模型規(guī)律:如圖1,延長(zhǎng)交于點(diǎn)D,則.因?yàn)榘妓倪呅涡嗡萍^,其四角具有“”這個(gè)規(guī)律,所以我們把這個(gè)模型叫做“箭頭四角形”.模型應(yīng)用(1)直接應(yīng)用:①如圖2,,則__________;②如圖3,__________;(2)拓展應(yīng)用:①如圖4,、的2等分線(即角平分線)、交于點(diǎn),已知,,則__________;②如圖5,、分別為、的10等分線.它們的交點(diǎn)從上到下依次為、、、…、.已知,,則__________;③如圖6,、的角平分線、交于點(diǎn)D,已知,則__________;④如圖7,、的角平分線、交于點(diǎn)D,則、、之同的數(shù)量關(guān)系為_(kāi)_________.【參考答案】一、解答題1.(1)①115°,110°;②,證明見(jiàn)解析;(2),證明見(jiàn)解析.【解析】【分析】(1)①根據(jù)角平分線的定義求得∠CAG=∠BAC=50°;再由平行線的性質(zhì)可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②,證明見(jiàn)解析;(2),證明見(jiàn)解析.【解析】【分析】(1)①根據(jù)角平分線的定義求得∠CAG=∠BAC=50°;再由平行線的性質(zhì)可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的內(nèi)角和定理求得∠AFD的度數(shù)即可;已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線的性質(zhì)可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的內(nèi)角和定理可求得∠AFD=110°;②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線的性質(zhì)可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的內(nèi)角和定理可得∠AFD=90°+∠B;(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根據(jù)平行線的性質(zhì)可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角的性質(zhì)可得∠AFD=∠FDM+∠FMD=90°-∠B.【詳解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=∠BAC=50°;∵,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;∴∠AFD=180°-(∠FDM+∠FMD)=180°-70°=110°;故答案為115°,110°;②∠AFD=90°+∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=180°-(∠FDM+∠FMD)=180°-(90°-∠B)=90°+∠B;(2)∠AFD=90°-∠B,理由如下:如圖,射線ED交AG于點(diǎn)M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠NDE=∠EDB,∴∠FDM=∠NDE=∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=∠C,∴∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=∠FDM+∠FMD=90°-∠B.【點(diǎn)睛】本題考查了角平分線的定義、平行線的性質(zhì)、三角形的內(nèi)角和定理及三角形外角的性質(zhì),根據(jù)角平分線的定義、平行線的性質(zhì)、三角形的內(nèi)角和定理及三角形外角的性質(zhì)確定各角之間的關(guān)系是解決問(wèn)題的關(guān)鍵.2.(1)∠EPB=170°;(2)①當(dāng)交點(diǎn)P在直線b的下方時(shí):∠EPB=20°,②當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=160°,③當(dāng)交點(diǎn)P在直線a的上方時(shí):∠EPB=∠1﹣50°=20°;(3)①當(dāng)解析:(1)∠EPB=170°;(2)①當(dāng)交點(diǎn)P在直線b的下方時(shí):∠EPB=20°,②當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=160°,③當(dāng)交點(diǎn)P在直線a的上方時(shí):∠EPB=∠1﹣50°=20°;(3)①當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=180°﹣|n°﹣50°|;②當(dāng)交點(diǎn)P在直線a上方或直線b下方時(shí):∠EPB=|n°﹣50°|.【分析】(1)利用外角和角平分線的性質(zhì)直接可求解;(2)分三種情況討論:①當(dāng)交點(diǎn)P在直線b的下方時(shí);②當(dāng)交點(diǎn)P在直線a,b之間時(shí);③當(dāng)交點(diǎn)P在直線a的上方時(shí);分別畫(huà)出圖形求解;(3)結(jié)合(2)的探究,分兩種情況得到結(jié)論:①當(dāng)交點(diǎn)P在直線a,b之間時(shí);②當(dāng)交點(diǎn)P在直線a上方或直線b下方時(shí);【詳解】解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC=∠ABC=50°,∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(2)①當(dāng)交點(diǎn)P在直線b的下方時(shí):∠EPB=∠1﹣50°=20°;②當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=50°+(180°﹣∠1)=160°;③當(dāng)交點(diǎn)P在直線a的上方時(shí):∠EPB=∠1﹣50°=20°;(3)①當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=180°﹣|n°﹣50°|;②當(dāng)交點(diǎn)P在直線a上方或直線b下方時(shí):∠EPB=|n°﹣50°|;【點(diǎn)睛】考查知識(shí)點(diǎn):平行線的性質(zhì);三角形外角性質(zhì).根據(jù)動(dòng)點(diǎn)P的位置,分類(lèi)畫(huà)圖,結(jié)合圖形求解是解決本題的關(guān)鍵.?dāng)?shù)形結(jié)合思想的運(yùn)用是解題的突破口.3.(1)見(jiàn)解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個(gè)判斷即可;(3)根據(jù)“準(zhǔn)互余三角解析:(1)見(jiàn)解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個(gè)判斷即可;(3)根據(jù)“準(zhǔn)互余三角形”的定義,分類(lèi)討論:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形內(nèi)角和定理和外角的性質(zhì)結(jié)合“準(zhǔn)互余三角形”的定義,即可求出答案.【詳解】(1)證明:∵在中,,∴,∵BD是的角平分線,∴,∴,∴是“準(zhǔn)互余三角形”;(2)①∵,∴,∴是“準(zhǔn)互余三角形”,故①正確;②∵,,∴,∴不是“準(zhǔn)互余三角形”,故②錯(cuò)誤;③設(shè)三角形的三個(gè)內(nèi)角分別為,且,∵三角形是“準(zhǔn)互余三角形”,∴或,∴,∴,∴“準(zhǔn)互余三角形”一定是鈍角三角形,故③正確;綜上所述,①③正確,故答案為:①③;(3)∠APB的度數(shù)是10°或20°或40°或110°;如圖①,當(dāng)2∠A+∠ABC=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如圖②,當(dāng)∠A+2∠APB=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如圖③,當(dāng)2∠APB+∠ABC=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠APB=20°;如圖④,當(dāng)2∠A+∠APB=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;綜上,∠APB的度數(shù)是10°或20°或40°或110°時(shí),是“準(zhǔn)互余三角形”.【點(diǎn)睛】本題是三角形綜合題,考查了三角形內(nèi)角和定理,三角形的外角的性質(zhì),解題關(guān)鍵是理解題意,根據(jù)三角形內(nèi)角和定理和三角形的外角的性質(zhì),結(jié)合新定義進(jìn)行求解.4.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用兩直線平行,同旁?xún)?nèi)角互補(bǔ),得出,即可得出結(jié)論;(2)先利用三角形的內(nèi)角和定理求出,即可得出結(jié)論;(3)分和兩種情況求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用兩直線平行,同旁?xún)?nèi)角互補(bǔ),得出,即可得出結(jié)論;(2)先利用三角形的內(nèi)角和定理求出,即可得出結(jié)論;(3)分和兩種情況求解即可得出結(jié)論.【詳解】解:(1),,,,,;(2)由(1)知,,,,,;(3)當(dāng)時(shí),如圖3,由(1)知,,;當(dāng)時(shí),如圖4,,點(diǎn),重合,,,由(1)知,,,即當(dāng)以、、為頂點(diǎn)的三角形是直角三角形時(shí),度數(shù)為或.【點(diǎn)睛】此題是三角形綜合題,主要考查了平行線的性質(zhì),三角形的內(nèi)角和定理,角的和差的計(jì)算,求出是解本題的關(guān)鍵.5.(1)①70;②∠F=∠BED,證明見(jiàn)解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①過(guò)F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F=∠BED,證明見(jiàn)解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①過(guò)F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分線的定義得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;②分別過(guò)E、F作EN//AB,F(xiàn)M//AB,利用平行線的判定和性質(zhì)得到∠BED=∠ABE+∠CDE,利用角平分線的定義得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;(2)根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,過(guò)點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合①的結(jié)論即可說(shuō)明∠BED與∠BFD之間的數(shù)量關(guān)系;(3)通過(guò)對(duì)的計(jì)算求得,利用角平分線的定義以及三角形外角的性質(zhì)求得,即可求得.【詳解】(1)①過(guò)F作FG//AB,如圖:∵AB∥CD,F(xiàn)G∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,∴∠ABF+∠CDF=70,∴∠DFB=∠ABF+∠CDF=70,故答案為:70;②∠F=∠BED,理由是:分別過(guò)E、F作EN//AB,F(xiàn)M//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分別是∠CDE的角平分線與∠ABE的角平分線,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∴∠F=∠BED;(3)2∠F+∠BED=360°.如圖,過(guò)點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵,∠F=α,∴,解得:,如圖,∵∠CDE為銳角,DF是∠CDE的角平分線,∴∠CDH=∠DHB,∴∠F∠DHB,即,∴,故答案為:.【點(diǎn)睛】本題考查了平行線的性質(zhì)、角平分線的定義以及三角形外角性質(zhì)的應(yīng)用,在解答此題時(shí)要注意作出輔助線,構(gòu)造出平行線求解.6.(1)35;35;AB∥CD;(2)∠FMN+∠GHF=180°.證明見(jiàn)解析;(3)的值不變,=2.【分析】(1)利用非負(fù)數(shù)的性質(zhì)可知:==35,推出即可解決問(wèn)題;(2)結(jié)論,只要證明即可解決解析:(1)35;35;AB∥CD;(2)∠FMN+∠GHF=180°.證明見(jiàn)解析;(3)的值不變,=2.【分析】(1)利用非負(fù)數(shù)的性質(zhì)可知:==35,推出即可解決問(wèn)題;(2)結(jié)論,只要證明即可解決問(wèn)題;(3)結(jié)論:的值不變,=2.如圖3中,作∠PEM1的平分線交M1Q的延長(zhǎng)線于R,只要證明∠R=∠,∠=2∠R即可;【詳解】(1)證明:∵,∴==35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;故答案為:35;35;AB∥CD;(2)解:∠FMN+∠GHF=180°.理由:∵AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°.(3)解:的值不變,=2.理由:如圖3中,作∠PEM1的平分線交M1Q的延長(zhǎng)線于R.∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠=∠R,設(shè)∠PER=∠REB=,,則有:,可得∠=2∠R,∴∠=2∠∴=2.【點(diǎn)睛】本題考查幾何變換綜合題、平行線的判定和性質(zhì)、角平分線的定義、非負(fù)數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)添加常用輔助線,構(gòu)造平行線解決問(wèn)題,屬于中考?jí)狠S題.7.(1);(2)畫(huà)圖見(jiàn)解析,,證明見(jiàn)解析;(3)或【分析】(1)根據(jù)平行線的傳遞性推出,再利用平行線的性質(zhì)進(jìn)行求解;(2)猜測(cè),根據(jù)平分,推導(dǎo)出,再根據(jù)、平分,通過(guò)等量代換求解;(3)分兩種情解析:(1);(2)畫(huà)圖見(jiàn)解析,,證明見(jiàn)解析;(3)或【分析】(1)根據(jù)平行線的傳遞性推出,再利用平行線的性質(zhì)進(jìn)行求解;(2)猜測(cè),根據(jù)平分,推導(dǎo)出,再根據(jù)、平分,通過(guò)等量代換求解;(3)分兩種情況進(jìn)行討論,即當(dāng)與,充分利用平行線的性質(zhì)、角平分線的性質(zhì)、等量代換的思想進(jìn)行求解.【詳解】(1)過(guò)點(diǎn)作,,,,.(2)根據(jù)題意,補(bǔ)全圖形如下:猜測(cè),由(1)可知:,平分,,,,,又平分,,,.(3)①如圖1,,由(2)可知:,,,,,,,,,,又平分,,;②如圖2,,(同①);若,則有,又,,,,綜上所述:或,故答案是:或.【點(diǎn)睛】本題考查了平行線的性質(zhì)、角平分線、三角形內(nèi)角和定理、垂直等相關(guān)知識(shí)點(diǎn),解題的關(guān)鍵是掌握相關(guān)知識(shí)點(diǎn),作出適當(dāng)?shù)妮o助線,通過(guò)分類(lèi)討論及等量代換進(jìn)行求解.8.(1)①90°,理由見(jiàn)解析;②∠MEN=2∠POQ;(2)2(∠M+∠N)-∠BCD=360°-∠BFD【分析】(1)①設(shè)∠AMP=∠NMO=α,∠BNQ=∠MNO=β,根據(jù)∠AMN+∠BNM=解析:(1)①90°,理由見(jiàn)解析;②∠MEN=2∠POQ;(2)2(∠M+∠N)-∠BCD=360°-∠BFD【分析】(1)①設(shè)∠AMP=∠NMO=α,∠BNQ=∠MNO=β,根據(jù)∠AMN+∠BNM=180°,可得α+β=90°,再根據(jù)三角形內(nèi)角和定理進(jìn)行計(jì)算即可;②設(shè)∠AMP=∠NMO=α,∠BNO=∠MNQ=β,根據(jù)三角形外角性質(zhì)可得∠MEN=2(β-α),再根據(jù)三角形外角性質(zhì)可得∠POQ=β-α,進(jìn)而得出∠MEN=2∠POQ;(2)分別表示出∠M,∠N,∠BCD,利用四邊形內(nèi)角和表示出∠BFD,再將∠M,∠N,∠BCD進(jìn)行運(yùn)算,變形得到∠BFD,即可得到關(guān)系式.【詳解】解:(1)①設(shè)∠AMP=∠NMO=α,∠BNQ=∠MNO=β,當(dāng)AM∥BN時(shí),∠AMN+∠BNM=180°,即180°-2α+180°-2β=180°,∴180°=2(α+β),∴α+β=90°,∴△MON中,∠O=180°-∠NMO-∠MNO=180°-(α+β)=90°,∴當(dāng)∠POQ為90度時(shí),光線AM∥NB;②設(shè)∠AMP=∠NMO=α,∠BNO=∠MNQ=β,∴∠AMN=180°-2α,∠MNE=180°-2β,∵∠AMN是△MEN的外角,∴∠MEN=∠AMN-∠MNE=(180°-2α)-(180°-2β)=2(β-α),∵∠MNQ是△MNO的外角,∴∠POQ=∠MNQ-∠NMO=β-α,∴∠MEN=2∠POQ;(2)設(shè)∠PBE=∠MBC=∠1,∠MCB=∠NCD=∠2,∠CDN=∠ADQ=∠3,可知:∠M=180°-∠1-∠2,∠N=180°-∠2-∠3,∠BCD=180°-2∠2,∵∠CBA=180°-2∠1,∠CDA=180°-2∠3,∴∠BFD=360°-∠CDA-∠CBA-∠BCD=360°-(180°-2∠1)-(180°-2∠2)-(180°-2∠3)=2(∠1+∠2+∠3)-180°又∵2(∠M+∠N)-∠BCD=2(180°-∠1-∠2+180°-∠2-∠3)-(180°-2∠2)=540°-2(∠1+∠2+∠3)=360°-[2(∠1+∠2+∠3)-180°]=360°-∠BFD∴2(∠M+∠N)-∠BCD=360°-∠BFD.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),三角形外角的性質(zhì)以及多邊形內(nèi)角和定理的綜合應(yīng)用,解題時(shí)注意:兩直線平行,同旁?xún)?nèi)角互補(bǔ);三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.9.(1)不發(fā)生變化,∠AEB=135°;(2)不發(fā)生變化,∠CED=67.5°;(3)60°或45°【分析】(1)根據(jù)直線MN與直線PQ垂直相交于O可知∠AOB=90°,再由AE、BE分別是∠BA解析:(1)不發(fā)生變化,∠AEB=135°;(2)不發(fā)生變化,∠CED=67.5°;(3)60°或45°【分析】(1)根據(jù)直線MN與直線PQ垂直相交于O可知∠AOB=90°,再由AE、BE分別是∠BAO和∠ABO的角平分線得出∠BAE=∠OAB,∠ABE=∠ABO,由三角形內(nèi)角和定理即可得出結(jié)論;(2)延長(zhǎng)AD、BC交于點(diǎn)F,根據(jù)直線MN與直線PQ垂直相交于O可得出∠AOB=90°,進(jìn)而得出∠OAB+∠OBA=90°,故∠PAB+∠MBA=270°,再由AD、BC分別是∠BAP和∠ABM的角平分線,可知∠BAD=∠BAP,∠ABC=∠ABM,由三角形內(nèi)角和定理可知∠F=45°,再根據(jù)DE、CE分別是∠ADC和∠BCD的角平分線可知∠CDE+∠DCE=112.5°,進(jìn)而得出結(jié)論;(3)由∠BAO與∠BOQ的角平分線相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,進(jìn)而得出∠E的度數(shù),由AE、AF分別是∠BAO和∠OAG的角平分線可知∠EAF=90°,在△AEF中,由一個(gè)角是另一個(gè)角的3倍分四種情況進(jìn)行分類(lèi)討論.【詳解】解:(1)∠AEB的大小不變,∵直線MN與直線PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分別是∠BAO和∠ABO角的平分線,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不變.延長(zhǎng)AD、BC交于點(diǎn)F.∵直線MN與直線PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分別是∠BAP和∠ABM的角平分線,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、C
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年深圳中考物理電功的計(jì)算試卷(附答案可下載)
- 2026年大學(xué)大二(康復(fù)治療學(xué))物理治療技術(shù)階段測(cè)試試題及答案
- 2026年大學(xué)大二(計(jì)算機(jī)應(yīng)用技術(shù))數(shù)據(jù)庫(kù)應(yīng)用技術(shù)階段測(cè)試試題及答案
- 老年人護(hù)理與護(hù)理人才
- 炊事專(zhuān)業(yè)教材題庫(kù)及答案
- 稅務(wù)執(zhí)法資格題庫(kù)及答案
- 2026年深圳中考地理答題規(guī)范特訓(xùn)試卷(附答案可下載)
- 水晶科普內(nèi)容
- 2026年英語(yǔ)六級(jí)備考閱讀理解題
- 軌道運(yùn)營(yíng)管理職業(yè)指南
- 期末復(fù)習(xí)知識(shí)點(diǎn)清單新教材統(tǒng)編版道德與法治七年級(jí)上冊(cè)
- 賬務(wù)清理合同(標(biāo)準(zhǔn)版)
- 投標(biāo)委托造價(jià)協(xié)議書(shū)
- 孕婦上班免責(zé)協(xié)議書(shū)
- 神經(jīng)內(nèi)科腦疝術(shù)后護(hù)理手冊(cè)
- 2026年包頭輕工職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)附答案
- 2025年中厚鋼板行業(yè)分析報(bào)告及未來(lái)發(fā)展趨勢(shì)預(yù)測(cè)
- 光伏工程掛靠合同范本
- 電磁炮課件教學(xué)課件
- 2025數(shù)據(jù)基礎(chǔ)設(shè)施參考架構(gòu)
- T-CITS 529-2025 應(yīng)答器傳輸系統(tǒng)車(chē)載設(shè)備 帶內(nèi)抗擾度試驗(yàn)方法
評(píng)論
0/150
提交評(píng)論