版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北師大版9年級數(shù)學上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、點P(2,﹣2)在反比例函數(shù)的圖象上,則下列各點在該函數(shù)圖象上的是(
)A.(﹣4,1) B.(1,4) C.(﹣2,﹣2) D.(4,)2、如圖,在矩形中,,,是矩形的對稱中心,點、分別在邊、上,連接、,若,則的值為(
)A. B. C. D.3、在如圖所示的網(wǎng)格中,以點為位似中心,四邊形的位似圖形是(
)A.四邊形 B.四邊形C.四邊形 D.四邊形4、一元二次方程(m+1)x2-2mx+m2-1=0有兩個異號根,則m的取值范圍是(
)A.m<1 B.m<1且m≠-1C.m>1 D.-1<m<15、如圖,在中,,,將繞點C順時針旋轉(zhuǎn)得到,點在上,交于F,則圖中與相似的三角形有(不再添加其他線段)(
)A.1個 B.2個 C.3個 D.4個6、如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC?CF=2HE.其中正確的結(jié)論有(
)A.1個 B.2個 C.3個 D.4個二、多選題(6小題,每小題2分,共計12分)1、下列命題中真命題有(
)A.四個角相等的四邊形是矩形 B.對角線垂直的四邊形是菱形C.對角線相等的平行四邊形是矩形 D.四邊相等的四邊形是正方形2、如圖,將等邊△ABC繞點C順時針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論中正確的是()A.AC=AD B.BD⊥AC C.四邊形ACED是菱形 D.∠ADC=60°3、不能說明△ABC∽△A’B’C’的條件是(
)A.或 B.且C.且 D.且4、如圖,在△ABC中,中線BE,CD相交于點O,連接DE,下列結(jié)論,正確的有(
).A. B.C. D.5、下列關(guān)于矩形的說法中錯誤的是()A.矩形的對角線互相垂直且平分 B.矩形的對角線相等且互相平分C.對角線相等的四邊形是矩形 D.對角線互相平分的四邊形是矩形6、如圖,已知等邊三角形ABC的邊長為2,DE是它的中位線.則下面四個結(jié)論中正確的有()A.DE=1 B.AB邊上的高為C.△CDE∽△CAB D.△CDE的面積與△CAB面積之比為1:4第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、如圖,在平行四邊形中,點在邊上,,連接交于點,則的面積與四邊形的面積之比為___
2、小明的身高為1.6,他在陽光下的影長為2,此時他旁邊的旗桿的影長為15,則旗桿的高度為_______.3、如圖,矩形ABCD中,AB=6,BC=8,對角線BD的垂直平分線EF交AD于點E、交BC于點F,則線段EF的長為__.4、關(guān)于的方程,k=_____時,方程有實數(shù)根.5、如果一個直角三角形斜邊上的中線與斜邊所成的銳角為角,那么這個直角三角形的較小的內(nèi)角是________.6、若m,n是一元二次方程的兩個實數(shù)根,則的值為___________.7、圖1是一種手機托架,使用該手機托架示意圖如圖3所示,底部放置手機處寬AB1.2厘米,托架斜面長BD6厘米,它有C到F共4個檔位調(diào)節(jié)角度,相鄰兩個檔位間的距離為0.8厘米,檔位C到B的距離為2.4厘米.將某型號手機置于托架上(圖2),手機屏幕長AG是15厘米,O是支點且OBOE2.5厘米(支架的厚度忽略不計).當支架調(diào)到E檔時,點G離水平面的距離GH為__________cm.8、如圖,點E、F分別是矩形ABCD邊BC和CD上的點,把△CEF沿直線EF折疊得到△GEF,再把△BEG沿直線BG折疊,點E的對應點H恰好落在對角線BD上,若此時F、G、H三點在同一條直線上,且線段HF與HD也恰好關(guān)于某條直線對稱,則的值為______.四、解答題(6小題,每小題10分,共計60分)1、安順市某商貿(mào)公司以每千克40元的價格購進一種干果,計劃以每千克60元的價格銷售,為了讓顧客得到更大的實惠,現(xiàn)決定降價銷售,已知這種干果銷售量(千克)與每千克降價(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示:(1)求與之間的函數(shù)關(guān)系式;(2)商貿(mào)公司要想獲利2090元,則這種干果每千克應降價多少元?2、如圖,在平面直角坐標系中,一次函數(shù)由函數(shù)平移得到,且與函數(shù)的圖象交于點.(1)求一次函數(shù)的表達式;(2)已知點,過點作平行于軸的直線,交直線于點,交函數(shù)的圖象于點.當時,直接寫出的取值范圍.3、如圖,在△ABC中,AB=AC,點P在BC上.(1)求作:△PCD,使點D在AC上,且△PCD∽△ABP;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)(2)在(1)的條件下,若∠APC=2∠ABC,求證:PD//AB.4、解方程(1)(x+1)2﹣64=0(2)x2﹣4x+1=0(3)x2+2x-2=0(配方法)(4)x2-2x-8=05、(1)計算:(2)解方程:2(x﹣3)2=506、如圖,一次函數(shù)y=ax+b(a、b為常數(shù),且a>0)與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象相交于點A(3,4),與x軸交于點C.(1)求反比例函數(shù)的解析式;(2)點P在x軸上,且P的坐標為(7,0),ACP的面積為20,求一次函數(shù)的解析式.-參考答案-一、單選題1、A【解析】【分析】根據(jù)點(2,-2)在反比例函數(shù)的圖象上,可以求得的值,從而可以判斷各個選項中的點是否在該函數(shù)的圖象上,本題得以解決.【詳解】解:∵點P(2,﹣2)在反比例函數(shù)的圖象上,∴A.(﹣4,1),,故該選項正確,符合題意,
B.(1,4),,故該選項不符合題意,C.(﹣2,﹣2),,故該選項不符合題意,
D.(4,),,故該選項不符合題意,故選A【考點】本題考查了反比例函數(shù)圖象上點的坐標特征,解題的關(guān)鍵是求出反比例系數(shù),解決該題型題目時,結(jié)合點的坐標利用反比例函數(shù)圖象上點的坐標特征求出值是關(guān)鍵.2、D【解析】【分析】連接AC,BD,過點O作于點,交于點,利用勾股定理求得的長即可解題.【詳解】解:如圖,連接AC,BD,過點O作于點,交于點,四邊形ABCD是矩形,同理可得故選:D.【考點】本題考查中心對稱、矩形的性質(zhì)、勾股定理等知識,學會添加輔助線,構(gòu)造直角三角形是解題關(guān)鍵.3、A【解析】【分析】以O(shè)為位似中心,作四邊形ABCD的位似圖形,根據(jù)圖像可判斷出答案.【詳解】解:如圖所示,四邊形的位似圖形是四邊形.故選:A【考點】此題考查了位似圖形的作法,畫位似圖形的一般步驟為:①確定位似中心;②分別連接并延長位似中心和能代表原圖的關(guān)鍵點;③根據(jù)相似比,確定能代表所作的位似圖形的關(guān)鍵點;順次連接上述各點,確定位似圖形.4、B【解析】【分析】設(shè)方程兩根為x1,x2,根據(jù)一元二次方程的定義和根與系數(shù)的關(guān)系求解即可.【詳解】解:設(shè)方程兩根為x1,x2,根據(jù)題意得m+1≠0,,解得m<1且m≠-1,∵x1?x2<0,∴Δ>0,∴m的取值范圍為m<1且m≠-1.故選:B.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當Δ>0,方程有兩個不相等的實數(shù)根;當Δ=0,方程有兩個相等的實數(shù)根;當Δ<0,方程沒有實數(shù)根.也考查了一元二次方程根與系數(shù)的關(guān)系.5、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)及相似三角形的判定方法進行分析,找出存在的相似三角形即可.【詳解】根據(jù)題意得:BC=B′C,AB=A′B′,AC=A′C,∠B=∠B′,∠A=∠A′=30°,∠ACB=∠A′CB′=90°∵∠A=30°,∠ACB=90°∴∠B=60°∴BB′=BC=B′C,∠B=∠BCB′=∠BB′C=60°∴∠B′CA=30°,∠ACA′=60°,A′B′∥BC∴∠B′FC=∠B′FA=90°∴△AB′F∽△ABC∽△A′B′C∽△A′CF∽△CFB′∴有4個故選D.【考點】考查了相似三角形的判定:①如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;②如果兩個三角形的兩條對應邊的比相等,且夾角相等,那么這兩個三角形相似;③如果兩個三角形的兩個對應角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.6、D【解析】【分析】①根據(jù)角平分線的定義可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AE=AB,從而得到AE=AD,然后利用“角角邊”證明△ABE和△AHD全等,根據(jù)全等三角形對應邊相等可得BE=DH,再根據(jù)等腰三角形兩底角相等求出∠ADE=∠AED=67.5°,根據(jù)平角等于180°求出∠CED=67.5°,從而判斷出①正確;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根據(jù)等角對等邊可得OE=OD=OH,判斷出②正確;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角邊角”證明△BEH和△HDF全等,根據(jù)全等三角形對應邊相等可得BH=HF,判斷出③正確;④根據(jù)全等三角形對應邊相等可得DF=HE,然后根據(jù)HE=AE-AH=BC-CD,BC-CF=BC-(CD-DF)=2HE,判斷出④正確.【詳解】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°-45°)=67.5°,∴∠CED=180°-45°-67.5°=67.5°,∴∠AED=∠CED,故①正確;∵AB=AH,∵∠AHB=(180°-45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°-67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;∵HE=AE-AH=BC-CD,∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故④正確;綜上所述,結(jié)論正確的是①②③④共4個.故選:D.【考點】本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),角平分線的定義,等腰三角形的判定與性質(zhì),熟記各性質(zhì)并仔細分析題目條件,根據(jù)相等的度數(shù)求出相等的角,從而得到三角形全等的條件或判斷出等腰三角形是解題的關(guān)鍵,也是本題的難點.二、多選題1、AC【解析】【分析】真命題就是正確的命題,即如果命題的題設(shè)成立,那么結(jié)論一定成立.因此,分別根據(jù)矩形、菱形、正方形的判定作出判斷得即可.【詳解】解:A、根據(jù)四邊形的內(nèi)角和是360度得出,四個角相等的四邊形即四個內(nèi)角是直角,故此四邊形是矩形,故此命題是真命題,符合題意;B、只有對角線互相平分且垂直的四邊形是菱形,故此命題不是真命題,不符合題意;C、對角線互相平分且相等的四邊形是矩形,故此命題不是真命題,符合題意;D、四邊相等的四邊形是菱形,故此命題不是真命題,不符合題意.故選AC.【考點】本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的性質(zhì)定理.2、ABCD【解析】【分析】由旋轉(zhuǎn)和等邊三角形性質(zhì)得到,,,可推導得到是等邊三角形,再由等邊三角形性質(zhì)判斷A、D是否正確;根據(jù)菱形的判定得到四邊形是菱形,從而判斷C是否正確,結(jié)合前兩問可推導得到四邊形是菱形,從而得到B是否正確【詳解】證明:∵將等邊繞點C順時針旋轉(zhuǎn)得到
∴,∴,∴∴是等邊三角形∴,∵∴四邊形是菱形又∵,且是等邊三角形∴∴四邊形是菱形∴綜上所述:選項A、B、C、D全部正確故選:ABCD【考點】本題考查等邊三角形的性質(zhì),菱形的判定和性質(zhì),根據(jù)相關(guān)定理內(nèi)容解題是切入點.3、ABD【解析】【分析】根據(jù)相似三角形的判定方法求解即可.【詳解】解:A、或,不能判定,符合題意;B、且,不能判定,符合題意;C、且,能判定,不符合題意;D、且,不能判定,符合題意.故選:ABD.【考點】此題考查了相似三角形的判定方法,解題的關(guān)鍵是熟練掌握相似三角形的判定方法.相似三角形的判定方法:兩邊對應成比例且夾角相等的兩個三角形相似;三邊對應成比例的兩個三角形相似;兩角對應相等的兩個三角形相似.4、AC【解析】【分析】由中線BE和中線CD得DE是△ABC的中位線,由中位線的性質(zhì)判斷A,B;由中位線得證△DOE∽△COB,從而判斷C;求得△ODE與△ABC的面積關(guān)系,由中線CD得△ADC和△ABC的面積關(guān)系,從而判斷D.【詳解】解:∵BE和CD是△ABC的中線,∴DE是△ABC的中位線,點O是△ABC的重心,∴DE:BC=1:2,故選項A正確,符合題意;AD:AB=1:2,DE∥BC,∴∠OED=∠OBC,∠ODE=∠OCB,∴△OED∽△OBC,∴,故選項B錯誤,不符合題意;∴OE:OB=ED:BC=1:2,∴AD:AB=OE:OB,故選項C正確,符合題意;∵CD是△ABC的中線,∴,∵OE:OB=OD:OC=1:2∴OC:DC=2:3∴,∴∴,故選項D錯誤,不符合題意;故答案為:A、C.【考點】此題考查了中位線的性質(zhì),涉及了比例線段和相似三角形的性質(zhì),熟練掌握相關(guān)基本性質(zhì)是解題的關(guān)鍵.5、ACD【解析】【分析】根據(jù)矩形的性質(zhì)得到:矩形的對角線相等且互相平分,根據(jù)矩形的判定:對角線相等且互相平分且相等的四邊形是矩形,進行逐一判斷即可.【詳解】A.矩形的對角線互相平分,且相等,但不一定互相垂直,說法錯誤,本選項符合題意;B.矩形的對角線相等且互相平分,說法正確,本選項不符合題意;C.對角線相等的四邊形不一定為矩形,例如等腰梯形對角線相等,但不是矩形,說法錯誤,本選項符合題意;D.對角線互相平分的四邊形為平行四邊形,不一定為矩形,說法錯誤,本選項符合題意;故選ACD.【考點】考查矩形的判定與性質(zhì),熟練掌握矩形的判定定理與性質(zhì)定理是解決問題的關(guān)鍵.6、ABCD【解析】【分析】根據(jù)圖形,利用三角形中位線定理,可得DE=1,A成立;AB邊上的高,可利用勾股定理求出等于,B成立;DE是△CAB的中位線,可得DE∥AB,利用平行線分線段成比例定理的推論,可得△CDE∽△CAB,C成立;由△CDE∽△CAB,且相似比等于1:2,那么它們的面積比等于相似比的平方,就等于1:4,D也成立.【詳解】解:∵DE是它的中位線,∴DE=AB=1,故A正確,∴DE∥AB,∴△CDE∽△CAB,故C正確,∴S△CDE:S△CAB=DE2:AB2=1:4,故D正確,∵等邊三角形的高=,故B正確.故選ABCD.【考點】本題利用了:1、三角形中位線的性質(zhì);2、相似三角形的判定:一條直線與三角形一邊平行,則它所截得三角形與原三角形相似;3、相似三角形的面積等于對應邊的比的平方;4、等邊三角形的高=邊長×sin60°.三、填空題1、【解析】【分析】由DE:EC=3:1,可得DF:FB=3:4,根據(jù)在高相等的情況下三角形面積比等于底邊的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面積與四邊形BCEF的面積的比值.【詳解】解:連接BE∵DE:EC=3:1∴設(shè)DE=3k,EC=k,則CD=4k∵ABCD是平行四邊形∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4∵DE:EC=3:1∴S△BDE:S△BEC=3:1設(shè)S△BDE=3a,S△BEC=a則S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴則△DEF的面積與四邊形BCEF的面積之比9:19故答案為:.【考點】本題考查了平行線分線段成比例,平行四邊形的性質(zhì),關(guān)鍵是運用在高相等的情況下三角形面積比等于底邊的比求三角形的面積比值.2、12【解析】【分析】設(shè)這根旗桿的高度為xm,利用某一時刻物體的高度與它的影長的比相等得到,然后利用比例性質(zhì)求x即可.【詳解】設(shè)這根旗桿的高度為xm,根據(jù)題意得解得x=12(m),即這根旗桿的高度為12m.故答案為12.【考點】本題考查了相似三角形的應用:利用影長測量物體的高度;利用相似測量河的寬度(測量距離);借助標桿或直尺測量物體的高度.3、【解析】【分析】根據(jù)矩形的性質(zhì)和勾股定理求出BD,證明△BOF∽△BCD,根據(jù)相似三角形的性質(zhì)得到比例式,求出EF即可.【詳解】解:如下圖,∵四邊形ABCD是矩形,∴∠A=90°,又AB=6,AD=BC=8,∴BD10,∵EF是BD的垂直平分線,∴OB=OD=5,∠BOF=90°,又∠C=90°,∴△BOF∽△BCD,∴,∴,解得,OF,∵四邊形ABCD是矩形,∴ADBC,∠A=90°,∴∠EDO=∠FBO,∵EF是BD的垂直平分線,∴BO=DO,EF⊥BD,在△DEO和△BFO中,,∴△DEO≌△BFO(ASA),∴OE=OF,∴EF=2OF,故答案為:.【考點】本題考查的是矩形的性質(zhì)、線段垂直平分線的性質(zhì)以及勾股定理的應用,解題的關(guān)鍵是掌握矩形的四個角是直角、對邊相等以及線段垂直平分線的定義.4、【解析】【分析】由于最高次項前面的系數(shù)不確定,所以進行分類討論:①當時,直接進行求解;②當時,方程為一元二次方程,利用根的判別式,確定k的取值范圍,最后綜合①②即可求出滿足題意的k的取值范圍.【詳解】解:①當時,方程化為:,解得:,符合題意;②當時,∵方程有實數(shù)根,∴,即,解得:,∴且;綜上所述,當時,方程有實數(shù)根,故答案為:.【考點】題目主要考查方程的解的情況,包括一元一次方程及一元二次方程的求解,分情況討論方程的解是解題關(guān)鍵.5、25【解析】【分析】由直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),證明得到,再利用外角性質(zhì)求出,再得到,從而得解.【詳解】如圖所示,∵是斜邊上的中線,∴,∴,∵斜邊上的中線與斜邊所成的銳角為,即,∴,解得:,另一個銳角,∴這個直角三角形的較小內(nèi)角是.故答案為:.【考點】本題考查了直角三角形的性質(zhì)和外角的性質(zhì),比較基礎(chǔ).6、3【解析】【分析】先根據(jù)一元二次方程的解的定義得到m2+3m-1=0,則3m-1=-m2,根據(jù)根與系數(shù)的關(guān)系得出m+n=-3,再將其代入整理后的代數(shù)式計算即可.【詳解】解:∵m是一元二次方程x2+3x-1=0的根,∴m2+3m-1=0,∴3m-1=-m2,∵m、n是一元二次方程x2+3x-1=0的兩個根,∴m+n=-3,∴,故答案為:3.【考點】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程()的兩根時,,.也考查了一元二次方程的解.7、【解析】【分析】如圖3中,作DT⊥AH于T,OK⊥BD于K.解直角三角形求出BK,OK,利用相似三角形的性質(zhì)求出DT,BT,AD,即可求出GH的長.【詳解】如圖3中,作DT⊥AH于T,OK⊥BD于K.∵OB=OE=2.5cm,BE=2.4+0.82=4(cm),OK⊥BE,∴BK=KE=2(cm),∴OK(cm),∵∠OBK=∠DBT,∠OKB=∠BTD=90°,∴△BKO∽△BTD,∴,∴,∴BT=4.8(cm),DT=3.6(cm),AT=1.2+4.8=6(cm),∴AD=(cm),∵DT∥GH,∴△ATD∽△AHG,∴,∴,∴(cm).故答案為:.【考點】本題考查了相似三角形的應用,勾股定理的應用等知識,解題的關(guān)鍵是理解題意,靈活運用所學知識解決問題,屬于中考填空題中的壓軸題.8、【解析】【分析】根據(jù)線段HF與HD也恰好關(guān)于某條直線對稱,可得HF=HD,由折疊和同角的余角相等得,然后證明,再利用設(shè)元法即可解決問題.【詳解】解:∵線段HF與HD也恰好關(guān)于某條直線對稱,∴HF=HD,∴∠HFD=∠FDH,∴∠BHF=2∠HFD由折疊可知:GF=CF,HG=CE=EG,,∠BHG=∠BEG,∠CEF=∠GEF,∵∠BEG+∠CEF+∠GEF=180°,∴2∠HFD+2∠CEF=180°∴∠HFD+∠CEF=90°,又∵∠CFE+∠CEF=90°∴,又∵HF=HD,∴△DHF是等邊三角形,∴∠CBD=∠CEF=30°,∴,設(shè)GF=CF=x,HF=DF=y,則HG=CE=EG=,HF=HG+GF=GE+CF,即y=x+,∵,∴.【考點】本題主要考查折疊的性質(zhì)、軸對稱的性質(zhì)、相似三角形的判定與性質(zhì).解決本題的關(guān)鍵是掌握翻折的性質(zhì).四、解答題1、(1);(2)商貿(mào)公司要想獲利2090元,則這種干果每千克應降價9元.【解析】【分析】(1)根據(jù)圖象可得:當,,當,;再用待定系數(shù)法求解即可;(2)根據(jù)這種干果每千克的利潤×銷售量=2090列出方程,解方程即可.【詳解】解:(1)設(shè)一次函數(shù)解析式為:,根據(jù)圖象可知:當,;當,;∴,解得:,∴與之間的函數(shù)關(guān)系式為;(2)由題意得:,整理得:,解得:.,∵讓顧客得到更大的實惠,∴.答:商貿(mào)公司要想獲利2090元,這種干果每千克應降價9元.【考點】本題考查了一元二次方程的應用和一次函數(shù)的應用,讀懂圖象信息、熟練掌握待定系數(shù)法、正確列出一元二次方程是解題的關(guān)鍵.2、(1)一次函數(shù)的表達式為:;(2).【解析】【分析】(1)由點在函數(shù)圖像上,可求,可得點,由一次函數(shù)由函數(shù)平移得到,可得,由一次函數(shù)過點A,可得即可;(2)當時,點位于點的下方.即反比例函數(shù)的圖像在一次函數(shù)圖像的上方,符合條件的點在點A的左側(cè),y軸右側(cè),即即可【詳解】解:(1)∵點在函數(shù)圖像上,∴,∴點,又∵一次函數(shù)由函數(shù)平移得到,∴,∵一次函數(shù)過點A,∴,∴一次函數(shù)的表達式為:;(2)當時,點位于點的下方.即反比例函數(shù)的圖像在一次函數(shù)圖像的上方,符合條件的點在點A的左側(cè),即【考點】本題考查平行線的性質(zhì),一次函數(shù)解析式,反比例函數(shù)的性質(zhì),利用函數(shù)圖像求的條件是解題關(guān)鍵.3、(1)見解析;(2)見解析【解析】【分析】(1)根據(jù)相似三角形的性質(zhì)可得∠CPD=∠BAP,故作∠CPD=∠BAP,∠CPD與AC的交點為D即可;(2)利用外角的性質(zhì)以及(1)中∠CPD=∠BAP可得∠CPD=∠ABC,再根據(jù)平行線的判定即可.【詳解】解:(1)∵△PC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026廣西桂林市陽朔縣人民法院書記員招聘2人考試參考試題及答案解析
- 廉潔過節(jié)活動方案策劃(3篇)
- 疫情店鋪活動策劃方案(3篇)
- 2026云南紅河州紅河縣國有資本運營集團有限公司面向社會招聘11人備考考試試題及答案解析
- 第四單元愛國情懷13少年中國說
- 2026重慶市大足區(qū)科學技術(shù)局招聘公益性崗位工作人員2人備考考試題庫及答案解析
- 2026上海證券研究所招聘參考考試題庫及答案解析
- 風電技術(shù)監(jiān)督內(nèi)容
- 2026新疆生產(chǎn)建設(shè)兵團第一師中級人民法院司法警務輔助人員招聘16人備考考試題庫及答案解析
- 校外培訓疫情組織管理制度(3篇)
- 商砼站合伙投資協(xié)議書6篇
- 2024-2025學年浙江省杭州市余杭區(qū)五年級(上)期末數(shù)學試卷
- 化工廠危害因素識別及防范措施
- 桉樹無節(jié)材分等方法
- 2024小型水庫大壩滲透處理技術(shù)導則
- 基礎(chǔ)會計說課大賽課件
- DL∕T 448-2016 電能計量裝置技術(shù)管理規(guī)程
- 2023年人教版六年級上冊語文期末考試卷(A4打印版)
- JTG-D40-2002公路水泥混凝土路面設(shè)計規(guī)范-PDF解密
- 《雅思閱讀精講》
- 產(chǎn)前檢查的操作評分標準
評論
0/150
提交評論