難點(diǎn)解析魯教版(五四制)8年級(jí)數(shù)學(xué)下冊(cè)試卷【奪分金卷】附答案詳解_第1頁(yè)
難點(diǎn)解析魯教版(五四制)8年級(jí)數(shù)學(xué)下冊(cè)試卷【奪分金卷】附答案詳解_第2頁(yè)
難點(diǎn)解析魯教版(五四制)8年級(jí)數(shù)學(xué)下冊(cè)試卷【奪分金卷】附答案詳解_第3頁(yè)
難點(diǎn)解析魯教版(五四制)8年級(jí)數(shù)學(xué)下冊(cè)試卷【奪分金卷】附答案詳解_第4頁(yè)
難點(diǎn)解析魯教版(五四制)8年級(jí)數(shù)學(xué)下冊(cè)試卷【奪分金卷】附答案詳解_第5頁(yè)
已閱讀5頁(yè),還剩31頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

魯教版(五四制)8年級(jí)數(shù)學(xué)下冊(cè)試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、若正方形ABCD各邊的中點(diǎn)依次為E、F、G、H,則四邊形EFGH是()A.平行四邊形 B.矩形 C.菱形 D.正方形2、如圖,矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AD=2,∠COB=60°,BF⊥AC,交AC于點(diǎn)M,交CD于點(diǎn)F,延長(zhǎng)FO交AB于點(diǎn)E,則下列結(jié)論:①FO=FC;②四邊形EBFD是菱形;③△OBE≌△CBF:④MB=3.其中結(jié)論正確的序號(hào)是()A.②③④ B.①②③ C.①④ D.①②③④3、若點(diǎn)C為線段AB的黃金分割點(diǎn),AB=8,則AC的長(zhǎng)是()A.-4 B.9- C.-3或9- D.-4或12-4、如圖,正方形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結(jié)論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④;⑤S△PBC:S△AFC=1:2,其中正確的有()個(gè).A.2 B.3 C.4 D.55、直角三角形中,,三個(gè)正方形如圖放置,邊長(zhǎng)分別為,,,已知,,則的值為()A.4 B. C.5 D.66、下列各式是最簡(jiǎn)二次根式的是()A. B. C. D.7、我們對(duì)于“xn”定義一種運(yùn)算“L”:L(xn)=nxn﹣1(n是正整數(shù)):特別的,規(guī)定:L(c)=0(c是常數(shù)).這樣的運(yùn)算具有兩個(gè)運(yùn)算法則:①L(x+y)=L(x)+L(y);②L(mx)=m?L(x)(m為常數(shù)).例如:L(x3+4x2)=3x2+8x.已知y=+(m﹣1)x2+m2x,若方程L(y)=0有兩個(gè)相等的實(shí)數(shù)根,則m的值為()A.0 B. C.1 D.28、如圖,正方形紙片ABCD的四個(gè)頂點(diǎn)分別在四條平行線、、、上,這四條直線中相鄰兩條之間的距離依次為、、,若,,則正方形的面積S等于()A.34 B.89 C.74 D.109第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,若∠AOB=60°,AB=4cm,則AC的長(zhǎng)為_(kāi)_____cm.2、已知實(shí)數(shù)a,b滿足=,則的值是_____.3、如圖,四邊形ADEF為菱形,且,,那么______.4、已知x=2是一元二次方程x2+mx+n=0的一個(gè)解,則4m+2n的值是_____.5、49的算術(shù)平方根是_______,-64的立方根是_______,的倒數(shù)是_______.6、如圖,菱形ABCD邊長(zhǎng)為4,∠B=60°,,,連接EF交菱形的對(duì)角線AC于點(diǎn)O,則圖中陰影部分面積等于________________.7、若關(guān)于x的方程有一個(gè)根是2,則另一個(gè)根為_(kāi)__________.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,在菱形ABCD中,AB=15,過(guò)點(diǎn)A作AE⊥BC于點(diǎn)E,AE=12,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿BE向終點(diǎn)E運(yùn)動(dòng),過(guò)點(diǎn)P作PQ⊥BC,交BA于點(diǎn)Q,以PQ為邊向右作正方形PQMN,點(diǎn)N在射線BC上,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒(t>0).(1)直接寫(xiě)出線段PQ的長(zhǎng)(用含t的代數(shù)式表示);(2)當(dāng)正方形PQMN與四邊形AECD重合部分圖形為四邊形時(shí),求t的取值范圍;(3)連接AC、QN,當(dāng)△QMN一邊上的中點(diǎn)在線段AC上時(shí),直接寫(xiě)出t的值.2、如圖,線段CD∥AB,AD與BC交于點(diǎn)E.(1)求證;;(2)過(guò)點(diǎn)E作EF∥AB,交AC于點(diǎn)F,如果AB=5,EF=2,求CD的長(zhǎng).3、計(jì)算:|2﹣2|﹣﹣20220.4、如圖,在四邊形ABCD中,∠A=∠ADC=90°,AB=AD=10,CD=15,點(diǎn)E,F(xiàn)分別為線段AB,CD上的動(dòng)點(diǎn),連接EF,過(guò)點(diǎn)D作DG⊥直線EF,垂足為G.點(diǎn)E從點(diǎn)B向點(diǎn)A以每秒2個(gè)單位的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)D向點(diǎn)C以每秒3個(gè)單位的速度運(yùn)動(dòng),當(dāng)點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),E,F(xiàn)同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t秒.(1)求BC的長(zhǎng);(2)當(dāng)GE=GD時(shí),求AE的長(zhǎng);(3)當(dāng)t為何值時(shí),CG取最小值?請(qǐng)說(shuō)明理由.5、如果關(guān)于x的一元二次方程(,a,b,c是常數(shù))有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的一半時(shí),那么稱這樣的方程為“半根方程”.例如,一元二次方程的兩個(gè)根是3和6,該方程可化簡(jiǎn)為,則方程就是半根方程.(1)請(qǐng)你再寫(xiě)出一個(gè)半根方程______(要求化成一般形式);(2)若關(guān)于x的方程是半根方程,求的值.6、如圖,直角△ABC中,AB⊥AC,AD⊥BC,證明:AB2=BD?BC,AC2=CD?BC,AD2=BD?CD.7、(1)計(jì)算:+|1﹣|﹣;(2)解方程:;-參考答案-一、單選題1、D【解析】【分析】畫(huà)出圖形,連接,先根據(jù)正方形的性質(zhì)可得,再根據(jù)三角形中位線定理可得,從而可得,同樣的方法可得,然后根據(jù)正方形的判定即可得出答案.【詳解】解:如圖,連接,四邊形是正方形,,點(diǎn)分別是的中點(diǎn),,,同理可得:,四邊形是正方形,故選:D.【點(diǎn)睛】本題考查了正方形的判定與性質(zhì)、三角形中位線定理,熟練掌握正方形的判定與性質(zhì)是解題關(guān)鍵.2、D【解析】【分析】根據(jù)矩形的性質(zhì)和等邊三角形的判定得出△OBC是等邊三角形,進(jìn)而判斷①正確;根據(jù)ASA證明△AOE與△COF全等,進(jìn)而判斷②正確;根據(jù)全等三角形的性質(zhì)判斷③④正確即可.【詳解】解:∵四邊形ABCD是矩形,∴AC=BD,∴OA=OC=OD=OB,∵∠COB=60°,∴△OBC是等邊三角形,∴OB=BC=OC,∠OBC=60°,∵BF⊥AC,∴OM=MC,∴FM是OC的垂直平分線,∴FO=FC,故①正確;∵OB=CB,F(xiàn)O=FC,F(xiàn)B=FB,∴△OBF≌△CBF(SSS),∴∠FOB=∠FCB=90°,∵∠OBC=60°,∴∠ABO=30°,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,∠AOE=∠FOC,∴△AOE≌△COF(ASA),∴OE=OF,∵OB⊥EF,∴四邊形EBFD是菱形,故②正確;所以△OBE≌△OBF≌△CBF,∴③正確;∵BC=AD=2,F(xiàn)M⊥OC,∠CBM=30°,∴BM=3,故④正確;故選:D.【點(diǎn)睛】此題考查矩形的性質(zhì),關(guān)鍵是根據(jù)矩形的性質(zhì)和全等三角形的判定和性質(zhì)解答.3、D【解析】【分析】根據(jù)黃金分段的定義可知,叫做黃金數(shù),當(dāng)時(shí),;當(dāng)時(shí),即,進(jìn)行計(jì)算即可得.【詳解】解:∵點(diǎn)C為線段AB的黃金分割點(diǎn),AB=8,當(dāng)時(shí),,;當(dāng)時(shí),,即,,綜上,AC的長(zhǎng)為或,故選D.【點(diǎn)睛】本題考查了黃金分割,解題的關(guān)鍵是要不重不漏,分情況討論AC和BC之間的長(zhǎng)度關(guān)系.4、C【解析】【分析】證明,得出,得出是線段的垂直平分線,由線段垂直平分線的性質(zhì)得出,,由正方形的形狀得出,,,證出,得出,因此,即可得出②正確;設(shè),菱形的邊長(zhǎng)為,證出,由正方形的性質(zhì)得出,,證出,由證明,①正確;求出,是等腰直角三角形,得出,,整理得,得出,,由平行線得出,得出,因此④正確;證明,得出,③正確;證明,得出,因此,⑤錯(cuò)誤;即可得出結(jié)論.【詳解】解:是的平分線,,,,在和中,,,,是線段的垂直平分線,,,四邊形是正方形,,,,,,,,,四邊形是菱形;②正確;設(shè),菱形的邊長(zhǎng)為,四邊形是菱形,,,,,,,四邊形是正方形,,,,,,在和中,,,①正確;,是等腰直角三角形,,,整理得,,,四邊形是正方形,,,,,,,④正確;,,,在和中,,,,③正確;在和中,,,,,⑤錯(cuò)誤;綜上所述,正確的有4個(gè),故選:C.【點(diǎn)睛】本題考查了正方形的性質(zhì)、等腰直角三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、平行線的性質(zhì)、菱形的判定與性質(zhì)、三角形面積的計(jì)算等知識(shí);本題綜合性強(qiáng),有一定難度,熟練掌握正方形的性質(zhì),證明三角形全等是解題的關(guān)鍵.5、C【解析】【分析】根據(jù)△CEF∽△OME∽△PFN,得,代入即可.【詳解】解:如圖,先標(biāo)注頂點(diǎn),直角三角形ABC中,∠C=90°,放置邊長(zhǎng)分別為a,b,c的正方形,且a=2,b=3,∴△CEF∽△OME∽△PFN,∴,∵M(jìn)O=2,PN=3,EF=c,∴OE=c-2,PF=C-3,∴,解得:c=5或0,經(jīng)檢驗(yàn)0不符合題意舍去,∴c=5,故選:C.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),相似三角形的判定與性質(zhì),一元二次方程的解法等知識(shí),證明△OME∽△PFN是解題的關(guān)鍵.6、D【解析】【分析】根據(jù)最簡(jiǎn)二次根式的定義即被開(kāi)方數(shù)不含分母,也不含能開(kāi)的盡方的因數(shù)或因式,判斷即可.【詳解】解:A.,故A不符合題意;B.,故B不符合題意;C.,故C不符合題意;D.是最簡(jiǎn)二次根式,故D符合題意;故選:D.【點(diǎn)睛】本題考查了最簡(jiǎn)二次根式,熟練掌握最簡(jiǎn)二次根式的定義是解題的關(guān)鍵.7、B【解析】【分析】利用新運(yùn)算的運(yùn)算法則得到x2+2(m﹣1)x+m2=0,再根據(jù)判別式的意義得到Δ=4(m﹣1)2﹣4m2=0,然后解關(guān)于m的方程即可.【詳解】解:∵方程L(y)=0有兩個(gè)相等的實(shí)數(shù)根,∴L(x3)+L[(m﹣1)x2]+L(m2x)=0,∴x2+2(m﹣1)x+m2=0,△=4(m﹣1)2﹣4m2=0,∴m=.故選:B.【點(diǎn)睛】本題考查了一元二次方程根的判別式,將新定義轉(zhuǎn)化為一元二次方程是解題的關(guān)鍵.8、C【解析】【分析】如圖,記與的交點(diǎn)為記與的交點(diǎn)為過(guò)作于過(guò)作于再證明,可得再利用勾股定理可得答案.【詳解】解:如圖,記與的交點(diǎn)為記與的交點(diǎn)為過(guò)作于過(guò)作于正方形則(全等三角形的對(duì)應(yīng)高相等)故選C【點(diǎn)睛】本題考查的是正方形的性質(zhì),全等三角形的判定與性質(zhì),證明是解本題的關(guān)鍵.二、填空題1、8【解析】【分析】根據(jù)矩形的性質(zhì)可得三角形AOB為等邊三角形,在直角三角形ABC中,根據(jù)直角三角形的兩個(gè)銳角互余可得∠ACB為30°,根據(jù)30°角所對(duì)的直角邊等于斜邊的半徑,由AB的長(zhǎng)可得出AC的長(zhǎng).【詳解】解:∵四邊形ABCD為矩形,∴OA=OC,OB=OD,且AC=BD,∠ABC=90°,∴OA=OB=OC=OD,又∵∠AOB=60°,∴△AOB為等邊三角形,∴∠BAO=60°,在直角三角形ABC中,∠ABC=90°,∠BAO=60°,∴∠ACB=30°,∵AB=4cm,則AC=2AB=8cm.故答案為:8.【點(diǎn)睛】本題考查了矩形的性質(zhì),等邊三角形的判定與性質(zhì),以及含30°角直角三角形的性質(zhì),矩形的性質(zhì)有:矩形的四個(gè)角都為直角;矩形的對(duì)邊平行且相等;矩形的對(duì)角線互相平分且相等,熟練掌握矩形的性質(zhì)是解本題的關(guān)鍵.2、【解析】【分析】首先用b表示出a,再代入約分即可求值.【詳解】解:∵=,∴a=b,∴,故答案為:.【點(diǎn)睛】本題考查了比例的性質(zhì),用b表示出a是解題關(guān)鍵.3、2.4##【解析】【分析】由菱形的性質(zhì)可得,進(jìn)而得出,列出比例式,代入數(shù)值進(jìn)行計(jì)算即可.【詳解】四邊形是菱形解得故答案為:2.4【點(diǎn)睛】本題考查了菱形的性質(zhì),相似三角形的性質(zhì)與判定,根據(jù)相似三角形的性質(zhì)得出相似比是解題的關(guān)鍵.4、8【解析】【分析】由x=2是一元二次方程x2+mx+n=0的一個(gè)解,將x=2代入原方程,即可求得2m+n的值,從而得解.【詳解】解:∵x=2是一元二次方程x2+mx+n=0的一個(gè)根,∴4+2m+n=0,∴2m+n=-4.∴4m+2n=8.故答案為:8.【點(diǎn)睛】本題主要考查了方程解的定義.解題的關(guān)鍵是將x=2代入原方程,利用整體思想求解.5、7【解析】【分析】根據(jù)求一個(gè)數(shù)的算術(shù)平方根,立方根,倒數(shù)的定義,分母有理化分別計(jì)算即可【詳解】解:49的算術(shù)平方根是7,-64的立方根是,的倒數(shù)是故答案為:7;;【點(diǎn)睛】本題考查了求一個(gè)數(shù)的算術(shù)平方根,立方根,分母有理化,熟練掌握算術(shù)平方根,立方根,分母有理化是解題的關(guān)鍵.6、【解析】【分析】由菱形的性質(zhì)可得,,,由“”可證,可得,由面積的和差關(guān)系可求解.【詳解】解:連接,四邊形是菱形,,,,是等邊三角形,,,,,,在和中,,,,,,,,,陰影部分面積,故答案為:.【點(diǎn)睛】本題考查了菱形的性質(zhì),等邊三角形的性質(zhì),靈活運(yùn)用這些性質(zhì)解決問(wèn)題是解題的關(guān)鍵.7、【解析】【分析】根據(jù)題意設(shè)方程的另一個(gè)根為t,利用根與系數(shù)的關(guān)系得到2t=-8,然后解一次方程即可.【詳解】解:設(shè)方程的另一個(gè)根為t,根據(jù)題意得2t=-8,解得:t=-4,即方程的另一個(gè)根為-4.故答案為:-4.【點(diǎn)睛】本題考查根與系數(shù)的關(guān)系,注意掌握若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時(shí),x1+x2=,x1x2=.三、解答題1、(1)PQ=4t(2)<t≤(3)或或【解析】【分析】(1)根據(jù)題意以及勾股定理,求得的長(zhǎng),根據(jù)PQ∥AE,可得,進(jìn)而可得BQ=5t,PQ=4t;(2)當(dāng)MN與AE重合時(shí),BP+PN=BE,當(dāng)點(diǎn)N與點(diǎn)C重合時(shí),BP+PN=BN=BC,分別求得的值,進(jìn)而求得t的取值范圍;(3)分三種情況討論,即當(dāng)?shù)闹悬c(diǎn)在上,根據(jù)相似三角形的性質(zhì)與判定,列出比例式,解方程求解即可(1)∵AE⊥BC,∴∠AEB=90°,∵AB=15,AE=12,∴BE===9,∵PQ⊥BC,∴PQ∥AE,∴,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿BE向終點(diǎn)E運(yùn)動(dòng)∴,∴BQ=5t,PQ=4t;(2)當(dāng)MN與AE重合時(shí),BP+PN=BE,∵四邊形PQMN是正方形,∴PN=PQ=4t,∴3t+4t=9,∴t=.當(dāng)點(diǎn)N與點(diǎn)C重合時(shí),BP+PN=BN=BC,∵四邊形ABCD是菱形,AB=15,∴BP+PN=BN=BC=15,∵四邊形PQMN是正方形,∴PN=PQ=4t,∴3t+4t=15,∴t=.∴當(dāng)<t≤時(shí),重疊部分是四邊形;(3)當(dāng)AC經(jīng)過(guò)MN的中點(diǎn)R時(shí),∴RN=MN=PQ=2t,∵PQ∥AE,MN∥PQ,∴MN∥AE,∴,∴,∴NC=t,∵CE=BC﹣BE=15﹣9=6,∴BN+CN=BP+PN+CN=7t+t=15,解得t=.當(dāng)AC經(jīng)過(guò)QM的中點(diǎn)W時(shí),∵QM∥BC,∴,即,∴AQ=QW=2t,∴AQ=AB=BQ=15﹣5t=2t,解得t=.當(dāng)AC經(jīng)過(guò)QN的中點(diǎn)K時(shí),設(shè)AC交QM于H,∵QM∥BC,∴,∴AQ=QH,∵QM∥BC,K是QN的中點(diǎn),∴KQ=KN,∠KQH=∠KNC,∠KHQ=∠KCN,∴△KHQ≌△KCN(AAS),∴QH=CN,∴AQ=QH=CN,∴AB﹣BQ=BN﹣BC,即15﹣5t=7t﹣15,解得t=,綜上所述,滿足條件的t的值為或或.【點(diǎn)睛】本題考查了動(dòng)點(diǎn)問(wèn)題,正方形的性質(zhì),勾股定理,相似三角形的性質(zhì)與判定,掌握相似三角形的性質(zhì)與判定是解題的關(guān)鍵.2、(1)見(jiàn)解析(2)【解析】【分析】(1)根據(jù)平行線的性質(zhì)得∠B=∠BCD,∠BAE=∠D,則可判定△ABE∽△DCE,根據(jù)相似三角形的性質(zhì)得,即可得;(2)根據(jù)平行線的性質(zhì)得∠EFC=∠BAC,∠CEF=∠B,可判定△CEF∽△CBA,根據(jù)相似三角形的性質(zhì)得,則,等量代換得EF∥CD,則,可判定△AEF∽△ADC,根據(jù)相似三角形的性質(zhì)得,即可得.(1)證明:∵CD∥AB,∴∠B=∠BCD,∠BAE=∠D,∴△ABE∽△DCE,∴,∴.(2)解:∵EF∥AB,∴∠EFC=∠BAC,∠CEF=∠B,∴△CEF∽△CBA,∴,∴,∵CD∥AB,EF∥AB,∴EF∥CD,∴,,∴△AEF∽△ADC,∴,∴,∴CD=.【點(diǎn)睛】本題考查了平行線的性質(zhì),相似三角形的判定與性質(zhì),解題的關(guān)鍵是掌握這些知識(shí)點(diǎn).3、【解析】【分析】先去絕對(duì)值,二次根式化簡(jiǎn),然后計(jì)算求解即可.【詳解】解:原式.【點(diǎn)睛】本題考查了絕對(duì)值,零指數(shù)冪,二次根式的混合運(yùn)算等知識(shí).正確計(jì)算是解題的關(guān)鍵.4、(1);(2);(3)當(dāng)t=時(shí),CG取得最小值為,見(jiàn)解析【解析】【分析】(1)過(guò)點(diǎn)B作BH⊥CD于點(diǎn)H,則四邊形ADHB是矩形,由勾股定理可得出答案;(2)過(guò)點(diǎn)G作MN⊥AB,證明△EMG≌△GND(AAS),得出MG=DN,設(shè)DN=a,GN=b,則MG=a,ME=b,證明△DGN∽△GFN,由相似三角形的性質(zhì)得出,得出方程3t=10﹣t+,解方程求出t的值可得出答案;(3)連接BD,交EF于點(diǎn)K,證明△BEK∽△DFK,得出比例線段,求出BD=10,DK=6,取DK的中點(diǎn),連接OG,點(diǎn)G在以O(shè)為圓心,r=3的圓弧上運(yùn)動(dòng),連接OC,OG,求出CG的最小值和t的值即可.(1)解:如圖1,過(guò)點(diǎn)B作BH⊥CD于點(diǎn)H,則四邊形ADHB是矩形,∵AB=10,CD=15,∴CH=5,又∵BH=AD=10,∴BC=;(2)解:過(guò)點(diǎn)G作MN⊥AB,如圖2,∵,∴MN⊥CD,∵DG⊥EF,∴∠EMG=∠GND=90°,∴∠MEG+∠MGE=90°,∵∠EGM+∠DGN=90°,∴∠GEM=∠DGN,∵EG=DG,∴△EMG≌△GND(AAS),∴MG=DN,設(shè)DN=a,GN=b,則MG=a,ME=b,∵點(diǎn)E從點(diǎn)B向點(diǎn)A以每秒2個(gè)單位的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)D向點(diǎn)C以每秒3個(gè)單位的速度運(yùn)動(dòng),∴BE=2t,AE=10﹣2t,DF=3t,CF=15﹣3t,∵AM=DN,AD=MN,∴a+b=10,a﹣b=10﹣2t,解得a=10﹣t,b=t,∵DG⊥EF,GN⊥DF,∴∠DNG=∠FNG=90°,∴∠GDN+∠DFG=∠GDN+∠DGN=90°,∴∠DFG=∠DGN,∴△DGN∽△GFN,∴,∴GN2=DN?NF,∴NF=,又∵DF=DN+NF,∴3t=10﹣t+,解得t=5,又∵0≤t≤5,∴t=5﹣,∴AE=10﹣2t=2.(3)解:如圖3,連接BD,交EF于點(diǎn)K,∵,∴△BEK∽△DFK,∴,又∵AB=AD=10,∴BD=AB=10,∴DK=,取DK的中點(diǎn),連接OG,∵DG⊥EF,∴△DGK為直角三角形,∴OG=,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論