版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》專項測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在平面直角坐標系中,點A是x軸正半軸上的一個動點,點C是y軸正半軸上的點,于點C.已知,.點B到原點的最大距離為()A.22 B.18 C.14 D.102、已知,四邊形ABCD的對角線AC和BD相交于點O.設有以下條件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四邊形ABCD是矩形;⑤四邊形ABCD是菱形;⑥四邊形ABCD是正方形.那么,下列推理不成立的是()A.①④?⑥ B.①③?⑤ C.①②?⑥ D.②③?④3、如圖,下列條件中,能使平行四邊形ABCD成為菱形的是()A. B. C. D.4、如圖,已知E為鄰邊相等的平行四邊形ABCD的邊BC上一點,且∠DAE=∠B=80o,那么∠CDE的度數(shù)為()A.20o B.25o C.30o D.35o5、如圖所示,在ABCD中,對角線AC,BD相交于點O,過點O的直線EF分別交AD于點E,BC于點F,,則ABCD的面積為(
)A.24 B.32 C.40 D.48第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,已知Rt△ACB,∠ACB=90°,∠ABC=60°,AB=8,點D在CB所在直線上運動,以AD為邊作等邊三角形ADE,則CB=___.在點D運動過程中,CE的最小值為___.2、如圖,M,N分別是矩形ABCD的邊AD,AB上的點,將矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,連接MC,若AB=8,AD=16,BE=4,則MC的長為________.3、如圖,在中,,點、、分別是三邊的中點,且,則的長度是__________.4、如圖,在矩形ABCD中,對角線AC,BD相交于O,EF過點O分別交AB,CD于E,F(xiàn),已知AB=8cm,AD=5cm,那么圖中陰影部分面積為_____cm2.5、如圖,點E,F(xiàn)在正方形ABCD的對角線AC上,AC=10,AE=CF=3,則四邊形BFDE的面積為_____.三、解答題(5小題,每小題10分,共計50分)1、如圖1,在平面直角坐標系中,且;(1)試說明是等腰三角形;(2)已知.寫出各點的坐標:A(,),B(,),C(,).(3)在(2)的條件下,若一動點M從點B出發(fā)沿線段BA向點A運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當其中一點到達終點時整個運動都停止.①若的一條邊與BC平行,求此時點M的坐標;②若點E是邊AC的中點,在點M運動的過程中,能否成為等腰三角形?若能,求出此時點M的坐標;若不能,請說明理由.2、已知如圖,在中,點是邊上一點,連接,點是上一動點,連接.(1)如圖1,當時,連接,延長交于點,求證:;(2)如圖2,以為直角邊作等腰,連接,若,當點在運動過程中,求周長的最小值.
3、△ABC為等邊三角形,AB=4,AD⊥BC于點D,E為線段AD上一點,AE=.以AE為邊在直線AD右側構造等邊△AEF.連結CE,N為CE的中點.
(1)如圖1,EF與AC交于點G,①連結NG,求線段NG的長;②連結ND,求∠DNG的大?。?)如圖2,將△AEF繞點A逆時針旋轉,旋轉角為α.M為線段EF的中點.連結DN、MN.當30°<α<120°時,猜想∠DNM的大小是否為定值,并證明你的結論.4、如圖,△ABC為等邊三角形,點D為線段BC上一點,將線段AD以點A為旋轉中心順時針旋轉60°得到線段AE,連接BE,點D關于直線BE的對稱點為F,BE與DF交于點G,連接DE,EF.(1)求證:∠BDF=30°(2)若∠EFD=45°,AC=+1,求BD的長;(3)如圖2,在(2)條件下,以點D為頂點作等腰直角△DMN,其中DN=MN=,連接FM,點O為FM的中點,當△DMN繞點D旋轉時,求證:EO的最大值等于BC.5、已知:如圖,,,AD是BC上的高線,CE是AB邊上的中線,于G.(1)若,求線段AC的長;(2)求證:.-參考答案-一、單選題1、B【解析】【分析】首先取AC的中點E,連接BE,OE,OB,可求得OE與BE的長,然后由三角形三邊關系,求得點B到原點的最大距離.【詳解】解:取AC的中點E,連接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若點O,E,B不在一條直線上,則OB<OE+BE=18.若點O,E,B在一條直線上,則OB=OE+BE=18,∴當O,E,B三點在一條直線上時,OB取得最大值,最大值為18.故選:B【點睛】此題考查了直角三角形斜邊上的中線的性質以及三角形三邊關系.此題難度較大,注意掌握輔助線的作法,注意掌握數(shù)形結合思想的應用.2、C【解析】【分析】根據已知條件以及正方形、菱形、矩形、平行四邊形的判定條件,對選項進行分析判斷即可.【詳解】解:A、①④可以說明,一組鄰邊相等的矩形是正方形,故A正確.B、③可以說明四邊形是平行四邊形,再由①,一組臨邊相等的平行四邊形是菱形,故B正確.C、①②,只能說明兩組鄰邊分別相等,可能是菱形,但菱形不一定是正方形,故C錯誤.D、③可以說明四邊形是平行四邊形,再由②可得:對角線相等的平行四邊形為矩形,故D正確.故選:C.【點睛】本題主要是考查了特殊四邊形的判定,熟練掌握各類四邊形的判定條件,是解決本題的關鍵.3、C【解析】【分析】根據菱形的性質逐個進行證明,再進行判斷即可.【詳解】解:A、?ABCD中,本來就有AB=CD,故本選項錯誤;B、?ABCD中本來就有AD=BC,故本選項錯誤;C、?ABCD中,AB=BC,可利用鄰邊相等的平行四邊形是菱形判定?ABCD是菱形,故本選項正確;D、?ABCD中,AC=BD,根據對角線相等的平行四邊形是矩形,即可判定?ABCD是矩形,而不能判定?ABCD是菱形,故本選項錯誤.故選:C.【點睛】本題考查了平行四邊形的性質,菱形的判定的應用,注意:菱形的判定定理有:①有一組鄰邊相等的平行四邊形是菱形,②四條邊都相等的四邊形是菱形,③對角線互相垂直的平行四邊形是菱形.4、C【解析】【分析】依題意得出AE=AB=AD,∠ADE=50°,又因為∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,從而求解.【詳解】∵ADBC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故選:C.【點睛】考查菱形的邊的性質,同時綜合利用三角形的內角和及等腰三角形的性質,解題關鍵是利用等腰三角形的性質求得∠ADE的度數(shù).5、B【解析】【分析】先根據平行四邊形的性質可得,再根據三角形全等的判定定理證出,根據全等三角形的性質可得,從而可得,然后根據平行四邊形的性質即可得.【詳解】解:∵四邊形是平行四邊形,,,在和中,∵,,,,則的面積為,故選:B.【點睛】本題考查了平行四邊形的性質、三角形全等的判定定理與性質等知識點,熟練掌握平行四邊形的性質是解題關鍵.二、填空題1、4【解析】【分析】以AC為邊作正△AFC,并作FH⊥AC,垂足為點H,連接FD、CE,由直角三角形可求BC=4,,由“SAS”可證△FAD≌△CAE,得CE=FD,CE最小即是FD最小,此時,故CE的最小值是.【詳解】解:以AC為邊作正△AFC,并作FH⊥AC,垂足為點H,連接FD、CE,如圖:在Rt△ACB中,∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴,∴∵△AFC,△ADE都是等邊三角形,∴AD=AE,AF=AC,∠DAE=∠FAC=60°,∴∠FAD+∠DAC=∠CAE+∠DAC,即∠FAD=∠CAE,在△FAD和△CAE中,,∴△FAD≌△CAE(SAS),∴CE=FD,∴CE最小即是FD最小,∴當FD⊥BD時,F(xiàn)D最小,此時∠FDC=∠DCH=∠CHF=90°,∴四邊形FDCH是矩形,∴,∴CE的最小值是.故答案為:4,.【點睛】本題主要考查了等邊三角形的性質,全等三角形的性質與判定,矩形的性質與判定,含30度角的直角三角形的性質,勾股定理等等,解題的關鍵在于能夠熟練掌握等邊三角形的性質.2、10【解析】【分析】過E作EF⊥AD于F,根據矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,得出△ANM≌△ENM,可得AM=EM,根據矩形ABCD,得出∠B=∠A=∠D=90°,再證四邊形ABEF為矩形,得出AF=BE=4,F(xiàn)E=AB=8,設AM=EM=m,F(xiàn)M=m-4,根據勾股定理,即,解方程m=10即可.【詳解】解:過E作EF⊥AD于F,∵矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,∴△ANM≌△ENM,∴AM=EM,∵矩形ABCD,∴∠B=∠A=∠D=90°,∵FE⊥AD,∴∠AFE=∠B=∠A=90°,∴四邊形ABEF為矩形,∴AF=BE=4,F(xiàn)E=AB=8,設AM=EM=m,F(xiàn)M=m-4在Rt△FEM中,根據勾股定理,即,解得m=10,∴MD=AD-AM=16-10=6,在Rt△MDC中,∴MC=.故答案為10.【點睛】本題考查折疊軸對稱性質,矩形判定與性質,勾股定理,掌握折疊軸對稱性質,矩形判定與性質,勾股定理是解題關鍵.3、【解析】【分析】根據中位線定理可得的長度,再根據直角三角形斜邊上的中線等于斜邊的一半即可求出的長度.【詳解】解:∵點、、分別是三邊的中點,且∴∵∴故答案為:【點睛】本題主要考查了三角形的中位線定理和直角三角形斜邊上的中線,熟練掌握三角形的中位線定理和直角三角形斜邊上的中線是解答本題的關鍵.4、10【解析】【分析】利用矩形性質,求證,將陰影部分的面積轉為的面積,最后利用中線平分三角形的面積,求出的面積,即可得到陰影部分的面積.【詳解】解:四邊形為矩形,,,,,在與中,,陰影部分的面積最后轉化為了的面積,中,,平分,陰影部分的面積:,故答案為:10.【點睛】本題主要是考查了矩形的性質以全等三角形的判定與性質以及中線平分三角形面積,熟練利用矩形性質,證明三角形全等,將陰影部分面積轉化為其他圖形的面積,這是解決本題的關鍵.5、20【解析】【分析】連接BD,交AC于O,根據題意和正方形的性質可求得EF=4,AC⊥BD,由即可求解.【詳解】解:如圖,連接BD,交AC于O,∵四邊形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴故答案為:20.【點睛】本題主要考查了正方形的性質,熟練掌握正方形的對角線相等且互相垂直平分是解題的關鍵.三、解答題1、(1)見解析;(2)12,0;-8,0;0,16;(3)①當M的坐標為(2,0)或(4,0)時,△OMN的一條邊與BC平行;②當M的坐標為(0,10)或(12,0)或(,0)時,,△MOE是等腰三角形.
【分析】(1)設,,,則,由勾股定理求出,即可得出結論;(2)由的面積求出m的值,從而得到、、的長,即可得到A、B、C的坐標;(3)①分當時,;當時,;得出方程,解方程即可;②由直角三角形的性質得出,根據題意得出為等腰三角形,有3種可能:如果;如果;如果;分別得出方程,解方程即可.【詳解】解:(1)證明:設,,,則,在中,,,∴是等腰三角形;(2)∵,,∴,∴,,,.∴A點坐標為(12,0),B點坐標為(-8,0),C點坐標為(0,16),故答案為:12,0;-8,0;0,16;(3)①如圖3-1所示,當MN∥BC時,∵AB=AC,∴∠ABC=∠ACB,∵MN∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴AM=BM,∴M為AB的中點,∵,∴,∴,∴點M的坐標為(2,0);如圖3-2所示,當ON∥BC時,同理可得,∴,∴M點的坐標為(4,0);∴綜上所述,當M的坐標為(2,0)或(4,0)時,△OMN的一條邊與BC平行;
②如圖3-3所示,當OM=OE時,∵E是AC的中點,∠AOC=90°,,∴,∴此時M的坐標為(0,10);如圖3-4所示,當時,∴此時M點與A點重合,∴M點的坐標為(12,0);如圖3-5所示,當OM=ME時,過點E作EF⊥x軸于F,∵OE=AE,EF⊥OA,∴,∴,設,則,∵,∴,解得,∴M點的坐標為(,0);綜上所述,當M的坐標為(0,10)或(12,0)或(,0)時,,△MOE是等腰三角形.【點睛】本題主要考查了坐標與圖形,勾股定理,等腰三角形的性質與判定,直角三角形斜邊上的直線,三角形面積等等,解題的關鍵在于能夠利用數(shù)形結合和分類討論的思想求解.2、(1)證明見解析;(2)【分析】(1)通過證明△CEK≌△BEF及△KED≌△FED即可證明;(2)延長CE到點P,使EP=CE,先證明點G在過點P且與CE垂直的直線PN上運動,再作點E關于點P的對稱點Q,連接BQ交PN于點G,此時△BEG的周長最小,求出此時GE+GB+BE的值即可.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴,∴∠K=∠ABE,∵BF⊥AB,∴∠ABF=90°,∴∠ABE=90°﹣∠EBF=∠BFE,∴∠K=∠BFE,∵BE=CE,∴△CEK≌△BEF(AAS),∴CK=BF,EK=EF,∵,∴∠KED=∠EBC,∠FED=∠ECB,∵BE=CE,∠EBC=∠ECB,∴∠KED=∠FED,∴ED=ED,∴△KED≌△FED(SAS),∴DK=DF,(2)如圖,作BN⊥BE,GN⊥BN于點N,延長NG交射線CE于點P,
則∠EBN=∠FBG=90°,∴∠NBG=∠EBF=90°﹣∠GBE,∵∠N=∠BEF=90°,BG=BF,∴△BNG≌△BEF(AAS),∴BN=BE;∵∠EBN=∠N=∠BEP=90°,∴四邊形BEPN是正方形,∴PE=BE=CE,∴當點F在CE上運動時,點G在PN上運動;延長EP到點Q,使PQ=PE,連接BQ交PN于點G,∵PN垂直平分EQ,∴點Q與點E關于直線PN對稱,∵兩點之間,線段最短,∴此時GE+GB=GQ+GB=BQ最小,∵BE為定值,∴此時GE+GB+BE最小,即△BEG的周長最??;作DH⊥CE于點H,則∠DHE=∠DHC=90°,∵∠ECB=∠EBC=45°,∴∠HED=∠ECB=45°,∴∠HDE=45°=∠HED,∴DH=EH,∴DH2+EH2=2DH2=DE2=,∴DH=EH=1;∴CH=,∴BE=CE=EH+CH=1+2=3,∴EQ=2PE=2BE=6,∵∠BEQ=90°,∴BQ=,∴GE+GB+BE=,∴△BEG周長的最小值為.【點睛】本題重點考查平行四邊形的性質、正方形的判定與性質、等腰直角三角形的性質、全等三角形的判定與性質、勾股定理、以及運用軸對稱的性質求線段和的最小值問題的求解等知識與方法,深入探究與挖掘題中的隱含條件并且正確地作出輔助線是解題的關鍵,此題綜合性強,難度大,屬于考試壓軸題.3、(1)①;②;(2)的大小是定值,證明見解析.【分析】(1)①先根據等邊三角形的性質、勾股定理可得,從而可得,再利用勾股定理可得,然后根據等邊三角形的性質可得,最后根據直角三角形斜邊上的中線等于斜邊的一半即可得;②先根據直角三角形斜邊上的中線等于斜邊的一半可得,再根據等腰三角形的性質可得,從而可得,然后根據四邊形的內角和即可得;(2)連接,先證出,根據全等三角形的性質可得,從而可得,再根據三角形中位線定理可得,然后根據三角形的外角性質、角的和差即可得出結論.【詳解】解:(1)①∵是等邊三角形,,,∴,∴,∵,∴,∴,∵是等邊三角形,,,∴,即,又∵點為的中點,∴;②如圖,連接,由(1)①知,,∵,點為的中點,∴,,,∴;(2)的大小是定值,證明如下:如圖,連接,∵和都是等邊三角形,∴,∴,即,在和中,,∴,∴,∵,∴,∵點為的中點,點為的中點,∴,∴,∵,即點是的中點,∴,∴,∵,∴,∴的大小為定值.【點睛】本題考查了等邊三角形的性質、直角三角形斜邊上的中線等于斜邊的一半、三角形中位線定理等知識點,較難的是題(2),通過作輔助線,構造全等三角形和利用到三角形中位線定理是解題關鍵.4、(1)見解析;(2)2;(3)見解析【分析】(1)由△ABC是等邊三角形,可得∠ABC=60°,由D、F關于直線BE對稱,得到BF=BD,則∠BFD=∠BDF,由三角形外角的性質得到∠BFD+∠BDF=∠ABD,則∠BDF=∠BFD=30°;(2)設,由D、F關于直線BE對稱,得到∠BGD=∠BGF=90°,EF=ED,EG=DG,由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職第一學年(園林工程技術)植物造景設計試題及答案
- 2026年計算機應用(辦公自動化)試題及答案
- 2025年中職(烹飪工藝與營養(yǎng))中式熱菜制作試題及答案
- 道路圍墻大門施工組織設計
- 貴州省貴陽市南明區(qū)2025年八年級上學期期末測試物理試題附答案
- 2026年部分大??蓤蟛幌迣I(yè)武漢大學人民醫(yī)院招聘7人備考題庫參考答案詳解
- 軟件框架開發(fā)技術(SSM)期末考試試卷(6)及答案
- 2025 小學四年級思想品德下冊傳統(tǒng)節(jié)日習俗優(yōu)化調查課件
- 養(yǎng)老院老人生活照顧人員行為規(guī)范制度
- 養(yǎng)老院老人健康飲食營養(yǎng)師職業(yè)發(fā)展規(guī)劃制度
- 2026屆四川省瀘州高級中學高一生物第一學期期末經典試題含解析
- 2026標準版離婚協(xié)議書-無子女無共同財產債務版
- 【期末必刷選擇題100題】(新教材)統(tǒng)編版八年級道德與法治上學期專項練習選擇題100題(含答案與解析)
- 建筑公司工資薪酬管理制度(3篇)
- 2025至2030中國疝氣修補術行業(yè)調研及市場前景預測評估報告
- 建設工程測繪驗線標準報告模板
- 2024-2025學年福建省廈門市雙十中七年級(上)期末英語試卷
- 漢語言本科畢業(yè)論文范文模板
- 2025年協(xié)警輔警招聘考試題庫(新)及答案
- 鋼結構施工優(yōu)化策略研究
- 車間輪崗工作總結
評論
0/150
提交評論