難點解析-重慶市巴南中學(xué)7年級數(shù)學(xué)下冊第四章三角形專項練習(xí)試卷(含答案詳解版)_第1頁
難點解析-重慶市巴南中學(xué)7年級數(shù)學(xué)下冊第四章三角形專項練習(xí)試卷(含答案詳解版)_第2頁
難點解析-重慶市巴南中學(xué)7年級數(shù)學(xué)下冊第四章三角形專項練習(xí)試卷(含答案詳解版)_第3頁
難點解析-重慶市巴南中學(xué)7年級數(shù)學(xué)下冊第四章三角形專項練習(xí)試卷(含答案詳解版)_第4頁
難點解析-重慶市巴南中學(xué)7年級數(shù)學(xué)下冊第四章三角形專項練習(xí)試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

重慶市巴南中學(xué)7年級數(shù)學(xué)下冊第四章三角形專項練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,△ABC中,D,E分別為BC,AD的中點,若△CDE的面積使2,則△ABC的面積是()A.4 B.5 C.6 D.82、如圖,在中,AD、AE分別是邊BC上的中線與高,,CD的長為5,則的面積為()A.8 B.10 C.20 D.403、如圖,E是正方形ABCD的邊DC上一點,過點A作FA=AE交CB的延長線于點F,若AB=4,則四邊形AFCE的面積是()A.4 B.8 C.16 D.無法計算4、如圖,點C在∠AOB的OB邊上,用尺規(guī)作出了∠NCE=∠AOD,作圖痕跡中,弧FG是()A.以點C為圓心,OD為半徑的弧B.以點C為圓心,DM為半徑的弧C.以點E為圓心,OD為半徑的弧D.以點E為圓心,DM為半徑的弧5、如圖,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交BA延長線于點Q,下列結(jié)論:①AE=BF;②AE⊥BF;③QF=QB;④S四邊形ECFG=S△ABG.正確的個數(shù)是()A.1 B.2 C.3 D.46、已知三角形的兩邊長分別是3cm和7cm,則下列長度的線段中能作為第三邊的是()A.3cm B.4cm C.7cm D.10cm7、如圖,點,,,在一條直線上,,,,,,則()A.4 B.5 C.6 D.78、已知線段AB=9cm,AC=5cm,下面有四個說法:①線段BC長可能為4cm;②線段BC長可能為14cm;③線段BC長不可能為3cm;④線段BC長可能為9cm.所有正確說法的序號是()A.①② B.③④ C.①②④ D.①②③④9、如圖是5×5的正方形網(wǎng)格中,以D,E為頂點作位置不同的格點的三角形與△ABC全等,這樣格點三角形最多可以畫出()A.2個 B.3個 C.4個 D.5個10、尺規(guī)作圖:作角等于已知角.示意圖如圖所示,則說明的依據(jù)是()A.SSS B.SAS C.ASA D.AAS第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,A、F、C、D在同一條直線上,△ABC≌△DEF,AF=1,F(xiàn)D=3.則線段FC的長為_____.2、如圖,△ABC三個內(nèi)角的平分線交于點O,點D在AB的延長線上,AD=AC,BD=BO,若∠ACB=40°,則∠ABC的度數(shù)為_____.3、如圖,點F,A,D,C在同一條直線上,,,,則AC等于_____.4、如圖,已知AB=12m,CA⊥AB于點A,DB⊥AB于點B,且AC=4m,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m.若P,Q兩點同時出發(fā),運動_____分鐘后,△CAP與△PQB全等.5、如圖,已知,請?zhí)砑右粋€條件,使得,則添加的條件可以為___(只填寫一個即可).6、如圖,Rt△ABC中,∠ACB=90°,AB=5,BC=3,將斜邊AB繞點A順時針旋轉(zhuǎn)90°至AB′,連接B'C,則△AB′C的面積為_____.7、如圖,點C是線段AB的中點,.請你只添加一個條件,使得≌.(1)你添加的條件是______;(要求:不再添加輔助線,只需填一個答案即可)(2)依據(jù)所添條件,判定與全等的理由是______.8、如圖,線段AC與BD相交于點O,∠A=∠D=90°,要證明△ABC≌△DCB,還需添加的一個條件是____________.(只需填一個條件即可)9、在平面直角坐標(biāo)系中,點B(0,4),點A為x軸上一動點,連接AB.以AB為邊作等腰Rt△ABE,(B、A、E按逆時針方向排列,且∠BAE為直角),連接OE.當(dāng)OE最小時,點E的縱坐標(biāo)為______.10、如圖,△ABE≌△ACD,∠A=60°,∠B=20°,則∠DOE的度數(shù)為_____°.三、解答題(6小題,每小題10分,共計60分)1、如圖所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD與CE交于點F,且AD=CD.(1)求證:△ABD≌△CFD;(2)已知BC=9,AD=6,求AF的長.2、如圖,點A,B,C,D在一條直線上,,,.求證:.3、證明“全等三角形的對應(yīng)角的平分線相等”.要求:將已有圖形根據(jù)題意補充完整,并據(jù)此寫出己知、求證和證明過程.4、如圖,在中,,,點D是內(nèi)一點,連接CD,過點C作且,連接AD,BE.求證:.5、在復(fù)習(xí)課上,老師布置了一道思考題:如圖所示,點M,N分別在等邊的邊上,且,,交于點Q.求證:.同學(xué)們利用有關(guān)知識完成了解答后,老師又提出了下列問題:(1)若將題中“”與“”的位置交換,得到的是否仍是真命題?請你給出答案并說明理由.(2)若將題中的點M,N分別移動到的延長線上,是否仍能得到?請你畫出圖形,給出答案并說明理由.6、如圖,Rt△ACB中,∠ACB=90°,AC=BC,E點為射線CB上一動點,連結(jié)AE,作AF⊥AE且AF=AE.(1)如圖1,過F點作FD⊥AC交AC于D點,求證:FD=BC;(2)如圖2,連結(jié)BF交AC于G點,若AG=3,CG=1,求證:E點為BC中點.(3)當(dāng)E點在射線CB上,連結(jié)BF與直線AC交子G點,若BC=4,BE=3,則.(直接寫出結(jié)果)-參考答案-一、單選題1、D【分析】根據(jù)三角形的中線把三角形分成面積相等的兩部分,求出面積比,即可求出的面積.【詳解】∵AD是BC上的中線,∴,∵CE是中AD邊上的中線,∴,∴,即,∵的面積是2,∴.故選:D.【點睛】本題考查的是三角形的中線的性質(zhì),三角形一邊上的中線把原三角形分成的兩個三角形的面積相等.2、C【分析】根據(jù)三角形中線的性質(zhì)得出CB的長為10,再用三角形面積公式計算即可.【詳解】解:∵AD是邊BC上的中線,CD的長為5,∴CB=2CD=10,的面積為,故選:C.【點睛】本題考查了三角形中線的性質(zhì)和面積公式,解題關(guān)鍵是明確中線的性質(zhì)求出底邊長.3、C【分析】先證明可得從而可得答案.【詳解】解:正方形ABCD,AB=4,故選C【點睛】本題考查的是小學(xué)涉及的正方形的性質(zhì),直角三角形全等的判定與性質(zhì),證明是解本題的關(guān)鍵.4、D【分析】根據(jù)作一個角等于已知角的步驟即可得.【詳解】解:作圖痕跡中,弧FG是以點E為圓心,DM為半徑的弧,故選:D.【點睛】本題主要考查作圖-尺規(guī)作圖,解題的關(guān)鍵是熟練掌握作一個角等于已知角的尺規(guī)作圖步驟.5、D【分析】首先證明△ABE≌△BCF,再利用角的關(guān)系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF對折,得到△BPF,利用角的關(guān)系求出QF=QB;由Rt△ABE≌Rt△BCF得S△ABE=S△BCF即可判定④正確.【詳解】解:∵E,F(xiàn)分別是正方形ABCD邊BC,CD的中點,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正確;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正確;根據(jù)題意得,F(xiàn)P=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正確;∵Rt△ABE≌Rt△BCF,∴S△ABE=S△BCF,∴S△ABE﹣S△BEG=S△BCF﹣S△BEG,即S四邊形ECFG=S△ABG,故④正確.故選:D.【點睛】本題主要是考查了三角形全等、正方形的性質(zhì),熟練地綜合應(yīng)用全等三角形以及正方形的性質(zhì),證明邊相等和角相等,是解決本題的關(guān)鍵.6、C【分析】設(shè)三角形第三邊的長為xcm,再根據(jù)三角形的三邊關(guān)系求出x的取值范圍,找出符合條件的x的值即可.【詳解】解:設(shè)三角形的第三邊是xcm.則7-3<x<7+3.即4<x<10,四個選項中,只有選項C符合題意,故選:C.【點睛】本題主要考查了三角形三邊關(guān)系的應(yīng)用.此類求三角形第三邊的范圍的題,實際上就是根據(jù)三角形三邊關(guān)系定理列出不等式,然后解不等式即可.7、A【分析】由題意易得,然后可證,則有,進(jìn)而問題可求解.【詳解】解:∵,∴,∵,,∴,∴,∵,∴;故選A.【點睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.8、D【分析】分三種情況:C在線段AB上,C在線段BA的延長線上以及C不在直線AB上結(jié)合線段的和差以及三角形三邊的關(guān)系分別求解即可.【詳解】解:∵線段AB=9cm,AC=5cm,∴如圖1,A,B,C在一條直線上,∴BC=AB?AC=9?5=4(cm),故①正確;如圖2,當(dāng)A,B,C在一條直線上,∴BC=AB+AC=9+5=14(cm),故②正確;如圖3,當(dāng)A,B,C不在一條直線上,9?5=4cm<BC<9+5=14cm,故線段BC可能為9cm,不可能為3cm,故③,④正確.故選D.【點睛】此題主要考查了三角形三邊關(guān)系,線段之間的關(guān)系,正確分類討論是解題關(guān)鍵.9、C【分析】觀察圖形可知:DE與AC是對應(yīng)邊,B點的對應(yīng)點在DE上方兩個,在DE下方兩個共有4個滿足要求的點,也就有四個全等三角形.【詳解】根據(jù)題意,運用“SSS”可得與△ABC全等的三角形有4個,線段DE的上方有兩個點,下方也有兩個點,如圖.故選C.【點睛】本題考查三角形全等的判定方法,解答本題的關(guān)鍵是按照順序分析,要做到不重不漏.10、A【分析】利用基本作圖得到OD=OC=OD′=OC′,CD=C′D′,則根據(jù)全等三角形的判定方法可根據(jù)“SSS”可判斷△OCD≌△O′C′D′,然后根據(jù)全等三角形的性質(zhì)得到∠A′OB′=∠AOB.【詳解】解:由作法可得OD=OC=OD′=OC′,CD=C′D′,所以根據(jù)“SSS”可判斷△OCD≌△O′C′D′,所以∠A′OB′=∠AOB.故選:A.【點睛】本題考查了作圖﹣基本作圖和全等三角形的判定與性質(zhì),解題關(guān)鍵是熟練掌握基本作圖和全等三角形的判定定理.二、填空題1、【分析】根據(jù)全等三角形的性質(zhì)得出AC=FD=3,再求出FC即可.【詳解】解:∵△ABC≌△DEF,F(xiàn)D=3,∴AC=FD=3,∵AF=1,∴FC=AC﹣AF=3﹣1=2,故答案為:2.【點睛】本題主要是考查了全等三角形的性質(zhì),熟練應(yīng)用全等三角形的性質(zhì),找到對應(yīng)相等的邊,是求解該問題的關(guān)鍵.2、度【分析】連接,,利用證明,則,根據(jù)角平分線的定義得到,再利用三角形外角性質(zhì)得出,最后根據(jù)角平分線的定義即可得解.【詳解】解:連接,,平分,,在和中,,,,平分,,,,,,,平分,,故答案為:.【點睛】本題考查了全等三角形的判定與性質(zhì),角平分線,解題的關(guān)鍵是利用證明.3、6.5【分析】由全等三角形的性質(zhì)可得到AC=DF,從而推出AF=CD,再由,,求出,則.【詳解】解:∵△ABC≌△DEF,∴AC=DF,即AF+AD=CD+AD,∴AF=CD,∵,,∴,∴,∴,故答案為:6.5.【點睛】本題主要考查了全等三角形的性質(zhì),線段的和差,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì).4、4【分析】根據(jù)題意CA⊥AB,DB⊥AB,則,則分或兩種情況討論,根據(jù)路程等于速度乘以時間求得的長,根據(jù)全等列出一元一次方程解方程求解即可【詳解】解:CA⊥AB,DB⊥AB,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m,設(shè)運動時間為,且AC=4m,,當(dāng)時則,即,解得當(dāng)時,則,即,解得且不符合題意,故舍去綜上所述即分鐘后,△CAP與△PQB全等.故答案為:【點睛】本題考查了三角形全等的性質(zhì),根據(jù)全等的性質(zhì)列出方程是解題的關(guān)鍵.5、或【分析】根據(jù)全等三角形的判定方法即可解決問題.【詳解】解:由題意,,根據(jù),可以添加,使得,根據(jù),可以添加,使得.故答案為:或【點睛】本題主要考查了全等三角形的判定,熟練掌握全等三角形的判定方法——邊角邊、角邊角、角角邊、邊邊邊是解題的關(guān)鍵.6、【分析】根據(jù)題意過點B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,則有S△AB'C=AC?B′H即可求得答案.【詳解】解:過點B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC?B′H=×4×4=8.故答案為:8.【點睛】本題主要考查三角形全等的判定與性質(zhì)和旋轉(zhuǎn)的性質(zhì)以及勾股定理,根據(jù)題意利用全等三角形的判定證明△ACB≌△B'HA是解決問題的關(guān)鍵.7、AD=CE(或∠D=∠E或∠ACD=∠B)(答案不唯一)SAS【分析】(1)由已知條件可得兩個三角形有一組對應(yīng)邊相等,一組對應(yīng)角相等,根據(jù)三角形全等的判定方法添加條件即可;(2)根據(jù)添加的條件,寫出判斷的理由即可.【詳解】解:(1)添加的條件是:AD=CE(或∠D=∠E或∠ACD=∠B)故答案為:AD=CE(或∠D=∠E或∠ACD=∠B)(2)若添加:AD=CE∵點C是線段AB的中點,∴AC=BC∵∴∴≌(SAS)故答案為:SAS【點睛】本題主要考查了添加條件判斷三角形全等,熟練掌握全等三角形的判斷方法是解答本題的關(guān)鍵.8、答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB【分析】根據(jù)全等三角形的判定條件求解即可.【詳解】解:∵∠A=∠D=90°,BC=CB,∴只需要添加:AC=DB或AB=DC,即可利用HL證明△ABC≌△DCB;添加∠ABC=∠DCB可以利用AAS證明△ABC≌△DCB,故答案為:答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB.【點睛】本題主要考查了全等三角形的判定,熟知全等三角形的判定條件是解題的關(guān)鍵.9、-2【分析】過E作EF⊥x軸于F,由三垂直模型,得EF=OA,AF=OB,設(shè)A(a,0),可求得E(a+4,a),點E在直線y=x-4上,當(dāng)OE⊥CD時,OE最小,據(jù)此求出坐標(biāo)即可.【詳解】解:如圖,過E作EF⊥x軸于F,∵∠AOB=∠EFA=∠BAE=90°,∴∠ABO+∠OAB=90°,∠EAF+∠OAB=90°,∴∠ABO=∠EAF,∵AB=AE,∴△ABO≌△EAF,∴EF=OA,AF=OB=4,取點C(4,0),點D(0,-4),∴∠OCD=45°,∵CF=4-OF,OA=4-OF,∴CF=OA=EF,∴∠ECF=45°,∴點E在直線CD上,當(dāng)OE⊥CD時,OE最小,此時△EFO和△ECO為等腰Rt△,∴OF=EF=2,此時點E的坐標(biāo)為:(2,-2).故答案為:-2【點睛】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是確定點E運動的軌跡,確定點E的位置.10、100【分析】直接利用三角形的外角的性質(zhì)得出∠CEO=80°,再利用全等三角形的性質(zhì)得出答案.【詳解】解:∵∠A=60°,∠B=20°,∴∠CEO=80°,∵△ABE≌△ACD,∴∠B=∠C=20°,∴∠DOE=∠C+∠CEO=100°.故答案為:100.【點睛】此題主要考查了全等三角形的性質(zhì)以及三角形的外角的性質(zhì),求出∠CEO=80°是解題關(guān)鍵.三、解答題1、(1)證明見解析;(2)AF=3【分析】(1)利用同角的余角相等,證明∠BAD=∠FCD,利用ASA證明即可;(2)利用全等三角形的性質(zhì),得BD=DF,結(jié)合BD=BC﹣CD,AF=AD﹣DF計算即可.【詳解】(1)證明:∵AD⊥BC,CE⊥AB,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠FCD,在△ABD和CFD中,,∴△ABD≌△CFD(ASA);(2)解:∵△ABD≌△CFD,∴BD=DF,∵BC=9,AD=DC=6,∴BD=BC﹣CD=3,∴AF=AD﹣DF=6﹣3=3.【點睛】本題考查了ASA證明三角形全等,全等三角形的性質(zhì),熟練掌握三角形全等的判定和性質(zhì)是解題的關(guān)鍵.2、見解析【分析】根據(jù)平行線的性質(zhì)得出,運用“角角邊”證明△AEB≌△CFD即可.【詳解】證明:∵,∴,在△AEB和△CFD中,∴△AEB≌△CFD,∴.【點睛】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是熟練運用全等三角形的判定定理進(jìn)行證明.3、見解析.【分析】根據(jù)圖形和命題寫出已知求證,根據(jù)全等三角形的性質(zhì)得出∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,根據(jù)角平分線的定義得出∠BAD=∠B′A′D′,根據(jù)全等三角形的判定得出△BAD≌△B′A′D′,再根據(jù)全等三角形的性質(zhì)得出答案即可.【詳解】解:如圖,已知:△ABC≌△A′B′C′,AD、A′D′分別是∠BAC和∠B′A′C′的角平分線,求證:AD=A′D′,證明:∵△ABC≌△A′B′C′,∴∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,∵AD、A′D′分別是∠BAC和∠B′A′C′的角平分線,∴∠BAD=∠BAC,∠B′A′D′=∠B′A′C′,∴∠BAD=∠B′A′D′,在△BAD和△B′A′D中,,∴△BAD≌△B′A′D′(ASA),∴AD=A′D′.【點睛】本題考查了全等三角形的判定定理和性質(zhì)定理,能求出△BAD≌△B′A′D′是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAAS,SSS,兩直角三角形全等還有HL,全等三角形的對應(yīng)邊相等.4、證明見解析.【分析】先根據(jù)角的和差可得,再根據(jù)三角形全等的判定定理證出,然后根據(jù)全等三角形的性質(zhì)即可得證.【詳解】證明:,,,,,在和中,,,.【點睛】本題考查了三角形全等的判定定理與性質(zhì)等知識點,熟練掌握三角形全等的判定方法是解題關(guān)鍵.5、(1)仍是真命題,證明見解析(2)仍能得到,作圖和證明見解析【分析】(1)由角邊角得出和全等,對應(yīng)邊相等即可.(2)由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論