版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學上冊《全等三角形》專項測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、在正方形網(wǎng)格中,∠AOB的位置如圖所示,到∠AOB兩邊距離相等的點應是(
)A.點M B.點N C.點P D.點Q2、如圖,AD是的角平分線,,垂足為F,,和的面積分別為60和35,則的面積為A.25 B. C. D.3、已知,如圖,在△ABC中,D為BC邊上的一點,延長AD到點E,連接BE、CE,∠ABD+∠3=90°,∠1=∠2=∠3,下列結論:①△ABD為等腰三角形;②AE=AC;③BE=CE=CD;④CB平分∠ACE.其中正確的結論個數(shù)有(
)A.1個 B.2個 C.3個 D.4個4、如圖,已知,,,則的長為(
)A.7 B.3.5 C.3 D.25、如圖,,,要使,直接利用三角形全等的判定方法是A.AAS B.SAS C.ASA D.SSS第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,,,若,則線段長為______.2、如圖,在中,D是上的一點,,平分,交于點E,連接,若,,則_______.3、如圖,已知的周長是22,PB、PC分別平分和,于D,且,的面積是________.4、如圖,,若,則到的距離為_________.5、如圖,已知BE=DC,請?zhí)砑右粋€條件,使得△ABE≌△ACD:_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,點B、C、D在同一直線上,△ABC、△ADE是等邊三角形,CE=5,CD=2(1)證明:△ABD≌△ACE;(2)求∠ECD的度數(shù);(3)求AC的長.2、如圖,在四邊形中,,,分別是,上的點,連接,,.(1)如圖①,,,.求證:;
(2)如圖②,,當周長最小時,求的度數(shù);(3)如圖③,若四邊形為正方形,點、分別在邊、上,且,若,,請求出線段的長度.3、如圖,在中,且,點是斜邊的中點,E、F分別是AB、AC邊上的點,且.連接.(1)求證:;(2)如圖,若,,則的面積為________.4、如圖,在△ABC中∠ABC=45°,AD⊥BC于點D,點E為AD上的一點,且BE=AC,延長BE交AC于點F,連接FD.(1)求證:△BED≌△ACD;(2)若FC=c,F(xiàn)B=b,求的值.(用含a,b的式子表示)5、如圖,已知和中,,,,,,線段分別交,于點,.(1)請說明的理由;(2)可以經過圖形的變換得到,請你描述這個變換;(3)求的度數(shù).-參考答案-一、單選題1、A【解析】【分析】利用到角的兩邊的距離相等的點在角的平分線上進行判斷.【詳解】點P、Q、M、N中在∠AOB的平分線上的是M點.故選:A.【考點】本題主要考查了角平分線的性質,根據(jù)正方形網(wǎng)格看出∠AOB平分線上的點是解答問題的關鍵.2、D【解析】【分析】過點D作DH⊥AC于H,根據(jù)角平分線上的點到角的兩邊距離相等可得DF=DH,再利用“HL”證明Rt△ADF和Rt△ADH全等,Rt△DEF和Rt△DGH全等,然后根據(jù)全等三角形的面積相等列方程求解即可.【詳解】如圖,過點D作于H,是的角平分線,,,在和中,,≌,,在和中,≌,,和的面積分別為60和35,,=12.5,故選D.【考點】本題考查了角平分線上的點到角的兩邊距離相等的性質,全等三角形的判定與性質,熟記掌握相關性質、正確添加輔助線構造出全等三角形是解題的關鍵.3、C【解析】【分析】作AF平分∠BAD.可根據(jù)證△ABF≌△ADF,推出AB=AD,得出△ABD為等腰三角形;可根據(jù)同弦所對的圓周角相等知點A、B、C、E共圓,可判出BE=CE=CD,根據(jù)三角形內角和等于180°,可判出AE=AC;求出∠7=90°﹣∠2,根據(jù)∠1=∠4=∠2推出∠4≠∠7,即可得出BC不是∠ACE的平分線.【詳解】解:作AF平分∠BAD,∵∠BAD=∠3,∠ABD+∠3=90°,∴∠BAF=∠3=∠DAF,∴∠ABF+∠BAF=90°∴∠AFB=∠AFD=90°,在△BAF和△DAF中∴△ABF≌△ADF(ASA),∴AB=AD,故①正確;∵AE=AC,∴∠6=∠4+∠7==90°?,∵∠5=∠ADB=∠ABD==90°?,∠1=∠2,∴∠5=∠6=90°?∴CE=CD,∠4=180°?∠5?∠6=180°?2(90°?)=∠1,∵∠1=∠3,∴∠4=∠3,∴BE=CE,∴BE=CE=CD,∴③正確;∵∠6+∠2+∠ACE=180°,∠6=∠5=∠ADB=∠ABD=90°﹣∠2.∴∠ACE=180°﹣∠6﹣∠2=90°﹣∠2,∴∠ACE=∠6,∴AE=CE,故②正確∵∠5=∠2+∠7=90°﹣∠2,∴∠7=90°﹣∠2,∵∠BAD=∠4=∠2,∴∠4≠∠7,故④錯誤;故選C.【考點】本題主要考查了全等三角形的判定和性質、同弦所對的圓周角相等、三角形內角和的相關知識,靈活運用所學知識是解題的關鍵.4、C【解析】【分析】利用全等三角形的性質求解即可.【詳解】解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故選C.【考點】本題主要考查了全等三角形的性質,熟知全等三角形對應邊相等是解題的關鍵.5、B【解析】【分析】根據(jù)平行線性質得出∠ABD=∠CDB,再加上AB=DC,BD=DB,根據(jù)全等三角形的判定定理SAS即可推出△ABD≌△CDB,從而推出∠A=∠C,即可得出答案.【詳解】,,在和中,,≌,,故選B.【考點】本題考查了平行線性質、全等三角形的判定與性質的應用,熟練掌握全等三角形的判定與性質定理是解題的關鍵.二、填空題1、8【解析】【分析】過點D作DH⊥AC于H,由等腰三角形的性質可得AH=HC,∠DAC=∠DCA=30°,由直角三角形的性質可證DH=CF,由“AAS”可證△DHE≌△FCE,可得EH=EC,即可求解.【詳解】解:如圖,過點D作DH⊥AC于H,在△DHE和△FCE中,故答案為8.【考點】本題考查了全等三角形的判定和性質,等腰三角形的性質,添加恰當輔助線構造全等三角形是解題的關鍵.2、55°【解析】【分析】根據(jù)SAS證明△ACE≌△DCE,根據(jù)全等三角形的性質可得∠CDE=∠A=100°,再根據(jù)三角形外角的性質可求∠BED.【詳解】解:∵CE平分∠ACB,∴∠ACE=∠DCE,在△ACE與△DCE中,,∴△ACE≌△DCE(SAS),∴∠CDE=∠A=100°,∵∠B=45°,∴∠BED=∠CDE-∠B=100°-45°=55°,故答案為:55°.【考點】本題考查了全等三角形的判定與性質,三角形外角的性質,關鍵是得到∠CDE=∠A=100°.3、33【解析】【分析】連接AP,過點P分別作PE⊥AB于點E,PF⊥AC于點F,根據(jù)角平分線的性質定理,可得PD=PE=PF=3,再根據(jù)三角形的面積等于三個小三角形的面積之和,即可求解.【詳解】解:如圖,連接AP,過點P分別作PE⊥AB于點E,PF⊥AC于點F,∵PB、PC分別平分和,于D,∴PD=PE,PD=PF,∴PD=PE=PF=3,∵的周長是22,∴的面積是.故答案為:33【考點】本題主要考查了角平分線的性質定理,熟練掌握角平分線上的點到角兩邊的距離相等是解題的關鍵.4、4【解析】【分析】過P點作PE⊥OB于E,根據(jù)角平分線的性質定理可得PE=PD,即可求解.【詳解】解:如圖,過P點作PE⊥OB于E,∵,PE⊥OB,∴PE=PD=4,即P到OB的距離是4,故答案為:4.【考點】本題考查了角平分線的性質,熟練掌握角平分線的性質定理是解題的關鍵.5、∠B=∠C【解析】【分析】根據(jù)全等三角形的判定方法解答即可.【詳解】解:∵BE=DC,∠A=∠A,∴根據(jù)AAS,可以添加∠B=∠C,使得△ABE≌△ACD,故答案為:∠B=∠C.【考點】本題考查全等三角形的判定,解題的關鍵是熟練掌握全等三角形的判定方法,屬于中考常考題型.三、解答題1、(1)見解析(2)60°(3)3【解析】【分析】(1)根據(jù)等邊三角形的性質利用SAS證明;(2)利用全等三角形的性質得到∠B=∠ACE=60°,計算即可得到答案;(3)利用全等的性質得到BD的長,再由等邊三角形的性質,即可得到AC的長.(1)證明:∵△ABC和△ADE是等邊三角形,∴AD=AE,AB=AC,∠BAC=∠DAE=∠ACB=60°,∴∠BAD=∠CAE,∴△ABD≌△ACE;(2)解:∵△ABD≌△ACE,∴∠B=∠ACE=60°,∴∠DCE=180°-∠ACB-∠ACE=60°;(3)解:∵△ABD≌△ACE,∴BD=CE=5,∴BC=BD-CD=5-2=3,∴AC=BC=3.【考點】此題考查了全等三角形的判定及性質,熟記全等三角形的幾種判定定理:SSS,SAS,ASA,AAS,HL,并熟練應用是解題的關鍵.2、(1)見解析;(2);(3).【解析】【分析】(1)延長到點G,使,連接,首先證明,則有,,然后利用角度之間的關系得出,進而可證明,則,則結論可證;(2)分別作點A關于和的對稱點,,連接,交于點,交于點,根據(jù)軸對稱的性質有,,當點、、、在同一條直線上時,即為周長的最小值,然后利用求解即可;(3)旋轉至的位置,首先證明,則有,最后利用求解即可.【詳解】(1)證明:如解圖①,延長到點,使,連接,在和中,.,,,,.,在和中,.,;(2)解:如解圖,分別作點A關于和的對稱點,,連接,交于點,交于點.由對稱的性質可得,,此時的周長為.當點、、、在同一條直線上時,即為周長的最小值.,.,,;(3)解:如解圖,旋轉至的位置,,,.在和中,...【考點】本題主要考查全等三角形的判定及性質,軸對稱的性質,掌握全等三角形的判定及性質是解題的關鍵.3、(1)見解析;(2).【解析】【分析】(1)易證∠ADE=∠CDF,即可證明△ADE≌△CDF;(2)由(1)可得AE=CF,BE=AF,,再根據(jù)△DEF的面積=,即可解題.【詳解】(1)證明:∵AB=AC,D是BC中點,∴∠BAD=∠C=45°,AD=BD=CD,∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,∴△ADE≌△CDF(ASA).(2)解:∵△ADE≌△CDF∴AE=CF=5,BE=AF=12,AB=AC=17,∴∴∴△DEF的面積=.【考點】本題考查了全等三角形的判定,考查了全等三角形對應邊相等的性質,本題中求證△ADE≌△CDF是解題的關鍵.4、(1)見解析(2)【解析】【分析】(1)利用得,又BE=AC,,因此可以通過HL定理證明;(2)作于點,作于點,由可得,利用即可求解.(1)證明:在△ABC中∠ABC=45°,AD⊥BC,,,,在和中,,,即.(2)解:如圖所示,作DG⊥BE于點G,作DH⊥AC于點H,由(1)知,,,,.【考點】本題考查全等三角形的判定和性質,以及三角形的面積公式,解題的關鍵是正確作出輔助線,由可得.5、(1)見解析;(2)通過觀察可知繞點順時針旋轉,可以得到;(3)【解析】【分析】(1)先利用已知條件∠B=∠E,AB=AE,BC=EF,利用SAS可證△ABC≌
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 焦化廠料棚衛(wèi)生標準制度
- 樓道衛(wèi)生值日制度
- 豬場內環(huán)境衛(wèi)生管理制度
- 洗衣房內務衛(wèi)生管理制度
- 歐洲近代衛(wèi)生制度
- 鄉(xiāng)政府衛(wèi)生防疫管理制度
- 衛(wèi)生室管理制度
- 衛(wèi)生院述職測評制度
- 瀝青站環(huán)境衛(wèi)生制度
- 浴足店衛(wèi)生管理制度
- 八年級地理《中國氣候的主要特征》單元核心課教學設計
- 長護險人員管理培訓制度
- 2026河南大學附屬中學招聘77人備考題庫附答案
- 網(wǎng)絡安全運維與管理規(guī)范(標準版)
- 液冷系統(tǒng)防漏液和漏液檢測設計研究報告
- 《國家十五五規(guī)劃綱要》全文
- 2025屆上海市高考英語考綱詞匯表
- 知識圖譜構建實踐
- 部編版五年級語文上冊快樂讀書吧測試題及答案
- 衛(wèi)星傳輸專業(yè)試題題庫及答案
- 細胞治療GMP生產中的工藝控制
評論
0/150
提交評論