難點(diǎn)解析江西省樟樹(shù)市中考數(shù)學(xué)真題分類(勾股定理)匯編必考點(diǎn)解析試卷(含答案詳解)_第1頁(yè)
難點(diǎn)解析江西省樟樹(shù)市中考數(shù)學(xué)真題分類(勾股定理)匯編必考點(diǎn)解析試卷(含答案詳解)_第2頁(yè)
難點(diǎn)解析江西省樟樹(shù)市中考數(shù)學(xué)真題分類(勾股定理)匯編必考點(diǎn)解析試卷(含答案詳解)_第3頁(yè)
難點(diǎn)解析江西省樟樹(shù)市中考數(shù)學(xué)真題分類(勾股定理)匯編必考點(diǎn)解析試卷(含答案詳解)_第4頁(yè)
難點(diǎn)解析江西省樟樹(shù)市中考數(shù)學(xué)真題分類(勾股定理)匯編必考點(diǎn)解析試卷(含答案詳解)_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江西省樟樹(shù)市中考數(shù)學(xué)真題分類(勾股定理)匯編必考點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,在中,,兩直角邊,,現(xiàn)將AC沿AD折疊,使點(diǎn)C落在斜邊AB上的點(diǎn)E處,則CD長(zhǎng)為(

)A. B. C. D.2、如圖,三角形紙片ABC,點(diǎn)D是BC邊上一點(diǎn),連接AD,把△ABD沿著AD翻折,得到△AED,DE與AC交于點(diǎn)G,連接BE交AD于點(diǎn)F.若DG=GE,AF=6,BF=4,△ADG的面積為8,則點(diǎn)F到BC的距離為()A. B. C. D.3、如圖,把長(zhǎng)方形紙條ABCD沿EF,GH同時(shí)折疊,B,C兩點(diǎn)恰好落在AD邊的P點(diǎn)處,若∠FPH=90°,PF=8,PH=6,則長(zhǎng)方形ABCD的邊BC的長(zhǎng)為()A.20 B.22 C.24 D.304、下面各圖中,不能證明勾股定理正確性的是()A. B. C. D.5、如圖,嘉嘉在A時(shí)測(cè)得一棵4米高的樹(shù)的影長(zhǎng)為,若A時(shí)和B時(shí)兩次日照的光線互相垂直,則B時(shí)的影長(zhǎng)為(

)A. B. C. D.6、《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,記載著這樣一個(gè)問(wèn)題:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適與岸齊.問(wèn)水深、葭長(zhǎng)各幾何?”大意是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點(diǎn),它的頂端恰好到達(dá)池邊的水面.水的深度與這根蘆葦?shù)拈L(zhǎng)度分別是多少?設(shè)蘆葦?shù)拈L(zhǎng)度為x尺,則可列方程為()A.x2+52=(x+1)2 B.x2+102=(x+1)2C.x2﹣52=(x﹣1)2 D.x2﹣102=(x﹣1)27、如圖,長(zhǎng)方體的底面邊長(zhǎng)分別為2cm和3cm,高為6cm.如果用一根細(xì)線從點(diǎn)A開(kāi)始經(jīng)過(guò)4個(gè)側(cè)面纏繞一圈達(dá)到點(diǎn)B,那么所用細(xì)線最短需要(

)A.11cm B.2cm C.(8+2)cm D.(7+3)cm第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、在繼承和發(fā)揚(yáng)紅色學(xué)校光榮傳統(tǒng),與時(shí)俱進(jìn),把育英學(xué)校建成一所文明的、受社會(huì)尊敬的學(xué)校升旗儀式上,如圖所示,一根旗桿的升旗的繩垂直落地后還剩余1米,若將繩子拉直,則繩端離旗桿底端的距離有5米.則旗桿的高度______.2、如圖,在一次綜合實(shí)踐活動(dòng)中,小明將一張邊長(zhǎng)為的正方形紙片,沿著邊上一點(diǎn)與點(diǎn)的連線折疊,點(diǎn)是點(diǎn)的對(duì)應(yīng)點(diǎn),延長(zhǎng)交于點(diǎn),經(jīng)測(cè)量,,則的面積為_(kāi)_____.3、如圖所示,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長(zhǎng)為7cm,正方形A、B、C的面積分別是,,,則正方形D的面積是______.4、我國(guó)古代九章算術(shù)中有數(shù)學(xué)發(fā)展史上著名的“葭生池中”問(wèn)題:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問(wèn):葭長(zhǎng)幾何?(1丈=10尺).意思是:有一個(gè)長(zhǎng)方體池子,底面是邊長(zhǎng)為1丈的正方形,中間有蘆葦,把高出水面1尺的蘆葦拉向池邊(蘆葦沒(méi)有折斷),剛好貼在池邊上,問(wèn):蘆葦長(zhǎng)多少尺?答:蘆葦長(zhǎng)____________尺.5、如圖,在正方形網(wǎng)格中,點(diǎn)A,B,C,D,E是格點(diǎn),則∠ABD+∠CBE的度數(shù)為_(kāi)____________.

6、如圖,將矩形紙片ABCD沿EF折疊,使D點(diǎn)與BC邊的中點(diǎn)D′重合.若BC=8,CD=6,則CF的長(zhǎng)為_(kāi)________________.7、我國(guó)古代的數(shù)學(xué)名著《九章算術(shù)》中有這樣一道題目“今有立木,系索其末,委地三尺.引索卻行,去本八尺而索盡.問(wèn)索長(zhǎng)幾何?”譯文為“今有一豎立著的木柱,在木柱的上端系有繩索,繩索從木柱上端順木柱下垂后,堆在地面的部分尚有3尺,牽索沿地面退行,在離木柱根部8尺處時(shí),繩索用盡問(wèn)繩索長(zhǎng)是多少?”示意圖如下圖所示,設(shè)繩索的長(zhǎng)為尺,根據(jù)題意,可列方程為_(kāi)_________.8、《九章算術(shù)》中有“折竹抵地”問(wèn)題:“今有竹高一丈,末折抵地,去根三尺,問(wèn)折者高幾何?”題意是:有一根竹子原來(lái)高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹根3尺,試問(wèn)折斷處離地面多高?如圖,設(shè)折斷處距離地面x尺,根據(jù)題意,可列方程為_(kāi)_____.三、解答題(7小題,每小題10分,共計(jì)70分)1、我方偵查員小王在距離東西向公路400米處偵查,發(fā)現(xiàn)一輛敵方汽車在公路上疾駛.他趕緊拿出紅外線測(cè)距儀,測(cè)得汽車與他相距400米,10秒后,汽車與他相距500米,你能幫小王計(jì)算敵方汽車的速度嗎?2、如圖所示,△ABC的兩條高AD,BE相交于點(diǎn)F,AC=BC.(1)求證:△ADC≌△BEC.(2)若CD=1,BE=2,求線段AC的長(zhǎng).3、如圖,將RtABC紙片沿AD折疊,使直角頂點(diǎn)C與AB邊上的點(diǎn)E重合,若AB=10cm,AC=6cm,求線段BD的長(zhǎng).4、如圖所示,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開(kāi)始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開(kāi)始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為ts.(1)出發(fā)3s后,求PQ的長(zhǎng);(2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),出發(fā)多久后,△PQB能形成等腰三角形?(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.5、如圖所示的一塊地,,,,,,求這塊地的面積.6、某海上有一小島,為了測(cè)量小島兩端A,B的距離,測(cè)量人員設(shè)計(jì)了一種測(cè)量方法,如圖,已知B是CD的中點(diǎn),E是BA延長(zhǎng)線上的一點(diǎn),且∠CED=90°,測(cè)得AE=16.6海里,DE=60海里,CE=80海里.(1)求小島兩端A,B的距離.(2)過(guò)點(diǎn)C作CF⊥AB交AB的延長(zhǎng)線于點(diǎn)F,求值.7、閱讀理解:【問(wèn)題情境】教材中小明用4張全等的直角三角形紙片拼成圖1,利用此圖,可以驗(yàn)證勾股定理嗎?【探索新知】從面積的角度思考,不難發(fā)現(xiàn):大正方形的面積=小正方形的面積+4個(gè)直角三角形的面積.從而得數(shù)學(xué)等式:(a+b)2=c2+4×ab,化簡(jiǎn)證得勾股定理:a2+b2=c2.【初步運(yùn)用】(1)如圖1,若b=2a,則小正方形面積:大正方形面積=;(2)現(xiàn)將圖1中上方的兩直角三角形向內(nèi)折疊,如圖2,若a=4,b=6,此時(shí)空白部分的面積為;(3)如圖3,將這四個(gè)直角三角形緊密地拼接,形成風(fēng)車狀,已知外圍輪廓(實(shí)線)的周長(zhǎng)為24,OC=3,求該風(fēng)車狀圖案的面積.(4)如圖4,將八個(gè)全等的直角三角形緊密地拼接,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若S1+S2+S3=40,則S2=.【遷移運(yùn)用】如果用三張含60°的全等三角形紙片,能否拼成一個(gè)特殊圖形呢?帶著這個(gè)疑問(wèn),小麗拼出圖5的等邊三角形,你能否仿照勾股定理的驗(yàn)證,發(fā)現(xiàn)含60°的三角形三邊a、b、c之間的關(guān)系,寫(xiě)出此等量關(guān)系式及其推導(dǎo)過(guò)程.-參考答案-一、單選題1、A【解析】【分析】先根據(jù)勾股定理求得AB的長(zhǎng),再根據(jù)折疊的性質(zhì)求得AE,BE的長(zhǎng),從而利用勾股定理可求得CD的長(zhǎng).【詳解】解:∵AC=6cm,BC=8cm,∠C=90°,∴AB=(cm),由折疊的性質(zhì)得:AE=AC=6cm,∠AED=∠C=90°,∴BE=10cm?6cm=4cm,∠BED=90°,設(shè)CD=x,則BD=BC?CD=8?x,在Rt△DEB中,BE2+DE2=BD2,即42+x2=(8?x)2,解得:x=3,∴CD=3cm,故選:A.【考點(diǎn)】本題考查了折疊的性質(zhì),勾股定理等知識(shí);熟記折疊性質(zhì)并表示出Rt△DEB的三邊,然后利用勾股定理列出方程是解題的關(guān)鍵.2、C【解析】【分析】先求出△ABD的面積,根據(jù)三角形的面積公式求出DF,設(shè)點(diǎn)F到BD的距離為h,根據(jù)?BD?h=?BF?DF,求出BD即可解決問(wèn)題.【詳解】解:∵DG=GE,∴S△ADG=S△AEG=8,∴S△ADE=16,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=16,∠BFD=90°,∴?(AF+DF)?BF=16,∴?(6+DF)×4=16,∴DF=2,∴DB=,設(shè)點(diǎn)F到BD的距離為h,則有?BD?h=?BF?DF,∴h=4×2,∴h=,∴點(diǎn)F到BC的距離為.故選:C【考點(diǎn)】此題考查了翻折變換,三角形的面積,勾股定理等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題.3、C【解析】【詳解】由折疊得:在Rt中,∠FPH=90°,PF=8,PH=6,則故BC=BF+FH+HC=6+8+10=24.故選C.4、C【解析】【分析】把各圖中每一部分的面積和整體的面積分別列式表示,根據(jù)每一部分的面積之和等于整體的面積,分別化簡(jiǎn),再根據(jù)化簡(jiǎn)結(jié)果即可解答.【詳解】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能證明勾股定理,故本選項(xiàng)不符合題意;B、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能證明勾股定理,故本選項(xiàng)不符合題意;C、根據(jù)圖形不能證明勾股定理,故本選項(xiàng)符合題意;D、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能證明勾股定理,故本選項(xiàng)不符合題意;故選C.【考點(diǎn)】本題考查勾股定理的證明,解題的關(guān)鍵是利用構(gòu)圖法來(lái)證明勾股定理.5、A【解析】【分析】根據(jù)勾股定理,求出FC=,令DE=x,在Rt中,EC2=,在Rt中,EC2==,代入求解即可.【詳解】解:由題意,得∠ECF=∠CDF=∠CDE=90°,CD=4m,=,由勾股定理,得FC=,EC2=,EC2=,∴=,令DE=x,則EF=x+8,∴,整理,得16x=32,解得x=2.故選:A.【考點(diǎn)】本題考查利用勾股定理求線段長(zhǎng),拓展一元一次方程,正確的運(yùn)算能力是解決問(wèn)題的關(guān)鍵.6、C【解析】【分析】首先設(shè)蘆葦長(zhǎng)x尺,則水深為(x?1)尺,根據(jù)勾股定理可得方程(x?1)2+52=x2.【詳解】解:設(shè)蘆葦長(zhǎng)x尺,由題意得:(x?1)2+52=x2,即x2﹣52=(x﹣1)2故選:C.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用,解題的關(guān)鍵是讀懂題意,從題中抽象出勾股定理這一數(shù)學(xué)模型.7、B【解析】【詳解】要求所用細(xì)線的最短距離,需將長(zhǎng)方體的側(cè)面展開(kāi),進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果.解:將長(zhǎng)方體展開(kāi),連接AB′,則AB′最短.∵AA′=3+2+3+2=10cm,A′B′=6cm,∴AB′=cm.故選B..二、填空題1、12米【解析】【分析】設(shè)旗桿的高度是x米,繩子長(zhǎng)為(x+1)米,旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求出x的值,從而求出旗桿的高度.【詳解】解:設(shè)旗桿的高度為米,根據(jù)題意可得:,解得:,答:旗桿的高度為12米.故答案為:12米.【考點(diǎn)】本題考查勾股定理的應(yīng)用,關(guān)鍵看到旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求解.2、##【解析】【分析】根據(jù)題意,,進(jìn)而求得,勾股定理求得,即可求得的面積.【詳解】解:折疊,,,,∵四邊形是正方形∴中..故答案為:【考點(diǎn)】本題考查了折疊的性質(zhì),勾股定理,掌握勾股定理是解題的關(guān)鍵.3、15【解析】【分析】根據(jù)勾股定理有S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,等量代換即可求正方形D的面積.【詳解】解:如圖,根據(jù)勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面積=49-8-12-14=15(cm2);故答案為:15.【考點(diǎn)】此題主要考查了勾股定理,注意根據(jù)正方形的面積公式以及勾股定理得到圖中正方形的面積之間的關(guān)系:以直角三角形的兩條直角邊為邊長(zhǎng)的兩個(gè)正方形的面積和等于以斜邊為邊長(zhǎng)的面積.4、13【解析】【分析】設(shè)水深OB=x尺,則蘆葦長(zhǎng)OA'=(x+1)尺,根據(jù)勾股定理列方程求解即可.【詳解】解:根據(jù)題意,設(shè)水深OB=x尺,則蘆葦長(zhǎng)OA'=(x+1)尺,根據(jù)題意列方程得:x2+52=(x+1)2,解得:x=12∴OA'=13尺.故答案為:13.【考點(diǎn)】此題考查了勾股定理的實(shí)際應(yīng)用,解題的關(guān)鍵是根據(jù)題意設(shè)出未知數(shù),根據(jù)勾股定理列方程求解.5、45°【解析】【分析】取網(wǎng)格點(diǎn)M、N、F,連接AM、AN、BM、MF、BN,根據(jù)網(wǎng)格線可得到∠ABD+∠CBE=∠MAB,再根據(jù)勾股定理的逆定理證明△ABM是直角三角形,且AM=BM,即可得解.【詳解】取網(wǎng)格點(diǎn)M、N、F,連接AM、AN、BM、MF、BN,如圖,根據(jù)網(wǎng)格線可知NB=1=MF,AN=3,AF=2,由網(wǎng)格圖可知∠CBE=∠FAM,∠ABD=∠NAB,則∠ABD+∠CBE=∠MAB,在Rt△ANB中,有,同理可求得:,∵,∴△ABM是直角三角形,且AM=BM,∴∠MAB=45°,即:∠ABD+∠CBE=45°,故答案為:45°.【考點(diǎn)】本題考查了勾股定理即勾股定理的逆定理、等腰直角三角形等知識(shí),求得∠ABD+∠CBE=∠MAB是解答本題的關(guān)鍵.6、【解析】【分析】設(shè),在中利用勾股定理求出x即可解決問(wèn)題.【詳解】解:∵是的中點(diǎn),,,∴,由折疊的性質(zhì)知:,設(shè),則,在中,根據(jù)勾股定理得:,即:,解得,∴.故答案為:【考點(diǎn)】本題考查翻折變換、勾股定理,解題的關(guān)鍵是利用翻折不變性解決問(wèn)題,學(xué)會(huì)轉(zhuǎn)化的思想,利用方程的去思考問(wèn)題,屬于中考常考題型.7、x2?(x?3)2=82【解析】【分析】設(shè)繩索長(zhǎng)為x尺,根據(jù)勾股定理列出方程解答即可.【詳解】解:設(shè)繩索長(zhǎng)為x尺,根據(jù)題意得:x2?(x?3)2=82,故答案為:x2?(x?3)2=82.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出相應(yīng)方程是解題的關(guān)鍵.8、【解析】【分析】根據(jù)勾股定理即可得出結(jié)論.【詳解】解:設(shè)未折斷的竹干長(zhǎng)為尺,根據(jù)題意可列方程為:.故答案為:.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問(wèn)題時(shí)勾股定理與方程的結(jié)合是解決實(shí)際問(wèn)題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫(huà)出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.三、解答題1、速度為30米每秒【解析】【分析】根據(jù)勾股定理求得的長(zhǎng)度,再根據(jù)速度等于路程除以時(shí)間即可求得敵方汽車的速度.【詳解】,,米每秒,答:敵方汽車的速度為30米每秒.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.2、(1)見(jiàn)解析(2)【解析】【分析】(1)由AD⊥BC,BE⊥AC得∠BEC=∠ADC=90°,可證∠DAC=∠CBE,根據(jù)AAS可證△ADC≌△BEC;(2)由△ADC≌△BEC,得CD=CE=1,根據(jù)勾股定理可求.(1)證明:∵AD⊥BC,BE⊥AC,∴∠BEC=∠ADC=90°∴∠C+∠DAC=90°=∠C+∠CBE,∴∠DAC=∠CBE在△ADC和△BEC中,∴△ADC≌△BEC(AAS);(2)解:∵△ADC≌△BEC,∴CD=CE=1,∴BC===,∴AC=BC=【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),勾股定理,熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.3、5【解析】【分析】利用勾股定理先求出的值,根據(jù)折疊的性質(zhì)可得出,,,設(shè),列方程求解即可.【詳解】解:由題意可知:,,則,,,設(shè),則,∴解方程得:因此,的長(zhǎng)為所以,【考點(diǎn)】本題考查的知識(shí)點(diǎn)是勾股定理的應(yīng)用,根據(jù)題意構(gòu)造直角三角形是解此題的關(guān)鍵.4、(1)PQ=cm(2)出發(fā)秒后△PQB能形成等腰三角形(3)當(dāng)t為11秒或12秒或13.2秒時(shí),△BCQ為等腰三角形.【解析】【分析】(1)可求得AP和BQ,則可求得BP,由勾股定理即可得出結(jié)論;(2)用t可分別表示出BP和BQ,根據(jù)等腰三角形的性質(zhì)可得到BP=BQ,可得到關(guān)于t的方程,可求得t;(3)用t分別表示出BQ和CQ,利用等腰三角形的性質(zhì)可分BQ=BC、CQ=BC和BQ=CQ三種情況,分別得到關(guān)于t的方程,可求得t的值.(1)當(dāng)t=3時(shí),則AP=3,BQ=2t=6,∵AB=16cm,∴BP=AB﹣AP=16﹣3=13(cm),在Rt△BPQ中,PQ===(cm).(2)由題意可知AP=t,BQ=2t,∵AB=16,∴BP=AB﹣AP=16﹣t,當(dāng)△PQB為等腰三角形時(shí),則有BP=BQ,即16﹣t=2t,解得t=,∴出發(fā)秒后△PQB能形成等腰三角形;(3)①當(dāng)CQ=BQ時(shí),如圖1所示,則∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②當(dāng)CQ=BC時(shí),如圖2所示,則BC+CQ=24,∴t=24÷2=12秒.③當(dāng)BC=BQ時(shí),如圖3所示,過(guò)B點(diǎn)作BE⊥AC于點(diǎn)E,則BE=,∴CE===,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.綜上所述:當(dāng)t為11秒或12秒或13.2秒時(shí),△BCQ為等腰三角形.【考點(diǎn)】本題考查了勾股定理、等腰三角形的性質(zhì)、方程思想及分類討論思想等知識(shí).用時(shí)間t表示出相應(yīng)線段的長(zhǎng),化“動(dòng)”為“靜”是解決這類問(wèn)題的一般思路,注意方程思想的應(yīng)用.5、384【解析】【分析】連接,勾股定理求得,勾股定理的逆定理證明為直角三角形,進(jìn)而根據(jù)三角形的面積公式計(jì)算和的面積之差即可.【詳解】解:連接,在直角中,,,由,解得,在中,,,,∵,∴,∴為直角三角形,要求這塊地的面積,求和的面積之差即可,,答:這塊地的面積為.【考點(diǎn)】本題考查了勾股定理及其逆定理,掌握勾股定理和勾股定理的逆定理是解題的關(guān)鍵.6、(1)33.4海里(2)【解析】【分析】(1)利用勾股定理求出CD,再根據(jù)斜邊的中線等于斜邊的一半求出BE,則AB可求;(2)設(shè)BF=x海里.利用勾股定理先表示出CF2,在Rt△CFE中,∠CFE=90°,利用勾股定理有CF2+EF2=CE2,即,解方程即可得解.(1)在△DCE中,∠CED=90°,DE=60海里,CE=80海里,由勾股定理可得(海里),∵B是CD的中點(diǎn),∴(海里),∴AB=BE-AE=50-16.6=33.4(海里)答:小島兩端A、B的距離是33.4海里;(2)設(shè)BF=x海里.在Rt△CFB中,∠CFB=90°,∴CF2=CB2-BF2=502-x2=2500-

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論