版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》定向攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,把一張長方形紙片ABCD沿AF折疊,使B點落在處,若,要使,則的度數(shù)應為()A.20° B.55° C.45° D.60°2、如圖,平行四邊形ABCD的周長為36,對角線AC,BD相交于點O,點E是CD的中點,BD=12,則△DOE的周長是()A.12 B.15 C.18 D.243、如圖,在四邊形中,AB∥CD,添加下列一個條件后,一定能判定四邊形是平行四邊形的是()A. B. C. D.4、如圖,把矩形紙片沿對角線折疊,若重疊部分為,那么下列說法錯誤的是()A.是等腰三角形 B.和全等C.折疊后得到的圖形是軸對稱圖形 D.折疊后和相等5、如圖,在?ABCD中,AD=2AB,F(xiàn)是AD的中點,作CE⊥AB于E,在線段AB上,連接EF、CF.則下列結論:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正確的是(
)A.②④ B.①②④
C.①②③④
D.②③④第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、點D、E分別是△ABC邊AB、AC的中點,已知BC=12,則DE=_____2、如圖,四邊形ABCD是矩形,延長DA到點E,使AE=DA,連接EB,點F1是CD的中點,連接EF1,BF1,得到△EF1B;點F2是CF1的中點,連接EF2,BF2,得到△EF2B;點F3是CF2的中點,連接EF3,BF3,得到△EF3B;…;按照此規(guī)律繼續(xù)進行下去,若矩形ABCD的面積等于2,則△EFnB的面積為______.(用含正整數(shù)n的式子表示)3、如圖,點P是矩形ABCD的對角線AC上一點,過點P作EF∥BC,分別交AB,CD于點E、F,連接PB、PD,若AE=2,PF=9,則圖中陰影面積為______;4、在五邊形紙片ABCDE中,AB=2,∠A=120°,將五邊形紙片ABCDE沿BD折疊,點C落在點P處;在AE上取一點Q,將ABQ,EDQ分別沿BQ,DQ折疊,點A,E恰好落在點P處,如圖1.(1)∠BPQ=______°;(2)∠BCD+∠QED=_______°;(3)如圖2,當四邊形BCDP是菱形,且Q,P,C三點共線時,BQ=_______.5、如圖,將長方形ABCD按圖中方式折疊,其中EF、EC為折痕,折疊后、、E在一直線上,已知∠BEC=65°,那么∠AEF的度數(shù)是_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,在正方形ABCD中,DF=AE,AE與DF相交于點O.(1)求證:△DAF≌△ABE;(2)求∠AOD的度數(shù).2、如圖,在Rt△ABC中,∠ACB=90°.
(1)作AB的垂直平分線l,交AB于點D,連接CD,分別作∠ADC,∠BDC的平分線,交AC,BC于點E,F(xiàn)(尺規(guī)作圖,不寫作法,保作圖痕跡);(2)求證:四邊形CEDF是矩形.3、如圖,已知在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,點E是邊BC延長線上一點,連接AE、DE,過點C作CF⊥DE于點F,且DF=EF.(1)求證:AD=CE.(2)若CD=5,AC=6,求△AEB的面積.4、如圖,在平行四邊形中,E是上一點.(1)用尺規(guī)完成以下基本操作:在下方作,使得,交于點F.(保留作圖痕跡,不寫作法)(2)在(1)所作的圖形中,已知,,求的度數(shù).5、如圖,平行四邊形ABCD中,對角線AC、BD相交于點O,AB⊥AC,AB=3,AD=5,求BD的長.-參考答案-一、單選題1、B【解析】【分析】設直線AF與BD的交點為G,由題意易得,則有,由折疊的性質可知,由平行線的性質可得,然后可得,進而問題可求解.【詳解】解:設直線AF與BD的交點為G,如圖所示:∵四邊形ABCD是矩形,∴,∵,∴,由折疊的性質可知,∵,∴,∴,∴;故選B.【點睛】本題主要考查折疊的性質及矩形的性質,熟練掌握折疊的性質及矩形的性質是解題的關鍵.2、B【解析】【分析】根據(jù)平行四邊形的對邊相等和對角線互相平分可得,OB=OD,又因為E點是CD的中點,可得OE是△BCD的中位線,可得OE=BC,所以易求△DOE的周長.【詳解】解:∵?ABCD的周長為36,∴2(BC+CD)=36,則BC+CD=18.∵四邊形ABCD是平行四邊形,對角線AC,BD相交于點O,BD=12,∴OD=OB=BD=6.又∵點E是CD的中點,∴OE是△BCD的中位線,DE=CD,∴OE=BC,∴△DOE的周長=OD+OE+DE=BD+(BC+CD)=6+9=15,故選:B.【點睛】本題考查了三角形中位線定理、平行四邊形的性質.解題時,利用了“平行四邊形對角線互相平分”、“平行四邊形的對邊相等”的性質.3、C【解析】【分析】由平行線的性質得,再由,得,證出,即可得出結論.【詳解】解:一定能判定四邊形是平行四邊形的是,理由如下:,,,,,又,四邊形是平行四邊形,故選:C.【點睛】本題考查了平行四邊形的判定,解題的關鍵是熟練掌握平行四邊形的判定,證明出.4、D【解析】【分析】根據(jù)題意結合圖形可以證明EB=ED,進而證明△ABE≌△CDE;此時可以判斷選項A、B、D是成立的,問題即可解決.【詳解】解:由題意得:△BCD≌△BFD,∴DC=DF,∠C=∠F=90°;∠CBD=∠FBD,又∵四邊形ABCD為矩形,∴∠A=∠F=90°,DE∥BF,AB=DF,∴∠EDB=∠FBD,DC=AB,∴∠EDB=∠CBD,∴EB=ED,△EBD為等腰三角形;在△ABE與△CDE中,∵,∴△ABE≌△CDE(HL);又∵△EBD為等腰三角形,∴折疊后得到的圖形是軸對稱圖形;綜上所述,選項A、B、C成立,∴不能證明D是正確的,故說法錯誤的是D,故選:D.【點睛】本題主要考查了翻折變換及其應用問題;解題的關鍵是靈活運用翻折變換的性質,找出圖中隱含的等量關系;借助矩形的性質、全等三角形的判定等幾何知識來分析、判斷、推理或解答.5、B【解析】【分析】根據(jù)易得DF=CD,由平行四邊形的性質AD∥BC即可對①作出判斷;延長EF,交CD延長線于M,可證明△AEF≌△DMF,可得EF=FM,由直角三角形斜邊上中線的性質即可對②作出判斷;由△AEF≌△DMF可得這兩個三角形的面積相等,再由MC>BE易得S△BEC<2S△EFC,從而③是錯誤的;設∠FEC=x,由已知及三角形內(nèi)角和可分別計算出∠DFE及∠AEF,從而可判斷④正確與否.【詳解】①∵F是AD的中點,∴AF=FD,∵在?ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正確;②延長EF,交CD延長線于M,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠A=∠MDF,∵F為AD中點,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FE,∴∠ECF=∠CEF,故②正確;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,,∴S△BEC<2S△EFC,故S△BEC=2S△CEF,故③錯誤;④設∠FEC=x,則∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正確,故選:B.【點睛】本題考查了平行四邊形的性質,全等三角形的判定與性質,直角三角形斜邊上中線的性質,三角形的面積等知識,構造輔助線證明三角形全等是本題的關鍵和難點.二、填空題1、6【解析】【分析】根據(jù)三角形的中位線等于第三邊的一半進行計算即可.【詳解】解:∵D、E分別是△ABC邊AB、AC的中點,∴DE是△ABC的中位線,∵BC=12,∴DE=BC=6,故答案為6.【點睛】本題主要考查了三角形中位線定理,熟知三角形中位線定理是解題的關鍵.2、.【解析】【分析】由AE=DA,點F1是CD的中點,矩形ABCD的面積等于2,結合矩形的性質可得△EF1D和△EAB的面積都等于1,結合三角形中線的性質可得△EF1F2的面積等于,同理可得△EFn﹣1Fn的面積為,△BCFn的面積為22,即可得出結論.【詳解】∵AE=DA,點F1是CD的中點,矩形ABCD的面積等于2,∴△EF1D和△EAB的面積都等于1,∵點F2是CF1的中點,∴△EF1F2的面積等于,同理可得△EFn﹣1Fn的面積為,∵△BCFn的面積為22,∴△EFnB的面積為2+1﹣12﹣(1).故答案為:.【點睛】本題考查了矩形的性質,三角形中線的性質,解題的關鍵是根據(jù)面積找出規(guī)律.3、【解析】【分析】作PM⊥AD于M,交BC于N,根據(jù)矩形的性質可得S△PEB=S△PFD即可求解.【詳解】解:作PM⊥AD于M,交BC于N.則有四邊形AEPM,四邊形DFPM,四邊形CFPN,四邊形BEPN都是矩形,,∴,,∴S陰=9+9=18,故答案為:18.【點睛】本題考查矩形的性質、三角形的面積等知識,解題的關鍵是證明.4、120240【解析】【分析】(1)由折疊的性質可得∠A=∠BPQ=120°;(2)由周角的性質可得∠BPD+∠QPD+∠BPQ=360°,即可求解;(3)由菱形的性質可得BQ=QD,QH⊥BD,BH=DH,由“SSS”可證△ABQ≌△EDQ,可得∠AQB=∠BQP=∠EQD=∠PQD=45°,由直角三角形的性質可求解.【詳解】解:(1)∵將五邊形紙片ABCDE沿BD折疊,∴∠A=∠BPQ=120°,∠QED=∠QPD,∠BCD=∠BPD,故答案為:120;(2)∵∠BPD+∠QPD+∠BPQ=360°,∴∠BPD+∠QPD=240°,∴∠BCD+∠QED=240°,故答案為:240;(3)如圖,連接PC,交BD于H,∵四邊形BPDC是菱形,∴PC是BD的垂直平分線,BP=PD=BC=CD,∵Q,P,C三點共線,∴QC是BD的垂直平分線,∴BQ=QD,QH⊥BD,BH=DH,由折疊可知:∠A=∠BPQ=120°,AB=BP=2=DE=DP,∠AQB=∠BQP,∠EQD=∠PQD,AQ=QP=QE,∴∠BPH=60°,∴∠PBH=30°,∴PHBP=1,BHPH,在△ABQ和△EDQ中,,∴△ABQ≌△EDQ(SSS),∴∠AQB=∠EQD,∴∠AQB=∠BQP=∠EQD=∠PQD,∵∠AQE=180°,∴∠AQB=∠BQP=∠EQD=∠PQD=45°,∴∠QBH=∠BQP=45°,∴BH=QH,∴BQBH,故答案為:.【點睛】本題考查了翻折變換,菱形的性質,全等三角形的判定和性質,直角三角形的性質等知識,掌握折疊的性質是解題的關鍵.5、25°【解析】【分析】利用翻折變換的性質即可解決.【詳解】解:由折疊可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案為:25°.【點睛】本題考查了折疊的性質,熟練掌握折疊的性質是解題的關鍵.三、解答題1、(1)見解析;(2)90°【分析】(1)利用正方形的性質得出AD=AB,∠DAB=∠ABC=90°,再證明Rt△DAF≌Rt△ABE即可得出結論;
(2)利用(1)的結論得出∠ADF=∠BAE,進而求出∠BAE+∠DFA=90°,最后用三角形的內(nèi)角和定理即可得出結論.【詳解】(1)證明:∵四邊形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在Rt△DAF和Rt△ABE中,,∴Rt△DAF≌Rt△ABE(HL),即△DAF≌△ABE.(2)解:由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DFA=∠BAE+∠DFA=∠DAB=90°,∴∠AOD=180°﹣(∠BAE+∠DFA)=90°.【點睛】本題主要考查了正方形的性質,全等三角形的判定和性質,三角形的內(nèi)角和定理,判斷出Rt△DAF≌Rt△ABE是解本題的關鍵.2、(1)見解析(2)見解析【分析】(1)利用垂直平分線和角平分線的尺規(guī)作圖法,進行作圖即可.(2)利用直角三角形斜邊中線性質,以及角平分線的性質直接證明與都是,最后加上,即可證明結論.【詳解】(1)答案如下圖所示:
分別以A、B兩點為圓心,以大于長為半徑畫弧,連接弧的交點的直線即為垂直平分線l,其與AB的交點為D,以點D為圓心,適當長為半徑畫弧,分別交DA于點M,交CD于點N,交BD于點T,然后分別以點M,N為圓心,大于為半徑畫弧,連接兩弧交點與D點的連線交AC于點E,同理分別以點T,N為圓心,大于為半徑畫弧,連接兩弧交點與D點的連線交BC于點F.(2)證明:點是AB與其垂直平分線l的交點,點是AB的中點,是Rt△ABC上的斜邊的中線,,DE、DF分別是ADC,∠BDC的角平分線,,,,,,,,在四邊形CEDF中,,四邊形CEDF是矩形.【點睛】本題主要是考查了尺規(guī)作圖、直角三角形斜邊中線性質以及矩形的判定,熟練利用直角三角形斜邊中線性質,找到三角形全等的判定條件,并且選擇合適的矩形判定條件,是解決本題的關鍵.3、(1)見解析;(2)39【分析】(1)首先根據(jù)CF⊥DE,DF=EF得出CF為DE的中垂
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全員A證考試題庫練習備考題(預熱題)附答案詳解
- 熱力站環(huán)境監(jiān)測方案
- 安全員A證考試全真模擬模擬題及參考答案詳解【鞏固】
- 2025年高級中學教師資格考試歷年真題試卷(含答案)解析
- 未來五年營養(yǎng)和保健品銷售企業(yè)縣域市場拓展與下沉戰(zhàn)略分析研究報告
- 未來五年計算機和輔助設備修理企業(yè)縣域市場拓展與下沉戰(zhàn)略分析研究報告
- 未來五年塑料絲、繩及編織品制造企業(yè)數(shù)字化轉型與智慧升級戰(zhàn)略分析研究報告
- 未來五年水果種子企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略分析研究報告
- 未來五年低合金鋼中板企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略分析研究報告
- 未來五年新形勢下化學藥研究行業(yè)順勢崛起戰(zhàn)略制定與實施分析研究報告
- 云南省煙草專賣局(公司)2026年畢業(yè)生招聘備考題庫(第一批)完整參考答案詳解
- 2026重慶江津區(qū)社區(qū)專職工作人員公開招聘642人考試參考題庫及答案解析
- 重癥患者營養(yǎng)支持指南2025
- 2025-2026學年貴州省貴陽市多校高一(上)期末物理試卷(含答案)
- 單位電車充電管理制度規(guī)范
- 社區(qū)救援員培訓課件
- 2026年讀者文化旅游有限責任公司社會招聘參考考試試題及答案解析
- 混凝土擋墻施工工藝方案
- 2025年宿遷市輔警考試真題及答案
- 冬季電纜敷設施工專項方案
- 建筑砌筑工(中級)理論考試題庫及答案
評論
0/150
提交評論