廣州航海學(xué)院《機器學(xué)習(xí)導(dǎo)論與工程應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁
廣州航海學(xué)院《機器學(xué)習(xí)導(dǎo)論與工程應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁
廣州航海學(xué)院《機器學(xué)習(xí)導(dǎo)論與工程應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁
廣州航海學(xué)院《機器學(xué)習(xí)導(dǎo)論與工程應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共2頁廣州航海學(xué)院《機器學(xué)習(xí)導(dǎo)論與工程應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在進行自動特征工程時,以下關(guān)于自動特征工程方法的描述,哪一項是不準(zhǔn)確的?()A.基于深度學(xué)習(xí)的自動特征學(xué)習(xí)可以從原始數(shù)據(jù)中自動提取有意義的特征B.遺傳算法可以用于搜索最優(yōu)的特征組合C.自動特征工程可以完全替代人工特征工程,不需要人工干預(yù)D.自動特征工程需要大量的計算資源和時間,但可以提高特征工程的效率2、假設(shè)正在開發(fā)一個用于推薦系統(tǒng)的深度學(xué)習(xí)模型,需要考慮用戶的短期興趣和長期興趣。以下哪種模型結(jié)構(gòu)可以同時捕捉這兩種興趣?()A.注意力機制與循環(huán)神經(jīng)網(wǎng)絡(luò)的結(jié)合B.多層感知機與卷積神經(jīng)網(wǎng)絡(luò)的組合C.生成對抗網(wǎng)絡(luò)與自編碼器的融合D.以上模型都有可能3、考慮一個情感分析任務(wù),判斷一段文本所表達的情感是積極、消極還是中性。在特征提取方面,可以使用詞袋模型、TF-IDF等方法。如果文本數(shù)據(jù)量較大,且包含豐富的語義信息,以下哪種特征提取方法可能表現(xiàn)更好?()A.詞袋模型,簡單直觀,計算速度快B.TF-IDF,考慮了詞的頻率和文檔的分布C.基于深度學(xué)習(xí)的詞向量表示,能夠捕捉語義和上下文信息D.以上方法效果相同,取決于模型的復(fù)雜程度4、想象一個文本分類的任務(wù),需要對大量的新聞文章進行分類,如政治、經(jīng)濟、體育等??紤]到詞匯的多樣性和語義的復(fù)雜性。以下哪種詞向量表示方法可能是最適合的?()A.One-Hot編碼,簡單直觀,但向量維度高且稀疏B.詞袋模型(BagofWords),忽略詞序但計算簡單C.分布式詞向量,如Word2Vec或GloVe,能夠捕捉詞與詞之間的語義關(guān)系,但對多義詞處理有限D(zhuǎn).基于Transformer的預(yù)訓(xùn)練語言模型生成的詞向量,具有強大的語言理解能力,但計算成本高5、在處理不平衡數(shù)據(jù)集時,以下關(guān)于解決數(shù)據(jù)不平衡問題的方法,哪一項是不正確的?()A.過采樣方法通過增加少數(shù)類樣本的數(shù)量來平衡數(shù)據(jù)集B.欠采樣方法通過減少多數(shù)類樣本的數(shù)量來平衡數(shù)據(jù)集C.合成少數(shù)類過采樣技術(shù)(SMOTE)通過合成新的少數(shù)類樣本來平衡數(shù)據(jù)集D.數(shù)據(jù)不平衡對模型性能沒有影響,不需要采取任何措施來處理6、在使用深度學(xué)習(xí)進行圖像分類時,數(shù)據(jù)增強是一種常用的技術(shù)。假設(shè)我們有一個有限的圖像數(shù)據(jù)集。以下關(guān)于數(shù)據(jù)增強的描述,哪一項是不正確的?()A.可以通過隨機旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪圖像來增加數(shù)據(jù)的多樣性B.對圖像進行色彩變換、添加噪聲等操作也屬于數(shù)據(jù)增強的方法C.數(shù)據(jù)增強可以有效地防止模型過擬合,但會增加數(shù)據(jù)標(biāo)注的工作量D.過度的數(shù)據(jù)增強可能會導(dǎo)致模型學(xué)習(xí)到與圖像內(nèi)容無關(guān)的特征,影響模型性能7、在評估機器學(xué)習(xí)模型的性能時,通常會使用多種指標(biāo)。假設(shè)我們有一個二分類模型,用于預(yù)測患者是否患有某種疾病。以下關(guān)于模型評估指標(biāo)的描述,哪一項是不正確的?()A.準(zhǔn)確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,但在類別不平衡的情況下可能不準(zhǔn)確B.召回率是被正確預(yù)測為正例的樣本數(shù)占實際正例樣本數(shù)的比例C.F1分?jǐn)?shù)是準(zhǔn)確率和召回率的調(diào)和平均值,綜合考慮了模型的準(zhǔn)確性和全面性D.均方誤差(MSE)常用于二分類問題的模型評估,值越小表示模型性能越好8、在進行強化學(xué)習(xí)中的策略優(yōu)化時,以下關(guān)于策略優(yōu)化方法的描述,哪一項是不正確的?()A.策略梯度方法通過直接計算策略的梯度來更新策略參數(shù)B.信賴域策略優(yōu)化(TrustRegionPolicyOptimization,TRPO)通過限制策略更新的幅度來保證策略的改進C.近端策略優(yōu)化(ProximalPolicyOptimization,PPO)是一種基于策略梯度的改進算法,具有更好的穩(wěn)定性和收斂性D.所有的策略優(yōu)化方法在任何強化學(xué)習(xí)任務(wù)中都能取得相同的效果,不需要根據(jù)任務(wù)特點進行選擇9、在使用樸素貝葉斯算法進行分類時,以下關(guān)于樸素貝葉斯的假設(shè)和特點,哪一項是不正確的?()A.假設(shè)特征之間相互獨立,簡化了概率計算B.對于連續(xù)型特征,通常需要先進行離散化處理C.樸素貝葉斯算法對輸入數(shù)據(jù)的分布沒有要求,適用于各種類型的數(shù)據(jù)D.樸素貝葉斯算法在處理高維度數(shù)據(jù)時性能較差,容易出現(xiàn)過擬合10、假設(shè)正在研究一個時間序列預(yù)測問題,數(shù)據(jù)具有季節(jié)性和趨勢性。以下哪種模型可以同時處理這兩種特性?()A.SARIMA模型B.Prophet模型C.Holt-Winters模型D.以上模型都可以11、在一個回歸問題中,如果數(shù)據(jù)存在多重共線性,以下哪種方法可以用于解決這個問題?()A.特征選擇B.正則化C.主成分回歸D.以上方法都可以12、考慮一個回歸問題,我們使用均方誤差(MSE)作為損失函數(shù)。如果模型的預(yù)測值與真實值之間的MSE較大,這意味著什么()A.模型的預(yù)測非常準(zhǔn)確B.模型存在過擬合C.模型存在欠擬合D.無法確定模型的性能13、在一個異常檢測的任務(wù)中,數(shù)據(jù)分布呈現(xiàn)多峰且存在離群點。以下哪種異常檢測算法可能表現(xiàn)較好?()A.基于密度的局部異常因子(LOF)算法,能夠發(fā)現(xiàn)局部密度差異較大的異常點,但對參數(shù)敏感B.一類支持向量機(One-ClassSVM),適用于高維數(shù)據(jù),但對數(shù)據(jù)分布的假設(shè)較強C.基于聚類的異常檢測,將遠離聚類中心的點視為異常,但聚類效果對結(jié)果影響較大D.以上算法結(jié)合使用,根據(jù)數(shù)據(jù)特點選擇合適的方法或進行組合14、某研究團隊正在開發(fā)一個用于預(yù)測股票價格的機器學(xué)習(xí)模型,需要考慮市場的動態(tài)性和不確定性。以下哪種模型可能更適合處理這種復(fù)雜的時間序列數(shù)據(jù)?()A.長短時記憶網(wǎng)絡(luò)(LSTM)結(jié)合注意力機制B.門控循環(huán)單元(GRU)與卷積神經(jīng)網(wǎng)絡(luò)(CNN)的組合C.隨機森林與自回歸移動平均模型(ARMA)的融合D.以上模型都有可能15、某研究團隊正在開發(fā)一個用于疾病預(yù)測的機器學(xué)習(xí)模型,需要考慮模型的魯棒性和穩(wěn)定性。以下哪種方法可以用于評估模型在不同數(shù)據(jù)集和條件下的性能?()A.交叉驗證B.留一法C.自助法D.以上方法都可以16、假設(shè)正在進行一項關(guān)于客戶購買行為預(yù)測的研究。我們擁有大量的客戶數(shù)據(jù),包括個人信息、購買歷史和瀏覽記錄等。為了從這些數(shù)據(jù)中提取有價值的特征,以下哪種方法通常被廣泛應(yīng)用?()A.主成分分析(PCA)B.線性判別分析(LDA)C.因子分析D.獨立成分分析(ICA)17、機器學(xué)習(xí)在自然語言處理領(lǐng)域有廣泛的應(yīng)用。以下關(guān)于機器學(xué)習(xí)在自然語言處理中的說法中,錯誤的是:機器學(xué)習(xí)可以用于文本分類、情感分析、機器翻譯等任務(wù)。常見的自然語言處理算法有詞袋模型、TF-IDF、深度學(xué)習(xí)模型等。那么,下列關(guān)于機器學(xué)習(xí)在自然語言處理中的說法錯誤的是()A.詞袋模型將文本表示為詞的集合,忽略了詞的順序和語法結(jié)構(gòu)B.TF-IDF可以衡量一個詞在文檔中的重要性C.深度學(xué)習(xí)模型在自然語言處理中表現(xiàn)出色,但需要大量的訓(xùn)練數(shù)據(jù)和計算資源D.機器學(xué)習(xí)在自然語言處理中的應(yīng)用已經(jīng)非常成熟,不需要進一步的研究和發(fā)展18、某機器學(xué)習(xí)模型在訓(xùn)練過程中,損失函數(shù)的值一直沒有明顯下降。以下哪種可能是導(dǎo)致這種情況的原因?()A.學(xué)習(xí)率過高B.模型過于復(fù)雜C.數(shù)據(jù)預(yù)處理不當(dāng)D.以上原因都有可能19、在一個強化學(xué)習(xí)問題中,如果智能體需要與多個對手進行交互和競爭,以下哪種算法可以考慮對手的策略?()A.雙人零和博弈算法B.多智能體強化學(xué)習(xí)算法C.策略梯度算法D.以上算法都可以20、在機器學(xué)習(xí)中,模型的可解釋性也是一個重要的問題。以下關(guān)于模型可解釋性的說法中,錯誤的是:模型的可解釋性是指能夠理解模型的決策過程和預(yù)測結(jié)果的能力??山忉屝詫τ谝恍╆P(guān)鍵領(lǐng)域如醫(yī)療、金融等非常重要。那么,下列關(guān)于模型可解釋性的說法錯誤的是()A.線性回歸模型具有較好的可解釋性,因為它的決策過程可以用公式表示B.決策樹模型也具有一定的可解釋性,因為可以通過樹形結(jié)構(gòu)直觀地理解決策過程C.深度神經(jīng)網(wǎng)絡(luò)模型通常具有較低的可解釋性,因為其決策過程非常復(fù)雜D.模型的可解釋性和性能是相互矛盾的,提高可解釋性必然會降低性能二、簡答題(本大題共5個小題,共25分)1、(本題5分)簡述機器學(xué)習(xí)中的特征重要性評估方法。2、(本題5分)說明機器學(xué)習(xí)中t-SNE降維算法的優(yōu)勢。3、(本題5分)簡述在醫(yī)學(xué)影像診斷中,機器學(xué)習(xí)的作用。4、(本題5分)解釋如何在機器學(xué)習(xí)中處理噪聲數(shù)據(jù)。5、(本題5分)解釋機器學(xué)習(xí)在蛋白質(zhì)組學(xué)中的研究進展。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)利用GAN生成新的建筑設(shè)計圖。2、(本題5分)運用LSTM網(wǎng)絡(luò)對電商平臺的商品銷量進行預(yù)測。3、(本題5分)通過神經(jīng)網(wǎng)絡(luò)模型對腦磁圖(MEG)數(shù)據(jù)進行分析。4、(本題5分)使用梯度提升樹(GBDT)模型預(yù)測學(xué)生的考試成績,分析影響成績的因素。5、(本題5分)通過癌癥基因組學(xué)數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論