難點解析-人教版8年級數(shù)學下冊《平行四邊形》章節(jié)測試試題(解析卷)_第1頁
難點解析-人教版8年級數(shù)學下冊《平行四邊形》章節(jié)測試試題(解析卷)_第2頁
難點解析-人教版8年級數(shù)學下冊《平行四邊形》章節(jié)測試試題(解析卷)_第3頁
難點解析-人教版8年級數(shù)學下冊《平行四邊形》章節(jié)測試試題(解析卷)_第4頁
難點解析-人教版8年級數(shù)學下冊《平行四邊形》章節(jié)測試試題(解析卷)_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學下冊《平行四邊形》章節(jié)測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、順次連接矩形各邊中點得到的四邊形是()A.平行四邊形 B.矩形 C.菱形 D.正方形2、下面四個命題:①直角三角形的兩邊長為3,4,則第三邊長為5;②,③對角線相等且互相垂直的四邊形是正方形;④若四邊形中,ADBC,且,則四邊形是平行四邊形.其中正確的命題的個數(shù)為()A.0 B.1 C.2 D.33、在數(shù)學活動課上,老師和同學們判斷一個四邊形門框是否為矩形.下面是某個合作小組的4位同學擬定的方案,其中正確的是()A.測量對角線是否互相平分 B.測量兩組對邊是否分別相等C.測量其內角是否均為直角 D.測量對角線是否垂直4、如圖,已知是平分線上的一點,,,是的中點,,如果是上一個動點,則的最小值為()A. B. C. D.5、在中,AC與BD相交于點O,要使四邊形ABCD是菱形,還需添加一個條件,這個條件可以是()A.AO=CO B.AO=BO C.AO⊥BO D.AB⊥BC第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、在直角墻角FOE中有張硬紙片正方形ABCD靠墻邊滑動,如圖所示,AD=2,A點沿墻往下滑動到O點的過程中,正方形的中心點M到O的最小值是______.2、如圖,圓柱形容器高為0.8m,底面周長為4.8m,在容器內壁離底部0.1m的點處有一只蚊子,此時一只壁虎正好在容器的頂部點處,若容器壁厚忽略不計,則壁虎捕捉蚊子的最短路程是______m.3、如圖,正方形的邊長為4,它的兩條對角線交于點,過點作邊的垂線,垂足為,的面積為,過點作的垂線,垂足為,△的面積為,過點作的垂線,垂足為,△的面積為,△的面積為,那么__,則__.4、如圖,在正方形ABCD中,AB=4,E為對角線AC上與A,C不重合的一個動點,過點E作EF⊥AB于點F,EG⊥BC于點G,連接DE,F(xiàn)G,下列結論:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值為3.其中正確結論的序號為__.5、如圖,在平面直角坐標系中,O是菱形ABCD對角線BD的中點,AD∥x軸,AD=4,∠A=60°.將菱形ABCD繞點O旋轉,使點D落在x軸上,則旋轉后點C的對應點的坐標是_____________.三、解答題(5小題,每小題10分,共計50分)1、如圖,在平行四邊形ABCD中,,點E、F分別是BC、AD的中點.(1)求證:;(2)當時,在不添加輔助線的情況下,直接寫出圖中等于的2倍的所有角.2、如圖,在中,對角線AC、BD交于點O,AB=10,AD=8,AC⊥BC,求(1)的面積;(2)△AOD的周長.

3、已知:如圖,,,AD是BC上的高線,CE是AB邊上的中線,于G.(1)若,求線段AC的長;(2)求證:.4、D、分別是不等邊三角形即的邊、的中點.是平面上的一動點,連接、,、分別是、的中點,順次連接點、、、.(1)如圖,當點在內時,求證:四邊形是平行四邊形;(2)若四邊形是菱形,點所在位置應滿足什么條件?(直接寫出答案,不需說明理由.)5、如圖,在平行四邊形ABCD中,E為BC的中點,連接AE并延長交DC的延長線于點F,連接BF,AC,且AD=AF.(1)判斷四邊形ABFC的形狀并證明;(2)若AB=3,∠ABC=60°,求EF的長.-參考答案-一、單選題1、C【解析】【分析】如圖,矩形中,利用三角形的中位線的性質證明,再證明四邊形是平行四邊形,再證明從而可得結論.【詳解】解:如圖,矩形中,分別為四邊的中點,,四邊形是平行四邊形,四邊形是菱形.故選C.【點睛】本題考查的是矩形的性質,菱形的判定,三角形的中位線的性質,熟練的運用三角形的中位線的性質解決中點四邊形問題是解本題的關鍵.2、B【解析】【分析】①直角三角形兩直角邊長為3,4,斜邊長為5;②x的取值范圍不同;③對角線相等且互相垂直平分的四邊形是正方形;④熟記平行四邊形的判定定理進行證明.【詳解】解:①3,4沒說是直角邊的長還是斜邊的長,故第三邊答案不唯一,故①錯誤.②等式左邊的值小于0,等式右邊的值大于或等于0,故②錯誤.③必須加上平分這個條件,否則不會是正方形,故③錯誤.④延長CB至E,使BE=AB,延長AD至F,使DF=DC,則四邊形ECFA是平行四邊形,∴∠E=∠F,由∠ABC=2∠E,∠ADC=2∠F,知∠ABC=∠ADC,又AD∥BC,故∠ABC+∠BAD=180°,即∠ADC+∠BAD=180°,∴AB∥CD,四邊形ABCD是平行四邊形.故④正確.故選:B.【點睛】本題考查判斷命題正誤的能力以及掌握勾股定理,正方形的判定定理,平行四邊形的判定定理以及化簡代數(shù)式注意取值范圍等.3、C【解析】【分析】根據(jù)矩形的判定:(1)四個角均為直角;(2)對邊互相平行且相等;(3)對角線相等且平分,據(jù)此即可判斷結果.【詳解】解:A、根據(jù)矩形的對角線相等且平分,故錯誤;B、對邊分別相等只能判定四邊形是平行四邊形,故錯誤;C、矩形的四個角都是直角,故正確;D、矩形的對角線互相相等且平分,所以垂直與否與矩形的判定無關,故錯誤.故選:C.【點睛】本題主要考查的是矩形的判定方法,熟練掌握矩形的判定是解題的關鍵.4、C【解析】【分析】根據(jù)題意由角平分線先得到是含有角的直角三角形,結合直角三角形斜邊上中線的性質進而得到OP,DP的值,再根據(jù)角平分線的性質以及垂線段最短等相關內容即可得到PC的最小值.【詳解】解:∵點P是∠AOB平分線上的一點,,∴,∵PD⊥OA,M是OP的中點,∴,∴∵點C是OB上一個動點∴當時,PC的值最小,∵OP平分∠AOB,PD⊥OA,∴最小值,故選C.【點睛】本題主要考查了角平分線的性質、含有角的直角三角形的選擇,直角三角形斜邊上中線的性質、垂線段最短等相關內容,熟練掌握相關性質定理是解決本題的關鍵.5、C【解析】【分析】根據(jù)菱形的判定分析即可;【詳解】∵四邊形ABCD時平行四邊形,AO⊥BO,∴是菱形;故選C.【點睛】本題主要考查了菱形的判定,準確分析判斷是解題的關鍵.二、填空題1、2【解析】【分析】取的中點為,連接,根據(jù)直角三角形的性質求出OG和MG的長,然后根據(jù)兩點之間線段最短即可求解.【詳解】解:取的中點為,連接,為正方形,,,為中點,,又為直角三角形,,的軌跡是以為圓心的圓弧,最小值為當三點共線時,即,故答案為:2.【點睛】本題考查了正方形的性質,直角三角形斜邊的中線等于斜邊的一半,以及兩點之間線段最短等知識,正確作出輔助線是解答本題的關鍵.2、2.5.【解析】【分析】如圖所示,將容器側面展開,連接AB,則AB的長即為最短距離,然后分別求出AC,BC的長度,利用勾股定理求解即可.【詳解】解:如圖所示,將容器側面展開,連接AB,則AB的長即為最短距離,∵圓柱形容器高為0.8m,底面周長為4.8m在容器內壁離底部0.1m的點B處有一只蚊子,此時一只壁虎正好在容器的頂部點A處,∴,,,過點B作BC⊥AD于C,∴∠BCD=90°,∵四邊形ADEF是矩形,∴∠ADE=∠DEF=90°∴四邊形BCDE是矩形,∴,,∴,∴,答:則壁虎捕捉蚊子的最短路程是2.5m.故答案為:2.5.【點睛】本題主要考查了平面展開—最短路徑,解題的關鍵在于能夠根據(jù)題意確定展開圖中AB的長即為所求.3、【解析】【分析】由正方形的性質得出、、、、,,得出規(guī)律,再求出它們的和即可.【詳解】解:四邊形是正方形,,,,,,,,,,,;故答案為:;.【點睛】本題是圖形的變化題,考查了正方形的性質、三角形面積的計算,解題的關鍵是通過計算三角形的面積得出規(guī)律.4、①②③【解析】【分析】①連接BE,可得四邊形EFBG為矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;②由矩形EFBG可得OF=OB,則∠OBF=∠OFB;由∠OBF=∠ADE,則∠OFB=∠ADE;由四邊形ABCD為正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;③由②中的結論可得∠BFG=∠ADE;④由于點E為AC上一動點,當DE⊥AC時,根據(jù)垂線段最短可得此時DE最小,最小值為2,由①知FG=DE,所以FG的最小值為2.【詳解】解:①連接BE,交FG于點O,如圖,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四邊形EFBG為矩形.∴FG=BE,OB=OF=OE=OG.∵四邊形ABCD為正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正確;②延長DE,交FG于M,交FB于點H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正確;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正確;④∵點E為AC上一動點,∴根據(jù)垂線段最短,當DE⊥AC時,DE最?。逜D=CD=4,∠ADC=90°,∴AC==4.∴DE=AC=2.由①知:FG=DE,∴FG的最小值為2,∴④錯誤.綜上,正確的結論為:①②③.故答案為:①②③.【點睛】本題考查了全等三角形的性質與判定,正方形的性質,勾股定理,垂線段最短,掌握正方形的性質是解題的關鍵.5、或##或【解析】【分析】分當D落在x軸正半軸時和當D落在x軸負半軸時,兩種情況討論求解即可.【詳解】解:如圖1所示,當D落在x軸正半軸時,∵O是菱形ABCD對角線BD的中點,∴AO⊥DO,∴當D落在x軸正半軸時,A點在y軸正半軸,∴同理可得A、B、C三點均在坐標軸上,且點C在y軸負半軸,∵∠BAD=60°,∴∠OAD=30°,∴,∴,∴點C的坐標為(0,);如圖2所示,當D落在x軸負半軸時,同理可得,∴點C的坐標為(0,);∴綜上所述,點C的坐標為(0,)或(0,),故答案為:(0,)或(0,).【點睛】本題主要考查了菱形的性質,坐標與圖形,含30度角的直角三角形的性質,勾股定理,熟練掌握菱形的性質是解題的關鍵.三、解答題1、(1)證明見解析;(2)【分析】(1)先證明再證明從而可得結論;(2)證明是等邊三角形,再分別求解從而可得答案.【詳解】證明(1)平行四邊形ABCD中,,點E、F分別是BC、AD的中點,(2),是等邊三角形,四邊形是平行四邊形,而,所以等于的2倍的角有:【點睛】本題考查的是全等三角形的判定與性質,等邊三角形的判定與性質,平行四邊形的性質,證明“是等邊三角形”是解(2)的關鍵.2、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面積;(2)根據(jù)平行四邊形的性質求出AO,再利用勾股定理求出OB的長,故可求解.【詳解】解:(1)∵四邊形ABCD是平行四邊形,且AD=8

∴BC=AD=8∵AC⊥BC∴∠ACB=90°在Rt△ABC中,由勾股定理得AC2=AB2-BC2∴∴(2)∵四邊形ABCD是平行四邊形,且AC=6∴∵∠ACB=90°,BC=8∴,∴∴.【點睛】此題主要考查平行四邊形的性質,解題的關鍵是熟知平行四邊形的性質及勾股定理的應用.3、(1);(2)見解析【分析】(1)根據(jù)30°角所對直角邊等于斜邊的一半,得到AD=3,根據(jù)等腰直角三角形,得到CD=AD=3,根據(jù)勾股定理,得到AC的長即可;(2)根據(jù)斜邊上的中線等于斜邊的一半,得到DE=DC,根據(jù)等腰三角形三線合一性質,證明即可.【詳解】(1),;(2)連接DE,,,,,,.【點睛】本題考查了30°角的性質,等腰直角三角形的性質,斜邊上中線的性質,等腰三角形三線合一性質,熟練掌握性質是解題的關鍵.4、(1)見解析;(2),且點不在射線、射線上【分析】(1)根據(jù)三角形的中位線定理可證得,DE=GF,即可證得結論;(2)根據(jù)三角形的中位線定理結合菱形的判定方法分析即可.【詳解】(1)∵D、E分別是邊AB、AC的中點,∴,DE=BC,同理,,GF=BC,∴,DE=GF,∴四邊形DEFG是平行四邊形;(2)點O的位置滿足兩個要求:AO=BC,且點O不在射線CD、射線BE上.理由如下:連接AO,由(1)得四邊形DEFG是平行四邊形,∵點D、G、F分別是AB、OB、OC的中點,∴,,當AO=BC時,GF=DF,∴四邊形DGFE是菱形.【點睛】本題主要考查三角形的中位線定理,平行四邊形、菱形的判定,解題的關鍵是熟練掌握以上知識點.5、(1)矩形,見解析;(2)3【分析】(1)利用AAS判定△ABE≌△FCE,從而得到AB=CF;由已知可得四邊形ABFC是平行四邊形,BC=AF,根據(jù)對角線相等的平行四邊形是矩形,可得到四邊形ABFC是矩形;(2)先證△ABE是等邊三角形,可得AB=AE=EF=3.【詳解】解:(1)四邊形A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論