難點解析廣東省廉江市中考數(shù)學真題分類(平行線的證明)匯編定向訓練試題(含解析)_第1頁
難點解析廣東省廉江市中考數(shù)學真題分類(平行線的證明)匯編定向訓練試題(含解析)_第2頁
難點解析廣東省廉江市中考數(shù)學真題分類(平行線的證明)匯編定向訓練試題(含解析)_第3頁
難點解析廣東省廉江市中考數(shù)學真題分類(平行線的證明)匯編定向訓練試題(含解析)_第4頁
難點解析廣東省廉江市中考數(shù)學真題分類(平行線的證明)匯編定向訓練試題(含解析)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省廉江市中考數(shù)學真題分類(平行線的證明)匯編定向訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、用反證法證明命題“三角形中必有一個內(nèi)角小于或等于60°”時,首先應(yīng)該假設(shè)這個三角形中()A.有一個內(nèi)角小于60° B.每一個內(nèi)角都小于60°C.有一個內(nèi)角大于60° D.每一個內(nèi)角都大于60°2、將一副三角板的直角頂點重合按如圖放置,小明得到下列結(jié)論:①如果∠2=30°,則AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,則∠2=30°;④如果∠CAD=150°,則∠4=∠C.其中正確的結(jié)論有()A.①② B.①②③ C.①③④ D.①②④3、如圖,在ABC中,∠ACB=90°,∠B-∠A=10°,D是AB上一點,將ACD沿CD翻折后得到CED,邊CE交AB于點F.若DEF中有兩個角相等,則∠ACD的度數(shù)為(

)A.15°或20° B.20°或30° C.15°或30° D.15°或25°4、如圖,在△ABC中,∠ABC的平分線與△ABC的外角平分線相交于點D,,則∠D的度數(shù)是(

)A.44° B.24° C.22° D.20°5、如圖,將沿著平行于的直線折疊,點落在點處,若,則的度數(shù)是(

)A.108° B.104° C.96° D.92°6、如圖,∠ABD、∠ACD的角平分線交于點P,若∠A=50°,∠D=10°,則∠P的度數(shù)為(

)A.15° B.20° C.25° D.30°7、如圖,在△ABC中,點D在AB上,點E在AC上,DE∥BC.若∠A=62°,∠AED=54°,則∠B的大小為()A.54° B.62° C.64° D.74°8、如圖,、都是的角平分線,且,則(

)A.45° B.50° C.65° D.70°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、將△ABC沿著DE翻折,使點A落到點A′處,A′D、A′E分別與BC交于M、N兩點,且DEBC.已知∠A′NM=27°,則∠NEC=_____.2、如圖,將一副三角尺按圖中所示位置擺放,點F在AC上,其中∠ACB=∠EFD=90°,∠ABC=60°,∠DEF=45°,AB∥DE,則∠AFD的大小為___________度.3、如圖,將直角三角形紙片ABC進行折疊,使直角頂點A落在斜邊BC上的點E處,并使折痕經(jīng)過點C,得到折痕CD.若∠CDE=70°,則∠B=______°.4、如圖,點D是△ABC兩條角平分線AP、CE的交點,如果∠BAC+∠BCA=140°,那么∠ADC=_____°.5、請把以下說理過程補充完整:如圖,AB∥CD,∠C=∠D,如果∠1=∠2,那么∠E與∠C互為補角嗎?說說你的理由.解:因為∠1=∠2,根據(jù)___________,所以EF∥________.又因為AB∥CD,根據(jù)___________,所以EF∥________.根據(jù)____________,所以∠E+________=_________°.又因為∠C=∠D,所以∠E+________=_________°,所以∠E與∠C互為補角.6、兩條直線平行的條件(除平行線定義和平行公理推論外):兩條直線被第三條直線所截,如果___________,那么這兩條直線平行.這個判定方法可簡述為:_________,兩直線平行.7、如圖,AF,AD分別是△ABC的高和角平分線,且∠B=36°,∠C=76°,則∠DAF=_____度.三、解答題(7小題,每小題10分,共計70分)1、已知:如圖,△ABC是任意一個三角形,求證:∠A+∠B+∠C=180°.2、已知:如圖,A、F、C、D在同一直線上,AB∥DE,AB=DE,AF=CD,求證:(1)BC=EF;(2)BC∥EF.3、已知ABCD,解決下列問題:(1)如圖①,寫出∠ABE、∠CDE和∠E之間的數(shù)量關(guān)系,并說明理由;(2)如圖②,BP、DP分別平分∠ABE、∠CDE,若∠E=100°,求∠P的度數(shù).4、已知:直線EF分別與直線AB,CD相交于點G,H,并且∠AGE+∠DHE=180°.(1)如圖1,求證:AB∥CD;(2)如圖2,點M在直線AB,CD之間,連接GM,HM,求證:∠M=∠AGM+∠CHM;(3)如圖3,在(2)的條件下,射線GH是∠BGM的平分線,在MH的延長線上取點N,連接GN,若∠N=∠AGM,∠M=∠N+∠FGN,求∠MHG的度數(shù).5、已知://.求證://.6、如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長線于點E.(1)求∠CBE的度數(shù);(2)過點D作DF∥BE,交AC的延長線于點F,求∠F的度數(shù).7、如圖所示,AE為△ABC的角平分線,CD為△ABC的高,若∠B=30°,∠ACB為70°.(1)求∠CAF的度數(shù);(2)求∠AFC的度數(shù).-參考答案-一、單選題1、D【解析】【分析】根據(jù)反證法的證明步驟解答即可.【詳解】解:用反證法證明“三角形中必有一個內(nèi)角小于或等于60°”時,應(yīng)先假設(shè)三角形中每一個內(nèi)角都不小于或等于60°,即每一個內(nèi)角都大于60°.故選:D.【考點】本題考查反證法,熟知反證法的證明步驟,正確得出原結(jié)論的反面是解答的關(guān)鍵.2、D【解析】【分析】根據(jù)平行線的性質(zhì)和判定和三角形內(nèi)角和定理逐個判斷即可.【詳解】解:∵∠2=30°,∠CAB=90°,∴∠1=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE,故①正確;∵∠CAB=∠DAE=90°,∴∠BAE+∠CAD=90°-∠1+90°+∠1=180°,故②正確;∵BC∥AD,∠B=45°,∴∠3=∠B=45°,∵∠2+∠3=∠DAE=90°,∴∠2=45°,故③錯誤;∵∠CAD=150°,∠BAE+∠CAD=180°,∴∠BAE=30°,∵∠E=60°,∴∠BOE=∠BAE+∠E=90°,∴∠4+∠B=90°,

∵∠B=45°,∴∠4=45°,∵∠C=45°,∴∠4=∠C,故④正確;所以其中正確的結(jié)論有①②④.故選:D.【考點】本題考查了三角形的內(nèi)角和定理和平行線的性質(zhì)和判定,能靈活運用定理進行推理是解此題的關(guān)鍵.3、C【解析】【分析】由三角形的內(nèi)角和定理可求解∠A=40°,設(shè)∠ACD=x°,則∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折疊可知:∠ADC=∠CDE,∠E=∠A=40°,可分三種情況:當∠DFE=∠E=40°時;當∠FDE=∠E=40°時;當∠DFE=∠FDE時,根據(jù)∠ADC=∠CDE列方程,解方程可求解x值,即可求解.【詳解】解:在△ABC中,∠ACB=90°,∴∠B+∠A=90°,∵∠B-∠A=10°,∴∠A=40°,∠B=50°,設(shè)∠ACD=x°,則∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折疊可知:∠ADC=∠CDE,∠E=∠A=40°,當∠DFE=∠E=40°時,∵∠FDE+∠DFE+∠E=180°,∴∠FDE=180°-40°-40°=100°,∴140°-x=100°+40°+x,解得x=0(不存在);當∠FDE=∠E=40°時,∴140°-x=40°+40°+x,解得x=30°,即∠ACD=30°;當∠DFE=∠FDE時,∵∠FDE+∠DFE+∠E=180°,∴∠FDE==70°,∴140°-x=70°+40°+x,解得x=15,即∠ACD=15°,綜上,∠ACD=15°或30°,故選:C.【考點】本題主要考查直角三角形的性質(zhì),等腰三角形的性質(zhì),三角形的內(nèi)角和定理,根據(jù)∠ADC=∠CDE分三種情況列方程是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)角平分線定義可得∠CBD=∠ABC,根據(jù)三角形外角性質(zhì)表示出∠DCE,然后整理即可得到∠D=∠A,從而求出度數(shù).【詳解】解:∵BD平分∠ABC,∴∠CBD=∠ABC,∵CD是△ABC的外角平分線,∴∠DCE=∠ACE,∵∠DCE=∠CBD+∠D=∠ABC+∠D,∠ACE=∠A+∠ABC,∴∠ABC+∠D=(∠ABC+∠A).∴∠D=∠A=22°.故選:C.【考點】此題考查了角平分線的計算,三角形外角的性質(zhì),熟記三角形外角性質(zhì)是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)兩直線平行,同位角相等可得∠ADE=∠B,再根據(jù)翻折變換的性質(zhì)可得∠A′DE=∠ADE,然后根據(jù)平角等于180°列式計算即可得解.【詳解】解:∵,∴∠ADE=∠B=44°,∵△ABC沿著平行于BC的直線折疊,點A落到點A′,∴∠A′DE=∠ADE=44°,∴∠A′DB=180°﹣44°﹣44°=92°.故選:D.【考點】本題考查了平行線的性質(zhì),翻折變換的性質(zhì),三角形的內(nèi)角和定理,熟記性質(zhì)并準確識圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.6、B【解析】【分析】利用三角形外角的性質(zhì),得到∠ACD與∠ABD的關(guān)系,然后用角平分線的性質(zhì)得到角相等的關(guān)系,代入計算即可得到答案.【詳解】解:延長DC,與AB交于點E.∵∠ACD是△ACE的外角,∠A=50°,∴∠ACD=∠A+∠AEC=50°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.設(shè)AC與BP相交于O,則∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°-(∠ACD-∠ABD)=20°.故選B.【考點】本題綜合考查角平分線的性質(zhì)、三角形外角的性質(zhì)、三角形內(nèi)角和等知識點.解題的關(guān)鍵是熟練的運用所學性質(zhì)去求解.7、C【解析】【詳解】解:∵DE∥BC,∴∠C=∠AED=54°,∵∠A=62°,∴∠B=180°﹣∠A﹣∠C=64°,故選C.點睛:本題考查了平行線的性質(zhì),三角形的內(nèi)角和,熟練掌握三角形的內(nèi)角和是解題的關(guān)鍵.8、B【解析】【分析】由三角形內(nèi)角和定理解得,再根據(jù)角平分線的性質(zhì)解得,最后根據(jù)三角形內(nèi)角和定理解答即可.【詳解】解:、都是的角平分線,故選:B.【考點】本題考查角平分線的性質(zhì)、三角形內(nèi)角和定理等知識,是基礎(chǔ)考點,掌握相關(guān)知識是解題關(guān)鍵.二、填空題1、126°【解析】【分析】利用平行線的性質(zhì)求出∠DEN=27°,再利用翻折不變性得到∠AED=∠DEN=27°,再根據(jù)平角的性質(zhì)即可解決問題.【詳解】解:∵DE∥BC,∴∠DEN=∠A′NM=27°,由翻折不變性可知:∠AED=∠DEN=27°,∴∠NEC=180°﹣2×27°=126°,故答案為126°.【考點】本題考查翻折變換,平行線的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.2、15【解析】【分析】根據(jù)直角三角板的特點,結(jié)合題意,通過角的轉(zhuǎn)換即可得結(jié)果;【詳解】解:如圖,∵∠ACB=∠EFD=90°,∠ABC=60°,∴∠A=30°,∵∠DEF=45°,AB∥DE,∴∠BGF=45°,∵∠A+∠AFD=∠BGF=45°,∴∠AFD=∠BGF-∠A=45°-30°=15°.故答案為:15.【考點】本題主要考查角的轉(zhuǎn)換、三角形的內(nèi)角和定理、平行線的性質(zhì),掌握三角形的內(nèi)角和定理、平行線的性質(zhì)是解題的關(guān)鍵.3、50【解析】【分析】根據(jù)折疊的性質(zhì)求得∠CDE=∠CDA=70°,得到∠BDE=40°,再利用余角的性質(zhì)即可求解.【詳解】解:根據(jù)折疊的性質(zhì)得:∠CDE=∠CDA=70°,∠CED=∠A=90°,∴∠BDE=180°-70°-70°=40°,∠BED=180°-90°=90°,∴∠B=180°-90°-40°=50°,故答案為:50.【考點】本題考查翻折變換,三角形內(nèi)角和定理等知識,關(guān)鍵是根據(jù)翻折前后對應(yīng)角相等,利用三角形內(nèi)角和定理求解即可.4、110【解析】【分析】根據(jù)CE,AP分別平分∠ACB和∠BAC,得∠CAP=∠BAC,∠ACE=∠BCA,再根據(jù)三角形內(nèi)角和定理,求出∠ADC即可.【詳解】解:∵CE,AP分別平分∠ACB和∠BAC,∴∠ACE=∠BCA,∠CAP=∠BAC,∵∠BAC+∠BCA=140°,∴∠CAP+∠ACE=70°,∴∠ADC=180°﹣(∠CAP+∠ACE)=180°﹣70°=110°,故答案為:110.【考點】本題考查了角平分線的性質(zhì)和三角形內(nèi)角和定理,熟練掌握了角平分線的性質(zhì)是解題的關(guān)鍵.5、內(nèi)錯角相等,兩直線平行;AB;平行于同一條直線的兩條直線平行;CD;兩直線平行,同旁內(nèi)角互補;∠D;180;∠C;180【解析】【分析】由已知角相等,利用內(nèi)錯角相等兩直線平行得到AB與EF平行,再由AB與CD平行,利用平行于同一條直線的兩直線平行即可得EF與CD平行,然后由兩直線平行,同旁內(nèi)角互補可得∠E+∠D=180°,最后等量代換得到∠E+∠C=180°.【詳解】解:因為∠1=∠2,根據(jù)_內(nèi)錯角相等,兩直線平行,所以EF∥__AB_.又因為AB∥CD,根據(jù)_平行于同一條直線的兩條直線平行,所以EF∥__CD___.根據(jù)兩直線平行,同旁內(nèi)角互補,所以∠E+_∠D=__180°.又因為∠C=∠D,所以∠E+_∠C_=_180°,所以∠E與∠C互為補角.【考點】此題考查了平行線的判定與性質(zhì),熟練掌握平行線的判定與性質(zhì)是解本題的關(guān)鍵.6、

同位角相等(答案不唯一)

同位角相等(答案不唯一)【解析】【分析】根據(jù)平行線的判定定理解答即可.【詳解】兩條直線平行的條件(除平行線定義和平行公理推論外):兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行.這個判定方法可簡述為:同位角相等,兩直線平行.故答案為:同位角相等,同位角相等.【考點】本題主要考查平行線的判定定理,屬于基礎(chǔ)題,熟練掌握平行線的判定定理是解題關(guān)鍵.7、20【解析】【分析】根據(jù)角平分線的定義和高的定義結(jié)合三角形的內(nèi)角和定理來解答.【詳解】解:∵∠B=36°,∠C=76°,∴∠BAC=180﹣∠B﹣∠C=180°﹣76°﹣36°=68°,又∵AD是∠BAC的平分線,∴∠CAD=68°×=34°,在Rt△AFC中,∠FAC=90﹣∠C=90°﹣76°=14°,于是∠DAF=34°﹣14°=20°.故答案為:20.【考點】本題主要考查了角平分線、三角形高的定義和三角形的內(nèi)角和定理.三、解答題1、證明見解析【解析】【分析】過點A作EFBC,利用EFBC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代換可證∠BAC+∠B+∠C=180°.【詳解】解:如圖,過點A作EFBC,∵EFBC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.【考點】本題考查了三角形的內(nèi)角和定理的證明,作輔助線把三角形的三個內(nèi)角轉(zhuǎn)化到一個平角上是解題的關(guān)鍵.2、(1)證明見解析(2)證明見解析【解析】【分析】(1)根據(jù)平行線的性質(zhì)和全等三角形的判定和性質(zhì)解答即可.(2)根據(jù)全等三角形的性質(zhì)和平行線的判定解答即可.(1)證明:(1),,,,在與中,,.(2)(2),,.【考點】考查了全等三角形的判定與性質(zhì)、平行線的判定與性質(zhì)等知識,證明三角形全等是解決問題的關(guān)鍵.3、(1)∠ABE+∠CDE+∠DEB=360°,理由見解析(2)130°【解析】【分析】(1)過E作EF∥AB,根據(jù)平行線的性質(zhì)即可得出結(jié)論;(2)根據(jù)得出三角關(guān)系,以及角平分線定義求出四邊形PBED中的三個角,進而利用四邊形內(nèi)角和求出所求角的度數(shù)即可.(1)根據(jù)題意得:∠ABE+∠CDE+∠E=360°,理由如下:過E作EF∥AB,∴∠FEB+∠EBA=180°,∵CD∥AB,EF∥AB,∴CD∥EF,∴∠CDE+∠DEF=180°,∴∠CDE+∠DEB+∠ABE=360°,故答案為:∠ABE+∠CDE+∠E=360°;(2)∵BP、DP分別平分∠ABE、∠CDE,∴∠EDP∠CDE,∠EBP∠ABE,即∠CDE=2∠EDP,∠ABE=2∠EBP,代入(1)的等式得:2∠EBP+2∠EDP+∠E=360°,∵∠E=100°,∴∠EBP+∠EDP=180°∠E=130°,在四邊形PBED中,∠P=360°﹣(∠EBP+∠EDP+∠E)=360°﹣(130°+100°)=130°.【考點】本題考查平行線的性質(zhì)和角平分線的性質(zhì);熟練掌握平行線的性質(zhì)和角平分線的性質(zhì)的運用是解決本題的關(guān)鍵.4、(1)見解析;(2)見解析;(3)60°【解析】【分析】(1)根據(jù)已知條件和對頂角相等即可證明;(2)如圖2,過點M作MR∥AB,可得AB∥CD∥MR.進而可以證明;(3)如圖3,令∠AGM=2α,∠CHM=β,則∠N=2α,∠M=2α+β,過點H作HT∥GN,可得∠MHT=∠N=2α,∠GHT=∠FGN=2β,進而可得結(jié)論.【詳解】(1)證明:如圖1,∵∠AGE+∠DHE=180°,∠AGE=∠BGF.∴∠BGF+∠DHE=180°,∴AB∥CD;(2)證明:如圖2,過點M作MR∥AB,又∵AB∥CD,∴AB∥CD∥MR.∴∠GMR=∠AGM,∠HMR=∠CHM.∴∠GMH=∠GMR+∠RMH=∠AGM+∠CHM.(3)解:如圖3,令∠AGM=2α,∠CHM=β,則∠N=2α,∠M=2α+β,∵射線GH是∠BGM的平分線,∴,∴∠AGH=∠AGM+∠FGM=2α+90°﹣α=90°+α,∵,∴,∴∠FGN=2β,過點H作HT∥GN,則∠MHT=∠N=2α,∠GHT=∠FGN=2β,∴∠GHM=∠MHT+∠GHT=2α+2β,∠CHG=∠CHM+∠MHT+∠GHT=β+2α+2β=2α+3β,∵AB∥CD,∴∠AGH+∠CHG=180°,∴90°+α+2α+3β=180°,∴α+β=30°,∴∠GHM=2(α+β)=60°.【考點】本題考查了平行線的判定與性質(zhì),對頂角的性質(zhì),角平分線的性質(zhì),解決本題的關(guān)鍵是掌握平行線的判定與性質(zhì).5、見解析【解析】【分析】根據(jù),得到∠A=∠C,然后推出AF=CE,即可證明△ABF≌△CDE得到∠AFB=∠CED,則.【詳解】解:∵,∴∠A=∠C,∵AE=CF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論