版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版8年級(jí)數(shù)學(xué)下冊《平行四邊形》定向測評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、順次連接對(duì)角線互相垂直的四邊形的各邊中點(diǎn),所形成的新四邊形是()A.菱形 B.矩形 C.正方形 D.三角形2、如圖,在正方形有中,E是AB上的動(dòng)點(diǎn),(不與A、B重合),連結(jié)DE,點(diǎn)A關(guān)于DE的對(duì)稱點(diǎn)為F,連結(jié)EF并延長交BC于點(diǎn)G,連接DG,過點(diǎn)E作⊥DE交DG的延長線于點(diǎn)H,連接,那么的值為()A.1 B. C. D.23、如圖,將矩形ABCD沿對(duì)角線AC翻折,點(diǎn)B落在點(diǎn)F處,F(xiàn)C交AD于點(diǎn)E.若AB=4,BC=8,則圖中陰影部分的面積為()A.8 B.10 C.12.5 D.7.54、勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,是數(shù)形結(jié)合的重要紐帶.?dāng)?shù)學(xué)家歐幾里得利用如圖驗(yàn)證了勾股定理:以直角三角形ABC的三條邊為邊長向外作正方形ACHI,正方形ABED,正方形BCGF,連接BI,CD,過點(diǎn)C作CJ⊥DE于點(diǎn)J,交AB于點(diǎn)K.設(shè)正方形ACHI的面積為S1,正方形BCGF的面積為S2,長方形AKJD的面積為S3,長方形KJEB的面積為S4,下列結(jié)論:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)5、如圖所示,在矩形ABCD中,已知AE⊥BD于E,∠DBC=30°,BE=1cm,則AE的長為()A.3cm B.2cm C.2cm D.cm第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在正方形紙片ABCD中,E是CD的中點(diǎn),將正方形紙片折疊,點(diǎn)B落在線段AE上的點(diǎn)G處,折痕為AF.若,則CF的長為_____.2、如圖,在長方形ABCD中,.在DC上找一點(diǎn)E,沿直線AE把折疊,使D點(diǎn)恰好落在BC上,設(shè)這一點(diǎn)為F,若的面積是54,則的面積=______________.3、在五邊形紙片ABCDE中,AB=2,∠A=120°,將五邊形紙片ABCDE沿BD折疊,點(diǎn)C落在點(diǎn)P處;在AE上取一點(diǎn)Q,將ABQ,EDQ分別沿BQ,DQ折疊,點(diǎn)A,E恰好落在點(diǎn)P處,如圖1.(1)∠BPQ=______°;(2)∠BCD+∠QED=_______°;(3)如圖2,當(dāng)四邊形BCDP是菱形,且Q,P,C三點(diǎn)共線時(shí),BQ=_______.4、已知如圖,點(diǎn)E,F(xiàn)分別在正方形的邊,上,,若,,則_________.5、如圖,在平行四邊形ABCD中,,E、F分別在CD和BC的延長線上,,,則______.三、解答題(5小題,每小題10分,共計(jì)50分)1、(閱讀材料)材料一:我們在小學(xué)學(xué)習(xí)過正方形,知道:正方形的四條邊都相等,四個(gè)角都是直角;材料二:如圖1,由一個(gè)等腰直角三角形和一個(gè)正方形組成的圖形,我們要判斷等腰直角三角形的面積與正方形的面積的大小關(guān)系,可以這樣做:如圖2,連接AC,BD,把正方形分成四個(gè)與等腰三角形ADE全等的三角形,所以.(解決問題)如圖3,圖中由三個(gè)正方形組成的圖形(1)請你直接寫出圖中所有的全等三角形;(2)任意選擇一組全等三角形進(jìn)行證明;(3)設(shè)圖中兩個(gè)小正方形的面積分別為S1和S2,若,求S1和S2的值.2、△ABC和△GEF都是等邊三角形.問題背景:如圖1,點(diǎn)E與點(diǎn)C重合且B、C、G三點(diǎn)共線.此時(shí)△BFC可以看作是△AGC經(jīng)過平移、軸對(duì)稱或旋轉(zhuǎn)得到.請直接寫出得到△BFC的過程.遷移應(yīng)用:如圖2,點(diǎn)E為AC邊上一點(diǎn)(不與點(diǎn)A,C重合),點(diǎn)F為△ABC中線CD上一點(diǎn),延長GF交BC于點(diǎn)H,求證:.聯(lián)系拓展:如圖3,AB=12,點(diǎn)D,E分別為AB、AC的中點(diǎn),M為線段BD上靠近點(diǎn)B的三等分點(diǎn),點(diǎn)F在射線DC上運(yùn)動(dòng)(E、F、G三點(diǎn)按順時(shí)針排列).當(dāng)最小時(shí),則△MDG的面積為_______.3、如圖,在?ABCD中,對(duì)角線AC,BD交于點(diǎn)O,E是BD延長線上一點(diǎn),且△ACE是等邊三角形.(1)求證:四邊形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四邊形ABCD的面積.4、如圖,ABCD是平行四邊形,AD=4,AB=5,點(diǎn)A的坐標(biāo)為(-2,0),求點(diǎn)B、C、D的坐標(biāo).5、如圖,四邊形ABCD是菱形,DE⊥AB、DF⊥BC,垂足分別為E、F.求證:BE=BF.-參考答案-一、單選題1、B【解析】【分析】先畫出圖形,再根據(jù)三角形中位線定理得到所得四邊形的對(duì)邊平行且相等,那么其必為平行四邊形,然后根據(jù)鄰邊互相垂直得出四邊形是矩形.【詳解】解:如圖,∵、、、分別是、、、的中點(diǎn),∴,,,∴四邊形是平行四邊形,∵,∴,∴平行四邊形是矩形,又與不一定相等,與不一定相等,矩形不一定是正方形,故選:B.【點(diǎn)睛】本題考查了三角形中位線定理、矩形的判定等知識(shí)點(diǎn),熟練掌握三角形中位線定理是解題關(guān)鍵.2、B【解析】【分析】作輔助線,構(gòu)建全等三角形,證明△DAE≌△ENH,得AE=HN,AD=EN,再說明△BNH是等腰直角三角形,可得結(jié)論.【詳解】解:如圖,在線段AD上截取AM,使AM=AE,,∵AD=AB,∴DM=BE,∵點(diǎn)A關(guān)于直線DE的對(duì)稱點(diǎn)為F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH(SAS),∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴,∴,即=.故選:B.【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定定理和性質(zhì)定理,等知識(shí),解決本題的關(guān)鍵是作出輔助線,利用正方形的性質(zhì)得到相等的邊和相等的角,證明三角形全等.3、B【解析】【分析】利用折疊的性質(zhì)可得∠ACF=∠ACB,由AD∥BC,可得出∠CAD=∠ACB,進(jìn)而可得出AE=CE,根據(jù)矩形性質(zhì)可得AB=CD=4,BC=AD=8,∠D=90°,設(shè)AE=CE=x,則ED=8﹣x,在Rt△CDE中,利用勾股定理可求出x的值,再利用三角形的面積公式即可求出△ACE的面積,則可得出答案.【詳解】解:由折疊的性質(zhì),∠ACF=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACF,∴AE=CE.∵四邊形ABCD為矩形,∴AB=CD=4,BC=AD=8,∠D=90°,設(shè)AE=CE=x,則ED=8﹣x,在Rt△CDE中,根據(jù)勾股定理得,即42+(8﹣x)2=x2,∴x=5,∴圖中陰影部分的面積=S△ACEAE?AB=×5×4=10.故選:B【點(diǎn)睛】本題考查了翻折變換、矩形的性質(zhì)、勾股定理以及三角形的面積,利用勾股定理求出AE的長是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)SAS證△ABI≌△ADC即可得證①正確,過點(diǎn)B作BM⊥IA,交IA的延長線于點(diǎn)M,根據(jù)邊的關(guān)系得出S△ABI=S1,即可得出②正確,過點(diǎn)C作CN⊥DA交DA的延長線于點(diǎn)N,證S1=S3即可得證③正確,利用勾股定理可得出S1+S2=S3+S4,即能判斷④不正確.【詳解】解:①∵四邊形ACHI和四邊形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,即∠IAB=∠CAD,在△ABI和△ADC中,,∴△ABI≌△ADC(SAS),∴BI=CD,故①正確;②過點(diǎn)B作BM⊥IA,交IA的延長線于點(diǎn)M,∴∠BMA=90°,∵四邊形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四邊形AMBC是矩形,∴BM=AC,∵S△ABI=AI?BM=AI?AC=AC2=S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=S1,即2S△ACD=S1,故②正確;③過點(diǎn)C作CN⊥DA交DA的延長線于點(diǎn)N,∴∠CNA=90°,∵四邊形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD?AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四邊形AKCN是矩形,∴CN=AK,∴S△ACD=AD?CN=AD?AK=S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正確;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,∴,故④錯(cuò)誤;綜上,共有3個(gè)正確的結(jié)論,故選:C.【點(diǎn)睛】本題主要考查勾股定理,正方形的性質(zhì),矩形性質(zhì),全等三角形的判定和性質(zhì)等知識(shí),熟練掌握勾股定理和全等三角形的判定和性質(zhì)是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)矩形和直角三角形的性質(zhì)求出∠BAE=30°,再根據(jù)直角三角形的性質(zhì)計(jì)算即可.【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=90°,∠BDA=∠DBC=30°,∵AE⊥BD,∴∠DAE=60°,∴∠BAE=30°,在Rt△ABE中,∠BAE=30°,BE=1cm,∴AB=2cm,∴AE=(cm),故選:D.【點(diǎn)睛】本題考查了矩形的性質(zhì),含30度角的直角三角形的性質(zhì),熟記各圖形的性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.二、填空題1、【解析】【分析】設(shè)BF=x,則FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,從而得到關(guān)于x的方程,求解x即可.【詳解】解:設(shè)BF=x,則FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根據(jù)折疊的性質(zhì)可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=﹣2,∴CF=4-(﹣2),故答案為:6-2.【點(diǎn)睛】本題主要考查了正方形的性質(zhì)及翻轉(zhuǎn)折疊的性質(zhì),勾股定理,拓展一元一次方程,準(zhǔn)確運(yùn)用題目中的條件表示出EF列出方程式解題的關(guān)鍵.2、6【解析】【分析】根據(jù)三角形的面積求出BF,利用勾股定理列式求出AF,再根據(jù)翻折變換的性質(zhì)可得AD=AF,然后求出CF,設(shè)DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面積公式解答即可.【詳解】解:∵四邊形ABCD是矩形∴AB=CD=9,BC=AD∵?AB?BF=54,∴BF=12.在Rt△ABF中,AB=9,BF=12,由勾股定理得,.∴BC=AD=AF=15,∴CF=BC-BF=15-12=3.設(shè)DE=x,則CE=9-x,EF=DE=x.則x2=(9-x)2+32,解得,x=5.∴DE=5.∴EC=DC-DE=9-5=4.∴△FCE的面積=×4×3=6.【點(diǎn)睛】本題考查了翻折變換的性質(zhì),矩形的性質(zhì),三角形的面積,勾股定理,熟記各性質(zhì)并利用勾股定理列出方程是解題的關(guān)鍵.3、120240【解析】【分析】(1)由折疊的性質(zhì)可得∠A=∠BPQ=120°;(2)由周角的性質(zhì)可得∠BPD+∠QPD+∠BPQ=360°,即可求解;(3)由菱形的性質(zhì)可得BQ=QD,QH⊥BD,BH=DH,由“SSS”可證△ABQ≌△EDQ,可得∠AQB=∠BQP=∠EQD=∠PQD=45°,由直角三角形的性質(zhì)可求解.【詳解】解:(1)∵將五邊形紙片ABCDE沿BD折疊,∴∠A=∠BPQ=120°,∠QED=∠QPD,∠BCD=∠BPD,故答案為:120;(2)∵∠BPD+∠QPD+∠BPQ=360°,∴∠BPD+∠QPD=240°,∴∠BCD+∠QED=240°,故答案為:240;(3)如圖,連接PC,交BD于H,∵四邊形BPDC是菱形,∴PC是BD的垂直平分線,BP=PD=BC=CD,∵Q,P,C三點(diǎn)共線,∴QC是BD的垂直平分線,∴BQ=QD,QH⊥BD,BH=DH,由折疊可知:∠A=∠BPQ=120°,AB=BP=2=DE=DP,∠AQB=∠BQP,∠EQD=∠PQD,AQ=QP=QE,∴∠BPH=60°,∴∠PBH=30°,∴PHBP=1,BHPH,在△ABQ和△EDQ中,,∴△ABQ≌△EDQ(SSS),∴∠AQB=∠EQD,∴∠AQB=∠BQP=∠EQD=∠PQD,∵∠AQE=180°,∴∠AQB=∠BQP=∠EQD=∠PQD=45°,∴∠QBH=∠BQP=45°,∴BH=QH,∴BQBH,故答案為:.【點(diǎn)睛】本題考查了翻折變換,菱形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形的性質(zhì)等知識(shí),掌握折疊的性質(zhì)是解題的關(guān)鍵.4、14【解析】【分析】過點(diǎn)作的垂線,交延長線于點(diǎn),先根據(jù)正方形的性質(zhì)、三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)即可得出答案.【詳解】解:如圖,過點(diǎn)作的垂線,交延長線于點(diǎn),四邊形是正方形,,,,,,在和中,,,,,,又,,在和中,,,,故答案為:14.【點(diǎn)睛】本題考查了正方形的性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),通過作輔助線,構(gòu)造全等三角形是解題關(guān)鍵.5、8【解析】【分析】證明四邊形ABDE是平行四邊形,得到DE=CD=,,過點(diǎn)E作EH⊥BF于H,證得CH=EH,利用勾股定理求出EH,再根據(jù)30度角的性質(zhì)求出EF.【詳解】解:∵四邊形ABCD是平行四邊形,∴,AB=CD,∵,∴四邊形ABDE是平行四邊形,∴DE=CD=,,過點(diǎn)E作EH⊥BF于H,∵,∴∠ECH=,∴CH=EH,∵,,∴CH=EH=4,∵∠EHF=90°,,∴EF=2EH=8,故答案為:8.【點(diǎn)睛】此題考查了平行四邊形的判定及性質(zhì),勾股定理,直角三角形30度角的性質(zhì),熟記各知識(shí)點(diǎn)并應(yīng)用解決問題是解題的關(guān)鍵.三、解答題1、(1);;;(2)證明;證明見解析;(3),【分析】(1)根據(jù)圖形可得出三對(duì)全等三角形;(2)根據(jù)正方形的性質(zhì)及全等三角形的判定定理對(duì)(1)中全等三角形依次證明即可;(3)連接BG,由材料二可得,被分成4個(gè)面積相等的等腰直角三角形,即可得出;連接HJ,KI,過點(diǎn)H作HM⊥AD于點(diǎn)M,過點(diǎn)I作IN⊥CD于點(diǎn)N,則被分為9個(gè)面積相等的等腰直角三角形,即可得出.【詳解】解:(1);;(2)證明;由題意得,在正方形ABCD中,∵,,在和中;證明:;由題意得,在正方形HIJK中,,,∵AC為正方形ABCD的對(duì)角線,∴,在和中,∴;證明:由題意得,在正方形EBFG中,,,∵AC為正方形ABCD的對(duì)角線,∴,在和中,∴;(3)如圖,連接BG,由材料二可得,被分成4個(gè)面積相等的等腰直角三角形,.∴連接HJ,KI,過點(diǎn)H作HM⊥AD于點(diǎn)M,過點(diǎn)I作IN⊥CD于點(diǎn)N,則被分為9個(gè)面積相等的等腰直角三角形,∴.∴,.【點(diǎn)睛】題目主要考查正方形的性質(zhì)、全等三角形的判定定理及對(duì)題意的理解能力,熟練掌握全等三角形的判定定理及理解題意是解題關(guān)鍵.2、(1)以點(diǎn)C為旋轉(zhuǎn)中心將逆時(shí)針旋轉(zhuǎn)就得到;(2)見解析;(3).【分析】(1)只需要利用SAS證明△BCF≌△ACG即可得到答案;(2)法一:以為邊作,與的延長線交于點(diǎn)K,如圖,先證明,然后證明,得到,則,過點(diǎn)F作FM⊥BC于M,求出,即可推出,則,即:;法二:過F作,.先證明△FCN≌△FCM得到CM=CN,利用勾股定理和含30度角的直角三角形的性質(zhì)求出,再證明得到,則;(3)如圖3-1所示,連接,GM,AG,先證明△ADE是等邊三角形,得到DE=AE,即可證明得到,即點(diǎn)G在的角平分線所在直線上運(yùn)動(dòng).過G作,則,最小即是最小,故當(dāng)M、G、P三點(diǎn)共線時(shí),最?。蝗鐖D3-2所示,過點(diǎn)G作GQ⊥AB于Q,連接DG,求出DM和QG的長即可求解.【詳解】(1)∵△ABC和△GEF都是等邊三角形,∴BC=AC,CF=CG,∠ACB=∠FCG=60°,∴∠ACB+∠ACF=∠FCG+∠ACF,∴∠FCB=∠GCA,∴△BCF≌△ACG(SAS),∴△BFC可以看作是△AGC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60度所得;(2)法一:證明:以為邊作,與的延長線交于點(diǎn)K,如圖,∵和均為等邊三角形,∴,∠GFE=60°,∴,∴∠EFH+∠ACB=180°,∴,∵,∴.∵是等邊的中線,∴,∴,∴∴.在與中,∴,∴,∴,過點(diǎn)F作FM⊥BC于M,∴KM=CM,∵∠K=30°,∴∴,∴,∴,即:;法二證明:過F作,.∴是等邊的中線,∴,,∴△FCN≌△FCM(AAS),F(xiàn)C=2FN,∴CM=CN,,同法一,.在與中,∴∴,∴;(3)如圖3-1所示,連接,GM,AG,∵D,E分別是AB,AC的中點(diǎn),∴DE是△ABC的中位線,CD⊥AB,∴DE∥BC,∠CDA=90°,∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°,∴△ADE是等邊三角形,∠FDE=30°,∴DE=AE,∵△GEF是等邊三角形,∴EF=EG,∠GEF=60°,∴∠AEG=∠AED+∠DEG=∠FEG+∠DEG=∠FED,∴∴,即點(diǎn)G在的角平分線所在直線上運(yùn)動(dòng).過G作,則,∴最小即是最小,∴當(dāng)M、G、P三點(diǎn)共線時(shí),最小如圖3-2所示,過點(diǎn)G作GQ⊥AB于Q,連接DG,∴QG=PG,∵∠MAP=60°,∠MPA=90°,∴∠AMP=30°,∴AM=2AP,∵D是AB的中點(diǎn),AB=12,∴AD=BD=6,∵M(jìn)是BD靠近B點(diǎn)的三等分點(diǎn),∴MD=4,∴AM=10,∴AP=5,又∵∠PAG=30°,∴AG=2GP,∵,∴∴∴.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì)與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《音階歌(唱游、發(fā)現(xiàn))》教學(xué)設(shè)計(jì)-2025-2026學(xué)年接力版(新教材)小學(xué)音樂一年級(jí)下冊
- 甲殼類養(yǎng)殖工安全實(shí)操測試考核試卷含答案
- 氣體凈化工崗前理論技能考核試卷含答案
- 碾泥工安全檢查測試考核試卷含答案
- 我國上市公司治理結(jié)構(gòu)的理性構(gòu)建之路
- 我國上市公司并購重組盈利補(bǔ)償機(jī)制:實(shí)踐、問題與優(yōu)化路徑
- 丁苯橡膠裝置操作工安全應(yīng)急知識(shí)考核試卷含答案
- 苗木培育工崗前安全理論考核試卷含答案
- 鎢絞絲加熱子制造工安全綜合考核試卷含答案
- 水工混凝土維修工達(dá)標(biāo)能力考核試卷含答案
- 淮安市2023-2024學(xué)年七年級(jí)上學(xué)期期末歷史試卷(含答案解析)
- 完整工資表模板(帶公式)
- 家長要求學(xué)校換老師的申請書
- 奇瑞汽車QC小組成果匯報(bào)材料
- 闌尾腫瘤-課件
- CTT2000LM用戶手冊(維護(hù)分冊)
- 川2020J146-TJ 建筑用輕質(zhì)隔墻條板構(gòu)造圖集
- 正式員工派遣單
- 新員工入職申請表模板
- 中外新聞事業(yè)史課程教學(xué)大綱
- LY/T 1357-2008歧化松香
評(píng)論
0/150
提交評(píng)論