難點解析-人教版8年級數學下冊《平行四邊形》同步測評試題(含答案解析)_第1頁
難點解析-人教版8年級數學下冊《平行四邊形》同步測評試題(含答案解析)_第2頁
難點解析-人教版8年級數學下冊《平行四邊形》同步測評試題(含答案解析)_第3頁
難點解析-人教版8年級數學下冊《平行四邊形》同步測評試題(含答案解析)_第4頁
難點解析-人教版8年級數學下冊《平行四邊形》同步測評試題(含答案解析)_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數學下冊《平行四邊形》同步測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、平行四邊形中,,則的度數是()A. B. C. D.2、在平行四邊形ABCD中,∠A=30°,那么∠B與∠A的度數之比為()A.4:1 B.5:1 C.6:1 D.7:13、如圖,將矩形紙片按如圖所示的方式折疊,得到菱形,若,則的長為()A.2 B. C.4 D.4、菱形ABCD的對角線AC,BD相交于點O,E,F分別是AD,CD邊上的中點,連接EF.若EF=,BD=2,則菱形ABCD的面積為()A.2 B. C.6 D.85、下面四個命題:①直角三角形的兩邊長為3,4,則第三邊長為5;②,③對角線相等且互相垂直的四邊形是正方形;④若四邊形中,ADBC,且,則四邊形是平行四邊形.其中正確的命題的個數為()A.0 B.1 C.2 D.3第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在正方形紙片ABCD中,E是CD的中點,將正方形紙片折疊,點B落在線段AE上的點G處,折痕為AF.若,則CF的長為_____.2、如圖,△ABC中,AC=BC=3,AB=2,將它沿AB翻折得到△ABD,點P、E、F分別為線段AB、AD、DB上的動點,則PE+PF的最小值是_____.3、如圖,每個小正方形的邊長都為1,△ABC是格點三角形,點D為AC的中點,則線段BD的長為_____.4、如圖,正方形ABCD的邊長為做正方形,使A,B,C,D是正方形各邊的中點;做正方形,使是正方形各邊的中點……以此類推,則正方形的邊長為__________.5、如圖,在平面直角坐標系中,點A,B,C的坐標分別為(8,0),(8,6),(0,6),點D為線段BC上一動點,將△OCD沿OD翻折,使點C落到點E處.當B,E兩點之間距離最短時,點D的坐標為____.三、解答題(5小題,每小題10分,共計50分)1、如圖,四邊形ABCD為平行四邊形,∠BAD的平分線AF交CD于點E,交BC的延長線于點F.點E恰是CD的中點.求證:(1)△ADE≌△FCE;(2)BE⊥AF.2、如圖,正方形網格中每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.試畫出一個頂點都在格點上,且面積為10的正方形.3、如圖,在正方形ABCD中,DF=AE,AE與DF相交于點O.(1)求證:△DAF≌△ABE;(2)求∠AOD的度數.4、如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,過點A作射線l∥BC,若點P從點A出發(fā),以每秒2cm的速度沿射線l運動,設運動時間為t秒(t>0),作∠PCB的平分線交射線l于點D,記點D關于射線CP的對稱點是點E,連接AE、PE、BP.(1)求證:PC=PD;(2)當△PBC是等腰三角形時,求t的值;(3)是否存在點P,使得△PAE是直角三角形,如果存在,請直接寫出t的值,如果不存在,請說明理由.5、如圖,△ABC中,點D是邊AC的中點,過D作直線PQ∥BC,∠BCA的平分線交直線PQ于點E,點G是△ABC的邊BC延長線上的點,∠ACG的平分線交直線PQ于點F.求證:四邊形AECF是矩形.-參考答案-一、單選題1、B【解析】【分析】根據平行四邊形對角相等,即可求出的度數.【詳解】解:如圖所示,∵四邊形是平行四邊形,∴,∴,∴.故:B.【點睛】本題考查了平行四邊形的性質,解題的關鍵是掌握平行四邊形的性質.2、B【解析】【分析】根據平行四邊形的性質先求出∠B的度數,即可得到答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故選B.【點睛】本題主要考查了平行四邊形的性質,解題的關鍵在于能夠熟練掌握平行四邊形鄰角互補.3、D【解析】【分析】根據菱形及矩形的性質可得到∠BAC的度數,從而根據直角三角形的性質求得BC的長.【詳解】解:∵四邊形AECF為菱形,∴∠FCO=∠ECO,EC=AE,由折疊的性質可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又∵EC=AE,AB=AE+EB=6,∴EB=2,EC=4,∴Rt△BCE中,,故選:D.【點睛】本題主要考查了菱形的性質以及矩形的性質,解決問題的關鍵是根據折疊以及菱形的性質發(fā)現特殊角,根據30°的直角三角形中各邊之間的關系求得BC的長.4、A【解析】【分析】根據中位線定理可得對角線AC的長,再由菱形面積等于對角線乘積的一半可得答案.【詳解】解:∵E,F分別是AD,CD邊上的中點,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面積S=×AC×BD=×2×2=2,故選:A.【點睛】本題主要考查菱形的性質與中位線定理,熟練掌握中位線定理和菱形面積公式是關鍵.5、B【解析】【分析】①直角三角形兩直角邊長為3,4,斜邊長為5;②x的取值范圍不同;③對角線相等且互相垂直平分的四邊形是正方形;④熟記平行四邊形的判定定理進行證明.【詳解】解:①3,4沒說是直角邊的長還是斜邊的長,故第三邊答案不唯一,故①錯誤.②等式左邊的值小于0,等式右邊的值大于或等于0,故②錯誤.③必須加上平分這個條件,否則不會是正方形,故③錯誤.④延長CB至E,使BE=AB,延長AD至F,使DF=DC,則四邊形ECFA是平行四邊形,∴∠E=∠F,由∠ABC=2∠E,∠ADC=2∠F,知∠ABC=∠ADC,又AD∥BC,故∠ABC+∠BAD=180°,即∠ADC+∠BAD=180°,∴AB∥CD,四邊形ABCD是平行四邊形.故④正確.故選:B.【點睛】本題考查判斷命題正誤的能力以及掌握勾股定理,正方形的判定定理,平行四邊形的判定定理以及化簡代數式注意取值范圍等.二、填空題1、【解析】【分析】設BF=x,則FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,從而得到關于x的方程,求解x即可.【詳解】解:設BF=x,則FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根據折疊的性質可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=﹣2,∴CF=4-(﹣2),故答案為:6-2.【點睛】本題主要考查了正方形的性質及翻轉折疊的性質,勾股定理,拓展一元一次方程,準確運用題目中的條件表示出EF列出方程式解題的關鍵.2、##【解析】【分析】首先證明四邊四邊形ABCD是菱形,作出F關于AB的對稱點M,再過M作ME′⊥AD,交AB于點P′,此時P′E′+P′F最小,求出ME即可.【詳解】解:作出F關于AB的對稱點M,再過M作ME′⊥AD,交AB于點P′,此時P′E′+P′F最小,此時P′E′+P′F=ME′,過點A作AN⊥BC,CH⊥AB于H,∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四邊形ADBC是菱形,∵AD∥BC,∴ME′=AN,∵AC=BC,∴AH=AB=1,由勾股定理可得,CH=,∵×AB×CH=×BC×AN,可得AN=,∴ME′=AN=,∴PE+PF最小為.故答案為:.【點睛】本題考查翻折變換,等腰三角形的性質,軸對稱?最短問題等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.3、##【解析】【分析】根據勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判斷出△ABC是直角三角形,然后根據直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:,,,,∴∠ABC=90°,∵點D為AC的中點,∴BD為AC邊上的中線,∴BD=AC,故答案為:【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,勾股定理,勾股定理逆定理的應用,判斷出△ABC是直角三角形是解題的關鍵.4、【解析】【分析】利用正方形ABCD的及勾股定理,求出的長,再根據勾股定理求出和的長,找出規(guī)律,即可得出正方形的邊長.【詳解】解:∵A,B,C,D是正方形各邊的中點∴,∵正方形ABCD的邊長為,即AB=,∴,解得:,∴==2,同理==2,==4…,∴,∴=,∴的邊長為故答案為:.【點睛】本題考查了正方形性質、勾股定理的應用,解此題的關鍵是能根據計算結果得出規(guī)律,本題具有一定的代表性,是一道比較好的題目.5、(3,6)【解析】【分析】連接OB,證得當O、E、B在同一直線上時,BE取得最小值,再利用勾股定理構造方程求解即可.【詳解】解:連接OB,∵點A,B,C的坐標分別為(8,0),(8,6),(0,6),∴OA=8,AB=6,BC=8,OC=6,∵∠COA=90°,∴四邊形OABC為矩形,OB=,由折疊的性質知:OC=OE=6,CD=DE,∴BEOB-OE=10-6=4,∴當O、E、B在同一直線上時,BE取得最小值,此時BE=4,∠DEB=90°,設CD=DE=x,則BD=8-x,∵,解得:x=3,即CD=3,∴點D的坐標為(3,6).【點睛】本題考查了矩形的判定和性質,坐標與圖形,折疊的性質,勾股定理,解題的關鍵是學會利用參數構建方程解決問題,三、解答題1、(1)見解析;(2)見解析.【分析】(1)由平行四邊形的性質得出AD∥BC,得出∠D=∠ECF,則可證明△ADE≌△FCE(ASA);(2)由平行四邊形的性質證出AB=BF,由全等三角形的性質得出AE=FE,由等腰三角形的性質可得出結論.【詳解】證明:(1)∵四邊形ABCD為平行四邊形,∴AD∥BC,∴∠D=∠ECF,∵E為CD的中點,∴ED=EC,在△ADE和△FCE中,,∴△ADE≌△FCE(ASA);(2)∵四邊形ABCD為平行四邊形,∴AB=CD,AD∥BC,∴∠FAD=∠AFB,又∵AF平分∠BAD,∴∠FAD=∠FAB.∴∠AFB=∠FAB.∴AB=BF,∵△ADE≌△FCE,∴AE=FE,∴BE⊥AF.【點睛】本題主要考查了平行四邊形的性質,全等三角形的性質與判定,角平分線的定義,等腰三角形的性質與判定,熟知相關知識是解題的關鍵.2、見解析【分析】根據正方形的面積為10,可得其邊長為,據此可得正方形DEFG.【詳解】解:由勾股定理可得:如圖所示,四邊形DEFG即為所求.

【點睛】本題主要考查了應用與設計作圖以及勾股定理的運用,首先要理解題意,弄清問題中對所作圖形的要求,結合對應幾何圖形的性質和基本作圖的方法作圖.3、(1)見解析;(2)90°【分析】(1)利用正方形的性質得出AD=AB,∠DAB=∠ABC=90°,再證明Rt△DAF≌Rt△ABE即可得出結論;

(2)利用(1)的結論得出∠ADF=∠BAE,進而求出∠BAE+∠DFA=90°,最后用三角形的內角和定理即可得出結論.【詳解】(1)證明:∵四邊形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在Rt△DAF和Rt△ABE中,,∴Rt△DAF≌Rt△ABE(HL),即△DAF≌△ABE.(2)解:由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DFA=∠BAE+∠DFA=∠DAB=90°,∴∠AOD=180°﹣(∠BAE+∠DFA)=90°.【點睛】本題主要考查了正方形的性質,全等三角形的判定和性質,三角形的內角和定理,判斷出Rt△DAF≌Rt△ABE是解本題的關鍵.4、(1)見解析;(2)t=1或或;(3)存在,△PAE是直角三角形時t=或【分析】(1)根據平行線的性質可得∠PDC=∠∠BCD,根據角平分線的定義可得∠PCD=∠BCD,則∠PCD=∠PDC,即可得到PC=PD;(2)分當BP=BC=4cm時,當PC=BC=4cm時,當PC=PB時三種情況討論求解即可;(3)分當∠PAE=90°時,當∠APE=90°時,當∠AEP=90°時,三種情況討論求解即可.【詳解】解:(1)∵l∥BC,∴∠PDC=∠∠BCD,∵CD平分∠BCP,∴∠PCD=∠BCD,∴∠PCD=∠PDC,∴PC=PD;(2)在△ABC中,∠ACB=90°,,,∴,

若△PBC是等腰三角形,存在以下三種情況:①當BP=BC=4cm時,作PH⊥BC于H,∵∠ACB=90°,l∥BC,∴∠ACH=∠CAP=90°,∴四邊形ACHP是矩形,∴PH=AC=3cm,由勾股定理∴,∴,即,解得,②當PC=BC=4cm時,由勾股定理,即,解得;③當PC=PB時,P在BC的垂直平分線上,∴CH=BC=2cm,∴同理可得AP=CH=2cm,即2t=2,解得t=1,綜上所述,當t=1或或時,△PBC是等腰三角形;(3)∵D關于射線CP的對稱點是點E,∴PD=PE,∠ECP=∠DCP,由(1)知,PD=PC,∴PC=PE,要使△PAE是直角三角形,則存在以下三種情況:①當∠PAE=90°時,此時點C、A、E在一條直線上,且AE=AC=3cm,∵CD平分∠BCP,∴∠ECP=∠DCP=∠BCD,∴∠ACP=∠ACB=30°,∴,∵,即,∴即2t=,解得;②當∠APE=90°時,∴∠EPD=90°∵D、E關于直線CP對稱,∴∠EPF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論