難點解析-人教版8年級數(shù)學上冊《全等三角形》專題練習試卷(含答案解析)_第1頁
難點解析-人教版8年級數(shù)學上冊《全等三角形》專題練習試卷(含答案解析)_第2頁
難點解析-人教版8年級數(shù)學上冊《全等三角形》專題練習試卷(含答案解析)_第3頁
難點解析-人教版8年級數(shù)學上冊《全等三角形》專題練習試卷(含答案解析)_第4頁
難點解析-人教版8年級數(shù)學上冊《全等三角形》專題練習試卷(含答案解析)_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《全等三角形》專題練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,已知∠ABC=∠DCB.添加一個條件后,可得△ABC≌△DCB,則在下列條件中,不能添加的是()A.AC=DB B.AB=DC C.∠A=∠D D.∠ABD=∠DCA2、如圖,在梯形中,,,,那么下列結論不正確的是()A. B.C. D.3、如圖,把沿線段折疊,使點落在點處;若,,,則的度數(shù)為(

)A. B. C. D.4、下列命題的逆命題一定成立的是(

)①對頂角相等;②同位角相等,兩直線平行;③全等三角形的周長相等;④能夠完全重合的兩個三角形全等.A.①②③ B.①④ C.②④ D.②5、如圖,在ABC和BDE中,點C在邊BD上,邊AC交邊BE于點F.若AC=BD,AB=ED,BC=BE,則∠ACB等于(

)A.∠EDB B.∠BED C.∠AFB D.2∠ABF第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、在△ABC中,∠C=90°,AD是△ABC的角平分線,BC=6、AC=8、AB=10,則點D到AB的距離為_______.2、如圖,△ABC中,AB=BC,∠ABC=90°,F(xiàn)為AB延長線上一點,點E在BC上,且AE=CF,若∠BAE=25°,則∠ACF=__________度.3、如圖,△ABC中,∠ACB=90°,AC=12,BC=16.點P從A點出發(fā)沿A—C—B路徑向終點運動,終點為B點;點Q從B點出發(fā)沿B—C—A路徑向終點運動,終點為A點.點P和Q分別以2和6的運動速度同時開始運動,兩點都要到相應的終點時才能停止運動,在某時刻,分別過P和Q作PE⊥l于E,QF⊥l于F.若要△PEC與△QFC全等,則點P的運動時間為_______.4、如圖所示的圖案是由全等的圖形拼成的,其中AD=0.5,BC=1,則AF=______.5、如圖,是一個中心對稱圖形,A為對稱中心,若,則________,________.三、解答題(5小題,每小題10分,共計50分)1、如圖,已知線段a、b和,用尺規(guī)作一個三角形,使.(要求:不寫已知、求作、作法、只畫圖,保留作圖痕跡)2、如圖,在△ABC中∠ABC=45°,AD⊥BC于點D,點E為AD上的一點,且BE=AC,延長BE交AC于點F,連接FD.(1)求證:△BED≌△ACD;(2)若FC=c,F(xiàn)B=b,求的值.(用含a,b的式子表示)3、(2019秋?九龍坡區(qū)校級月考)如圖.在四邊形ABCD中,∠B+∠ADC=180°,AB=AD,E、F分別是邊BC、CD延長線上的點,且∠EAF∠BAD,求證:EF=BE﹣FD.4、如圖,在中,AB=AC,D是BA延長線上一點,E是AC的中點,連接DE并延長,交BC于點M,∠DAC的平分線交DM于點F.求證:AF=CM.5、如圖,等腰三角形中,,.作于點,將線段繞著點順時針旋轉角后得到線段,連接.(1)求證:;(2)延長線段,交線段于點.求的度數(shù)(用含有的式子表示).-參考答案-一、單選題1、A【解析】【分析】先要確定現(xiàn)有已知在圖形上的位置,結合全等三角形的判定方法對選項逐一驗證,排除錯誤的選項.【詳解】解:∵∠ABC=∠DCB,∵BC=BC,A、添加AC=DB,不能得△ABC≌△DCB,符合題意;B、添加AB=DC,利用SAS可得△ABC≌△DCB,不符合題意;C、添加∠A=∠D,利用AAS可得△ABC≌△DCB,不符合題意;D、添加∠ABD=∠DCA,∴∠ACB=∠DBC,利用ASA可得△ABC≌△DCB,不符合題意;故選:A.【考點】本題主要考查三角形全等的判定,熟練掌握判定方法是解題的關鍵.2、A【解析】【分析】A、根據(jù)三角形的三邊關系即可得出A不正確;B、通過等腰梯形的性質結合全等三角形的判定與性質即可得出∠ADB=90°,從而得出B正確;C、由梯形的性質得出AB∥CD,結合角的計算即可得出∠ABC=60°,即C正確;D、由平行線的性質結合等腰三角形的性質即可得出∠DAC=∠CAB,即D正確.綜上即可得出結論.【詳解】A、∵AD=DC,∴AC<AD+DC=2CD,故A不正確;B、∵四邊形ABCD是等腰梯形,∴∠ABC=∠BAD,在△ABC和△BAD中,,∴△ABC≌△BAD(SAS),∴∠BAC=∠ABD,∵AB∥CD,∴∠CDB=∠ABD,∠ABC+∠DCB=180°,∵DC=CB,∴∠CDB=∠CBD=∠ABD=∠BAC,∵∠ACB=90°,∴∠CDB=∠CBD=∠ABD=30°,∴∠ABC=∠ABD+∠CBD=60°,B正確,C、∵AB∥CD,∴∠DCA=∠CAB,∵AD=DC,∴∠DAC=∠DCA=∠CAB,C正確.D、∵△DAB≌△CBA,∴∠ADB=∠BCA.∵AC⊥BC,∴∠ADB=∠BCA=90°,∴DB⊥AD,D正確;故選:A.【考點】本題考查了梯形的性質、平行線的性質、等腰三角形的性質以及全等三角形的判定與性質,解題的關鍵是逐項分析四個選項的正誤.本題屬于中檔題,稍顯繁瑣,但好在該題為選擇題,只需由三角形的三邊關系得出A不正確即可.3、C【解析】【分析】由于折疊,可得三角形全等,運用三角形全等得出,利用平行線的性質可得出則即可求.【詳解】解:∵沿線段折疊,使點落在點處,∴,∴,∵,,∴,∵,∴,∴,故選:C.【考點】本題考查了全等三角形的性質及三角形內角和定理、平行線的性質;解題的關鍵是,理解折疊就是得到全等的三角形,根據(jù)全等三角形的對應角相等就可以解決.4、C【解析】【分析】求出各命題的逆命題,然后判斷真假即可.【詳解】解:①對頂角相等,逆命題為:相等的角為對頂角,是假命題不符合題意;②同位角相等,兩直線平行,逆命題為:兩直線平行,同位角相等,是真命題,符合題意;③全等三角形的周長相等.逆命題為:周長相等的兩個三角形全等,是假命題,不符合題意;④能夠完全重合的兩個三角形全等.逆命題為:兩個全等三角形能夠完全重合,是真命題,符合題意;故逆命題成立的是②④,故選C.【考點】本題主要考查命題與定理,熟悉掌握逆命題的求法是解本題的關鍵.5、C【解析】【分析】根據(jù)全等三角形的判定與性質可得=,再根據(jù)三角形外角的性質即可求得答案.【詳解】解:在和中,,,,是的外角,,∴,故選:C.【考點】本題考查了全等三角形的判定與性質以及三角形的外角性質,熟練掌握全等三角形的判定與性質是解決本題的關鍵.二、填空題1、或【解析】【分析】作DE⊥AB于E,如圖,先根據(jù)勾股定理計算出BC=8,再利用角平分線的性質得到DE=DC,設DE=DC=x,利用面積法得到10x=6(8-x),然后解方程即可.【詳解】解:作DE⊥AB于E,如圖,∵AD是△ABC的一條角平分線,DC⊥AC,DE⊥AB,∴DE=DC,設DE=DC=x,S△ABD=DE?AB=AC?BD,即10x=8(6-x),解得x=,即點D到AB邊的距離為.故答案為:.【考點】本題考查了角平分線的性質:角的平分線上的點到角的兩邊的距離相等,由已知能夠注意到D到AB的距離即為DE長是解決的關鍵.2、70【解析】【分析】先利用HL證明△ABE≌△CBF,可證∠BCF=∠BAE=25°,即可求出∠ACF=45°+25°=70°.【詳解】∵∠ABC=90°,AB=AC,∴∠CBF=180°-∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL),∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案為70.【考點】本題考查了等腰直角三角形的性質,全等三角形的判定與性質,熟練掌握全等三角形的判定與性質是解題的關鍵.3、1或3.5或12【解析】【分析】分4種情況求解:①P在AC上,Q在BC上,推出方程6-t=8-3t,②P、Q都在AC上,此時P、Q重合,得到方程6-t=3t-8,Q在AC上,③P在BC上,Q在AC時,此時不存在,④當Q到A點,與A重合,P在BC上時.【詳解】解:∵△PEC與△QFC全等,∴斜邊CP=CQ,有四種情況:①P在AC上,Q在BC上,,CP=12-2t,CQ=16-6t,∴12-2t=16-6t,∴t=1;②P、Q都在AC上,此時P、Q重合,∴CP=12-2t=6t-16,∴t=3.5;③P到BC上,Q在AC時,此時不存在;理由是:28÷6=,12÷2=6,即Q在AC上運動時,P點也在AC上運動;④當Q到A點(和A重合),P在BC上時,∵CP=CQ=AC=12.CP=12-2t,∴2t-12=12,∴t=12符合題意;答:點P運動1或3.5或12時,△PEC與△QFC全等.【考點】本題主要考查對全等三角形的性質,解一元一次方程等知識點的理解和掌握,能根據(jù)題意得出方程是解此題的關鍵.4、6【解析】【分析】由圖形知,所示的圖案是由梯形ABCD和七個與它全等的梯形拼接而成,根據(jù)全等則重合的性質求解即可.【詳解】解:由題可知,圖中有8個全等的梯形,所以AF=4AD+4BC=4×0.5+4×1=6.故答案為:6.【考點】考查了全等圖形的性質,本題利用了全等形圖形一定重合的性質求解,做題的關鍵是找準相互重合的對應邊.5、

30°

2【解析】【分析】根據(jù)中心對稱圖形的性質,得到,再由全等三角形的性質解題即可.【詳解】解:∵A為對稱中心,∴繞點A旋轉能與重合,∴,∴,,∴.【考點】本題考查中心對稱圖形的性質、全等三角形的性質等知識,是基礎考點,掌握相關知識是解題關鍵.三、解答題1、見解析【解析】【分析】先作,再以為圓心,分別以線段a、b長為半徑,畫弧與射線、交于點,即可.【詳解】解:先作,再以為圓心,分別以線段a、b長為半徑,畫弧與射線、交于點,連接,即為所求,如圖所示:【考點】本題考查了復雜作圖,利用了作一個角等于已知角,作線段等于已知線段,是基本作圖,需熟練掌握.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.2、(1)見解析(2)【解析】【分析】(1)利用得,又BE=AC,,因此可以通過HL定理證明;(2)作于點,作于點,由可得,利用即可求解.(1)證明:在△ABC中∠ABC=45°,AD⊥BC,,,,在和中,,,即.(2)解:如圖所示,作DG⊥BE于點G,作DH⊥AC于點H,由(1)知,,,,.【考點】本題考查全等三角形的判定和性質,以及三角形的面積公式,解題的關鍵是正確作出輔助線,由可得.3、詳見解析【解析】【分析】在BE上截取BG,使BG=DF,連接AG.根據(jù)SAS證明△ABG≌△ADF得到AG=AF,∠BAG=∠DAF,根據(jù)∠EAF∠BAD,可知∠GAE=∠EAF,可證明△AEG≌△AEF,EG=EF,那么EF=GE=BE﹣BG=BE﹣DF.【詳解】證明:在BE上截取BG,使BG=DF,連接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF∠BAD.∴∠GAE=∠EAF.在△AEG和△AEF中,,∴△AEG≌△AEF(SAS).∴EG=EF,∵EG=BE﹣BG∴EF=BE﹣FD.【考點】此題主要考查全等三角形的判定與性質,解題的關鍵是根據(jù)已知條件作出輔助線求解.4、證明見解析.【解析】【分析】先根據(jù)等腰三角形的性質可得,再根據(jù)三角形的外角性質可得,然后根據(jù)角平分線的定義得,最后根據(jù)三角形全等的判定定理與性質即可得證.【詳解】∵,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論