難點解析-京改版數(shù)學9年級上冊期末試卷【各地真題】附答案詳解_第1頁
難點解析-京改版數(shù)學9年級上冊期末試卷【各地真題】附答案詳解_第2頁
難點解析-京改版數(shù)學9年級上冊期末試卷【各地真題】附答案詳解_第3頁
難點解析-京改版數(shù)學9年級上冊期末試卷【各地真題】附答案詳解_第4頁
難點解析-京改版數(shù)學9年級上冊期末試卷【各地真題】附答案詳解_第5頁
已閱讀5頁,還剩30頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

京改版數(shù)學9年級上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、如果?ABC的各邊長都擴大為原來的3倍,那么銳角A的正弦、余弦值是(

)A.都擴大為原來的3倍 B.都縮小為原來的C.沒有變化 D.不能確定2、如圖,點A(2,t)在第一象限,OA與x軸所夾銳角為,tan=2,則t的值為(

)A.4 B.3 C.2 D.13、如圖,一個油桶靠在直立的墻邊,量得并且則這個油桶的底面半徑是()A. B. C. D.4、二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實數(shù)).其中結(jié)論正確的個數(shù)為(

)A.1個 B.2個 C.3個 D.4個5、由二次函數(shù),可知(

)A.其圖象的開口向下 B.其圖象的對稱軸為直線x=-3C.其最小值為1 D.當x<3時,y隨x的增大而增大6、二次函數(shù)y=x2+px+q,當0≤x≤1時,此函數(shù)最大值與最小值的差(

)A.與p、q的值都有關(guān) B.與p無關(guān),但與q有關(guān)C.與p、q的值都無關(guān) D.與p有關(guān),但與q無關(guān)二、多選題(7小題,每小題2分,共計14分)1、在△ABC中,∠C=90°,下列各式一定成立的是(

)A.a(chǎn)=b?cosA B.a(chǎn)=c?cosB C.c= D.a(chǎn)=b?tanA2、下表時二次函數(shù)y=ax2+bx+c的x,y的部分對應(yīng)值:…………則對于該函數(shù)的性質(zhì)的判斷中正確的是()A.該二次函數(shù)有最大值B.不等式y(tǒng)>﹣1的解集是x<0或x>2C.方程y=ax2+bx+c的兩個實數(shù)根分別位于﹣<x<0和2<x<之間D.當x>0時,函數(shù)值y隨x的增大而增大3、下列命題不正確的是(

)A.三角形的內(nèi)心到三角形三個頂點的距離相等B.三角形的內(nèi)心不一定在三角形的內(nèi)部C.等邊三角形的內(nèi)心,外心重合D.一個圓一定有唯一一個外切三角形4、如圖,,AD與BC相交于點O,那么在下列比例式中,不正確的是(

)A. B.C. D.5、已知,⊙的半徑為5,,某條經(jīng)過點的弦的長度為整數(shù),則該弦的長度可能為(

)A.4 B.6 C.8 D.106、如圖,AB是⊙O的直徑,CD是⊙O的切線,切點為D,CD與AB的延長線交于點C,∠A=30°,則下列結(jié)論中正確的是()A.AD=CD B.BD=BC C.AB=2BC D.∠ABD=60°7、如圖,AB為半圓O的直徑,AD、BC分別切⊙O于A、B兩點,CD切⊙O于點E,AD與CD相交于D,BC與CD相交于C,連接OD、OC,下列結(jié)論正確的是(

)A.AD+BC=CD B.∠DOC=90°C.S梯形ABCD=CD?OA D.OD2=DE?CD第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,BC的中點為D,將△ABC繞點C順時針旋轉(zhuǎn)任意一個角度得到△FEC,EF的中點為G,連接DG,在旋轉(zhuǎn)過程中,DG的最大值是________2、如果二次函數(shù)的圖像在它的對稱軸右側(cè)部分是上升的,那么的取值范圍是__________.3、若拋物線的圖像與軸有交點,那么的取值范圍是________.4、已知關(guān)于的一元二次方程,有下列結(jié)論:①當時,方程有兩個不相等的實根;②當時,方程不可能有兩個異號的實根;③當時,方程的兩個實根不可能都小于1;④當時,方程的兩個實根一個大于3,另一個小于3.以上4個結(jié)論中,正確的個數(shù)為_________.5、二次函數(shù)y=ax2+bx+c(a≠0)圖象上部分點的坐標(x,y)對應(yīng)值列表如下:x…-3-2-101…y…-4-3-4-7-12…則該圖象的對稱軸是___________6、我們用符號表示不大于的最大整數(shù).例如:,.那么:(1)當時,的取值范圍是______;(2)當時,函數(shù)的圖象始終在函數(shù)的圖象下方.則實數(shù)的范圍是______.7、如圖,在RT△ABC中,,點D是的中點,過點D作,垂足為點E,連接,若,,則________.四、解答題(6小題,每小題10分,共計60分)1、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動點P從點A開始沿AD邊向點D以1cm/s的速度運動,動點Q從點C開始沿CB邊向點B以2cm/s的速度運動.P、Q分別從點A、C同時出發(fā),當其中一個動點到達端點時,另一個動點也隨之停止運動,設(shè)運動時間為t(s).(1)當t為何值時,四邊形PQCD為平行四邊形?(2)當t為何值時,PQ與⊙O相切?2、二次函數(shù)與軸分別交于點和點,與軸交于點,直線的解析式為,軸交直線于點.(1)求二次函數(shù)的解析式;(2)為線段上一動點,過點且垂直于軸的直線與拋物線及直線分別交于點、.直線與直線交于點,當時,求值.3、某商場經(jīng)營某種品牌的玩具,購進的單價是30元,根據(jù)市場調(diào)查,在一段時間內(nèi),銷售單價是40元時,銷售量是600元,而銷售單價每漲1元,就會少售出10件玩具.(1)設(shè)該種品牌玩具的銷售單價為x元,請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲利利潤W元;(2)在(1)的條件下,若商場獲利了10000元銷售利潤,求該玩具銷售單價x應(yīng)定為多少元?(3)在(1)的條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于45元,且商場要完成不少于480件的銷售任務(wù),求商場銷售該品牌玩具獲利的最大利潤是多少元?4、如圖,Rt△ABO的頂點A是反比例函數(shù)的圖象與一次函數(shù)的圖象在第二象限的交點,AB⊥x軸于點B,且.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)求一次函數(shù)與反比例函數(shù)圖象的兩個交點A,C的坐標.5、已知有三條長度分別為2cm、4cm、8cm的線段,請再添一條線段.使這四條線段成比例,求所添線段的長度.6、如圖,一次函數(shù)y1=ax+b與反比例函數(shù)的圖象相交于A(2,8),B(8,2)兩點,連接AO,BO,延長AO交反比例函數(shù)圖象于點C.(1)求一次函數(shù)y1的表達式與反比例函數(shù)y2的表達式;(2)當y1<y2,時,直接寫出自變量x的取值范圍;(3)點P是x軸上一點,當時,請求出點P的坐標.-參考答案-一、單選題1、C【解析】【分析】根據(jù)相似三角形的判定定理、正弦、余弦的概念解答.【詳解】三角形各邊長度都擴大為原來的3倍,∴得到的三角形與原三角形相似,∴銳角A的大小不變,∴銳角A的正弦、余弦值不變,故選:C.【考點】三角形的形狀沒有改變,邊的比值沒有發(fā)生變化.2、A【解析】【分析】根據(jù)點A的坐標,利用銳角三角函數(shù)定義求出t的值即可.【詳解】如圖,過點A作AB⊥x軸與點B,∵點A在第一象限,坐標為(2,t),∴,在RT△AOB中,tan,則t=4,故選A.【考點】本題考查了三角函數(shù)的定義,熟練掌握定義即可求解.3、C【解析】【分析】根據(jù)切線的性質(zhì),連接過切點的半徑,構(gòu)造正方形求解即可.【詳解】如圖所示:設(shè)油桶所在的圓心為O,連接OA,OC,∵AB、BC與⊙O相切于點A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四邊形OABC是正方形,∴OA=AB=BC=OC=0.8m,故選:C.【考點】考查了切線的性質(zhì)和正方形的判定、性質(zhì),解題關(guān)鍵是理解和掌握切線的性質(zhì).4、C【解析】【分析】①由拋物線開口方向得到,對稱軸在軸右側(cè),得到與異號,又拋物線與軸正半軸相交,得到,可得出,選項①錯誤;②把代入中得,所以②正確;③由時對應(yīng)的函數(shù)值,可得出,得到,由,,,得到,選項③正確;④由對稱軸為直線,即時,有最小值,可得結(jié)論,即可得到④正確.【詳解】解:①∵拋物線開口向上,∴,∵拋物線的對稱軸在軸右側(cè),∴,∵拋物線與軸交于負半軸,∴,∴,①錯誤;②當時,,∴,∵,∴,把代入中得,所以②正確;③當時,,∴,∴,∵,,,∴,即,所以③正確;④∵拋物線的對稱軸為直線,∴時,函數(shù)的最小值為,∴,即,所以④正確.故選C.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次項系數(shù)決定拋物線的開口方向和大?。敃r,拋物線向上開口;當時,拋物線向下開口;一次項系數(shù)和二次項系數(shù)共同決定對稱軸的位置:當與同號時,對稱軸在軸左;當與異號時,對稱軸在軸右.常數(shù)項決定拋物線與軸交點:拋物線與軸交于.拋物線與軸交點個數(shù)由判別式確定:時,拋物線與軸有2個交點;時,拋物線與軸有1個交點;時,拋物線與軸沒有交點.5、C【解析】【分析】根據(jù)二次函數(shù)的性質(zhì),直接根據(jù)的值得出開口方向,再利用頂點坐標的對稱軸和增減性,分別分析即可.【詳解】解:由二次函數(shù),可知:.,其圖象的開口向上,故此選項錯誤;.其圖象的對稱軸為直線,故此選項錯誤;.其最小值為1,故此選項正確;.當時,隨的增大而減小,故此選項錯誤.故選:.【考點】此題主要考查了二次函數(shù)的性質(zhì),同學們應(yīng)根據(jù)題意熟練地應(yīng)用二次函數(shù)性質(zhì),這是中考中考查重點知識.6、D【解析】【分析】分別求出函數(shù)解析式的最小值、當0≤x≤1時端點值即:當x=0和x=1時的函數(shù)值.由二次函數(shù)性質(zhì)可知此函數(shù)最大值與最小值必是其中的兩個,通過比較可知差值與p有關(guān),但與q無關(guān)【詳解】解:依題意得:當時,端點值,當時,端點值,當時,函數(shù)最小值,由二次函數(shù)的最值性質(zhì)可知,當0≤x≤1時,此函數(shù)最大值和最小值是、、其中的兩個,所以最大值與最小值的差可能是或或,故其差只含p不含q,故與p有關(guān),但與q無關(guān)故選:.【考點】本題考查了二次函數(shù)的最值問題,掌握二次函數(shù)的性質(zhì)、靈活運用配方法是解題的關(guān)鍵.二、多選題1、BCD【解析】【分析】作出圖形,然后根據(jù)三角函數(shù)的定義對各選項分析判斷后利用排除法求解.【詳解】解:如圖,A、a=b?tanA,故選項A錯誤,不符合題意;B、a=c?cosB正確,故關(guān)系式一定成立;C、c=正確,故關(guān)系式一定成立;D、a=b?tanA正確,故關(guān)系式一定成立;故選BCD.【考點】本題考查銳角三角函數(shù)的定義及運用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.2、BC【解析】【分析】由圖表可得二次函數(shù)y=ax2+bx+c的對稱軸為直線x=1,a>0,即可判斷A,D不正確,由圖表可直接判斷B,C正確.【詳解】解:∵當x=0時,y=-1;當x=2時,y=-1;當x=,y=;當x=,y=;∴二次函數(shù)y=ax2+bx+c的對稱軸為直線x=1,x>1時,y隨x的增大而增大,x<1時,y隨x的增大而減?。郺>0即二次函數(shù)有最小值則A,D錯誤由圖表可得:不等式y(tǒng)>-1的解集是x<0或x>2;由圖表可得:方程ax2+bx+c=0的兩個實數(shù)根分別位于-<x<0和2<x<之間;所以選項B,C正確,故選:BC.【考點】本題考查了拋物線與x軸的交點,二次函數(shù)的性質(zhì),二次函數(shù)的最值,理解圖表中信息是本題的關(guān)鍵.3、ABD【解析】【分析】根據(jù)三角形內(nèi)心的定義和圓的外切三角形的定義判斷即可.【詳解】解:A、三角形的內(nèi)心是三個內(nèi)角平分線的交點,內(nèi)心到三角形三邊的距離相等,錯誤,該選項符合題意;B、三角形的內(nèi)心是三個內(nèi)角平分線的交點,三角形的內(nèi)心一定在三角形的內(nèi)部,錯誤,該選項符合題意;C、等邊三角形的內(nèi)心,外心重合,正確,該選項不符合題意;D、經(jīng)過圓上的三點作圓的切線,三條切線相交,即可得到圓的一個外切三角形,所以一個圓有無數(shù)個外切三角形,錯誤,該選項符合題意;故選:ABD.【考點】本題主要考查了內(nèi)心和外心以及命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的定義與定理.4、ABD【解析】【分析】先判斷三角形相似,再根據(jù)相似三角形的對應(yīng)邊成比例,則可判斷A、B、C的正確性,根據(jù)基本事實,一組平行線被兩條直線所截的對應(yīng)線段成比例,判斷D的正確性.【詳解】解:∵,∴∠A=∠D,∠B=∠C,∴,∴故A不正確;故B不正確;故C正確;∵,∴即故D不正確;故選:ABD.【考點】本題考查了相似三角形的判定和相似三角形的性質(zhì)以及基本事實的應(yīng)用,根據(jù)性質(zhì)找到對應(yīng)的邊成比例是解答此題的關(guān)鍵.5、CD【解析】【分析】過P作弦AB⊥OP,連接OA,根據(jù)垂徑定理求出AP=BP,根據(jù)勾股定理求出AP,再求出AB,再得出答案即可.【詳解】解:過P作弦AB⊥OP,連接OA,如圖,∵OA=5,OP=3,∴,∵OP⊥AB,OP過圓心O,∴AP=BP=4,即AB=4+4=8,∴過P點長度為整數(shù)的弦有4條,①過P點最短的弦的長度是8,②過P點最長的弦的長度是10,③還有兩條弦,長度是9,故答案為:CD.【考點】本題考查了勾股定理和垂徑定理,能熟記垂徑定理是解此題的關(guān)鍵.6、ABCD【解析】【分析】連接OD,CD是⊙O的切線,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等邊三角形,∠C=∠BDC=30°,再結(jié)合在直角三角形中300所對的直角邊等于斜邊的一半,繼而得到結(jié)論.【詳解】解:如圖,連接OD,∵CD是⊙O的切線,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,故選項D成立;∴△OBD是等邊三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,故選項B成立;∴AB=2BC,故選項C成立;∴∠A=∠C,∴DA=DC,故選項A成立;綜上所述,故選項ABCD均成立,故選:ABCD.【考點】本題考查了圓的有關(guān)性質(zhì)的綜合應(yīng)用,在本題中借用切線的性質(zhì),求得相應(yīng)角的度數(shù)是解題的關(guān)鍵.7、ABCD【解析】【分析】選項A:連接OE,利用切線長定理得到AD=ED,CE=CB,可得AD+BC=CD.選項B:OD、OC分別為角平分線,利用平角的定義及等式性質(zhì)得到∠COD為直角,選項C:由梯形的面積公式可知S梯形ABCD=(AD+BC)AB,再根據(jù)等量代換即可得出C選項正確.選項D:由上述分析可確定出三角形ODE與三角形COD相似,由相似得比例列出關(guān)系式,根據(jù)CD=DE+EC,等量代換得到AD+BC=CD,即可得到D正確.【詳解】解:連接OE,∵DA、DE為圓O的切線,∴AD=ED,∠AOD=∠EOD,∵CE、CB為圓O的切線,∴CE=CB,∠EOC=∠BOC,∴CD=DE+EC=AD+BC,∴選項A正確;∵∠AOD+∠DOE+∠EOC+∠BOC=180°,∴∠DOE+∠EOC=90°,即∠DOC=90°,∴選項B正確;∵S梯形ABCD=(AD+BC)AB,由上述解析可知CD=AD+BC,OA=AB,等量代換可得,S梯形ABCD=CD?OA∴選項C正確;∵OE⊥CD,∴∠OED=∠COD=90°,∵∠EDO=∠ODC,∴△DOE∽△DCO,∴,∴OD2=DE?CD,選項D正確;故答案為:ABCD.【考點】牢記切線的性質(zhì),相似三角形的判定與性質(zhì),熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.三、填空題1、6【解析】【分析】解直角三角形求出AB、BC,再求出CD,連接CG,根據(jù)直角三角形斜邊上的中線等于斜邊的一半求出CG,然后根據(jù)三角形的任意兩邊之和大于第三邊判斷出D、C、G三點共線時DG有最大值,再代入數(shù)據(jù)進行計算即可得解.【詳解】連接CG,∵BC的中點為D∵△ABC繞點C順時針旋轉(zhuǎn)任意一個角度得到△FEC,EF的中點為G由三角形的三邊關(guān)系得∴D、C、G三點共線時,DG有最大值故答案為:6.【考點】本題考查了旋轉(zhuǎn)三角形的問題,掌握旋轉(zhuǎn)的性質(zhì)、解直角三角形、三角形的三邊關(guān)系是解題的關(guān)鍵.2、【解析】【分析】由題意得:二次函數(shù)的圖像開口向上,進而,可得到答案.【詳解】∵二次函數(shù)的圖像在它的對稱軸右側(cè)部分是上升的,∴二次函數(shù)的圖像開口向上,∴.故答案是:【考點】本題主要考查二次函數(shù)圖象和二次函數(shù)的系數(shù)之間的關(guān)系,掌握二次函數(shù)的系數(shù)的幾何意義,是解題的關(guān)鍵.3、【解析】【分析】由拋物線的圖像與軸有交點可知,從而可求得的取值范圍.【詳解】解:∵拋物線的圖像與軸有交點∴令,有,即該方程有實數(shù)根∴∴.故答案是:【考點】本題考查了二次函數(shù)與軸的交點情況與一元二次方程分的情況的關(guān)系、解一元一次不等式,能由已知條件列出關(guān)于的不等式是解題的關(guān)鍵.4、①③④【解析】【分析】由根的判別式,根與系數(shù)的關(guān)系進行判斷,即可得到答案.【詳解】解:根據(jù)題意,∵一元二次方程,∴;∴當,即時,方程有兩個不相等的實根;故①正確;當,解得:,方程有兩個同號的實數(shù)根,則當時,方程可能有兩個異號的實根;故②錯誤;拋物線的對稱軸為:,則當時,方程的兩個實根不可能都小于1;故③正確;由,則,解得:或;故④正確;∴正確的結(jié)論有①③④;故答案為:①③④.【考點】本題考查了二次函數(shù)的性質(zhì),一元二次方程根的判別式,根與系數(shù)的關(guān)系,解題的關(guān)鍵是掌握所學的知識進行解題.5、【解析】【分析】根據(jù)二次函數(shù)的圖象具有對稱性和表格中的數(shù)據(jù),可以計算出該函數(shù)圖象的對稱軸.【詳解】解:由表格可得,當x取-3和-1時,y值相等,該函數(shù)圖象的對稱軸為直線,故答案為:.【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標特征,解題的關(guān)鍵是明確題意,利用二次函數(shù)的對稱性解答.6、

或【解析】【分析】(1)首先利用的整數(shù)定義根據(jù)不等式確定其整數(shù)取值范圍,繼而利用取整函數(shù)定義精確求解x取值范圍.(2)本題可根據(jù)題意構(gòu)造新函數(shù),采取自變量分類討論的方式判別新函數(shù)的正負,繼而根據(jù)函數(shù)性質(zhì)反求參數(shù).【詳解】(1)因為表示整數(shù),故當時,的可能取值為0,1,2.當取0時,;當取1時,;當=2時,.故綜上當時,x的取值范圍為:.(2)令,,,由題意可知:,.①當時,=,,在該區(qū)間函數(shù)單調(diào)遞增,故當時,,得.②當時,=0,不符合題意.③當時,=1,,在該區(qū)間內(nèi)函數(shù)單調(diào)遞減,故當取值趨近于2時,,得,當時,,因為,故,符合題意.故綜上:或.【考點】本題考查函數(shù)的新定義取整函數(shù),需要有較強的題意理解能力,分類討論方法在此類型題目極為常見,根據(jù)不同區(qū)間函數(shù)單調(diào)性求解參數(shù)為常規(guī)題型,需要利用轉(zhuǎn)化思想將非常規(guī)題型轉(zhuǎn)化為常見題型.7、3【解析】【分析】根據(jù)直角三角形的性質(zhì)得到AB=10,利用勾股定理求出AC,再說明DE∥AC,得到,即可求出DE.【詳解】解:∵∠ACB=90°,點D為AB中點,∴AB=2CD=10,∵BC=8,∴AC==6,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴,即,∴DE=3,故答案為:3.【考點】本題考查了直角三角形的性質(zhì),勾股定理,平行線分線段成比例,解題的關(guān)鍵是通過平行得到比例式.四、解答題1、(1)當時,四邊形PQCD為平行四邊形;(2)當t=2秒時,PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設(shè)PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切線長定理得到AP=PH,HQ=BQ,則PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,則122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【詳解】解:(1)由題意得:,,∴,∵四邊形PQCD是平行四邊形,∴DP=CQ,∴,解得,∴當時,四邊形PQCD為平行四邊形;(2)設(shè)PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四邊形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB為⊙O的直徑,∠ABC=∠DAB=90°,∴AD、BC為⊙O的切線,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD邊運動的時間為秒.∵t=9>8,∴t=9(舍去),∴當t=2秒時,PQ與⊙O相切.【考點】本題主要考查了切線長定理,矩形的性質(zhì)與判定,勾股定理,平行四邊形的性質(zhì)等等,解題的關(guān)鍵在于能夠熟練掌握切線長定理.2、(1);(2)的值為,,.【解析】【分析】(1)由直線BC求出B、C的坐標,再代入二次函數(shù)的解析式,求出b、c的值,得出二次函數(shù)的解析式;(2)用含有m的代數(shù)式表示點E和點F的坐標,用相似三角形對應(yīng)邊成比例的性質(zhì)列方程,求出m的值.【詳解】(1)直線的解析式點,點和在拋物線上,解得:二次函數(shù)的解析式為:(2)二次函數(shù)與軸交于點、點軸交直線于點點軸,軸,軸交直線于點,點點的坐標為,點的坐標為①若點在原點右側(cè),如圖1,則,即,解得:,;②若點在原點左側(cè),如圖2,則即,解得:,(舍去);綜上所述,的值為,,.【考點】本題考查二次函數(shù)與幾何的綜合問題,熟練掌握二次函數(shù)的性質(zhì)是本題的解題關(guān)鍵,解題時結(jié)合一次函數(shù)的性質(zhì),利用相似三角形的性質(zhì)列方程,靈活應(yīng)用函數(shù)圖像上點的坐標特征.3、(1),;(2)50元或80元;(3)商場銷售該品牌玩具獲利的最大利潤是10560元【解析】【分析】(1)根據(jù)銷售量與銷售單價之間的變化關(guān)系就可以直接求出y與x之間的關(guān)系式;根據(jù)銷售問題的利潤=售價-進價就可以表示出w與x之間的關(guān)系;(2)根據(jù)題意得方程求得x1=50,x2=80,于是得到結(jié)論;(3)根據(jù)銷售單價不低于45元且商場要完成不少于480件的銷售任務(wù)求得45≤x≤52,根據(jù)二次函數(shù)的性質(zhì)得到當45≤x≤52時,y隨x增大而增大,于是得到結(jié)論.【詳解】解:(1)依等量關(guān)系式“銷量=原銷量-因漲價而減少銷量,總利潤=單個利潤×銷量”可列式為:y=600-10(x-40)=-10x+1000;W=(x-30)(-10x+1000)=-10+1300x-30000(2)由題意可得:10+1300x30000=10000,解得:x=50或x=80,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論